JPH01319268A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH01319268A
JPH01319268A JP63151110A JP15111088A JPH01319268A JP H01319268 A JPH01319268 A JP H01319268A JP 63151110 A JP63151110 A JP 63151110A JP 15111088 A JP15111088 A JP 15111088A JP H01319268 A JPH01319268 A JP H01319268A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
polymer
solt
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63151110A
Other languages
Japanese (ja)
Inventor
Sachiko Yoneyama
米山 祥子
Toshiyuki Osawa
大沢 利幸
Okitoshi Kimura
興利 木村
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63151110A priority Critical patent/JPH01319268A/en
Priority to DE3920129A priority patent/DE3920129A1/en
Priority to US07/369,122 priority patent/US5011751A/en
Publication of JPH01319268A publication Critical patent/JPH01319268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To keep energy density of a secondary battery by employing high molecular solid electrolyte composed by combining predetermined electrolyte solt in high density. CONSTITUTION:Electrolyte solt composing high molecular solid electrolyte includes solt composed of anion expressed by BR (R is alkyl, phenyl and halogen) whose lattice energy is less than 750KJ/mol and cation which forms a pair with the anion. The solt density is 0.04 or more than that per 1 unit of ion dissociation group. By employing the solt composed of the anion expressed by BR4 as the solt to be dissolved in high molecular solid electrolyte, a secondary battery is obtained, which has excellent characteristics of repeating doping and dedoping and is capable of keeping high energy density even by repeating charging/discharging.

Description

【発明の詳細な説明】 [技術分野] 本発明は、二次電池に関する。[Detailed description of the invention] [Technical field] The present invention relates to a secondary battery.

[従来技術] 共役二重結合を有する有機高分子化合物は、電気化学的
にClO4−、BR4−、PF6−1^Sドロ″″など
のアニオン又はL11アンモニウム類等のカチオンをド
ーピングすることにより、P型あるいはn型の導電性高
分子になることが知られており、[J、CJ、Chem
、Coma、(1979)P594−595] 、これ
らの高分子化合物を用いた電気化学系の機能デバイスが
種々検討されている。
[Prior Art] An organic polymer compound having a conjugated double bond can be electrochemically doped with an anion such as ClO4-, BR4-, PF6-1^S dolo'' or a cation such as L11 ammonium, It is known that it becomes a p-type or n-type conductive polymer, [J, CJ, Chem
, Coma, (1979) P594-595], various electrochemical functional devices using these polymer compounds have been studied.

中でも導電性高分子を電極活物質に用いた電池の開発が
進んでいる。これら導電性高分子を電極に用いた電池は
電解質中のイオンが、電極にドーピング−脱ドーピング
する反応を利用しているため、電解質塩の種類や、濃度
により、電池特性が大き(異なる。
In particular, the development of batteries using conductive polymers as electrode active materials is progressing. Batteries using these conductive polymers as electrodes utilize a reaction in which ions in the electrolyte dope and undope the electrodes, so battery characteristics vary greatly depending on the type and concentration of the electrolyte salt.

電解液濃度に関しては例えば特開昭62−195861
号では電解液の塩濃度を1mol/I 〜[1mol/
1とすることによりポリマー電池のくり返し特性の改善
を行う提案がなされている。しかしながら、上記の電池
の電解液は液体であるためこの電解液は両極間に配置さ
れたセパレータ等に含浸させた状態で使用される。
Regarding the electrolyte concentration, for example, JP-A-62-195861
In the issue, the salt concentration of the electrolyte is 1 mol/I ~ [1 mol/I]
1 has been proposed to improve the cycling characteristics of polymer batteries. However, since the electrolytic solution of the above-mentioned battery is a liquid, this electrolytic solution is used in a state in which it is impregnated into a separator or the like disposed between the two electrodes.

一般に、正極、負極とセパレータとは単に外部圧力によ
り接触しているため、薄型電池、特に広面積の薄型電池
を作成した場合電極とセパレータとの密着を均一に保つ
ことは難しく、特に充放電を繰返すに従い、部分的に電
極とセパレータとに間隔が生じ、電解液の欠如した部分
が生じやすい。そのため高エネルギー密度を安定して維
持し得る電池を得ることは困難であった。
Generally, the positive electrode, negative electrode, and separator are in contact simply by external pressure, so when creating a thin battery, especially a wide-area thin battery, it is difficult to maintain uniform contact between the electrode and the separator, especially during charging and discharging. As the process is repeated, a gap is formed between the electrode and the separator, which tends to cause some areas to lack electrolyte. Therefore, it has been difficult to obtain a battery that can stably maintain a high energy density.

[目 的] 本発明は、こうした欠点がなく充放電の繰返しによって
もエネルギー密度を高水準に維持できる二次電池を提供
することを目的とするものである。
[Objective] An object of the present invention is to provide a secondary battery that does not have these drawbacks and can maintain a high energy density even after repeated charging and discharging.

[構 成] 本発明者らは従来より電池の薄型化、電池内部での部分
的な電解液の欠如を改善するため電解液とセパレータの
代りに薄膜化が可能で電極との密着性に優れる高分子電
解質を用いた全固体ポリマー電池について種々検討を重
ねた結果、特定の電解質塩を高濃度に複合させた高分子
固体電解質を用いることにより二次電池のエネルギー密
度を高水準にして保つことを見い出し本発明に至った。
[Structure] The present inventors have conventionally developed a battery that can be made thinner in place of the electrolyte and separator in order to improve the thickness of the battery and to improve the partial lack of electrolyte inside the battery, which has excellent adhesion to the electrodes. As a result of various studies on all-solid polymer batteries using polymer electrolytes, we have found that the energy density of secondary batteries can be maintained at a high level by using a polymer solid electrolyte that is a complex of specific electrolyte salts at high concentrations. This discovery led to the present invention.

すなわち、本発明は、高分子固体電解質と少なくとも一
方が導電性高分子を活物質とする電極からなる二次電池
において、該高分子固体電解質を構成する電解質塩が、
格子エネルギ−750kJ/mol以下となるBR4−
(Rはアルキル、フェニル、ハロゲンを表わす)で表さ
れるアニオンとこの対カチオンから形成された塩を含有
し、塩濃度が電解質のイオン解離基1ユニットあたり、
0.04個以上であることを特徴とする該二次電池であ
る。
That is, the present invention provides a secondary battery comprising a solid polymer electrolyte and an electrode in which at least one of the electrodes uses a conductive polymer as an active material, in which the electrolyte salt constituting the solid polymer electrolyte is
BR4- with lattice energy of 750 kJ/mol or less
Contains a salt formed from an anion represented by (R represents alkyl, phenyl, halogen) and its counter cation, the salt concentration is per unit of ion dissociative group of the electrolyte,
The secondary battery is characterized in that the number of cells is 0.04 or more.

導電性高分子を電極に用いた電池は、充放電により、ド
ーピング、脱ドーピングがおこり、電解質中のイオンは
、電解質のキャリアーとしてのみでなく、電極のドーパ
ントとしても作用する。そのため、該電池の電解質は、
イオン伝導度が最大となる組成のみを考慮して選択して
も良好な電池特性は得られない。導電性高分子の導電率
は、ドーパントの量が多い程高い値を示すため、高いエ
ネルギー容量を維持するためには、ドープ、脱ドープが
容易におこるアニオンを用い、かつ高濃度のドーパント
を常に供給できる塩濃度が必要である。我々は上記条件
を十分に満たす電解質の組成を見い出した。
In batteries using conductive polymers as electrodes, doping and dedoping occur during charging and discharging, and ions in the electrolyte act not only as carriers for the electrolyte but also as dopants for the electrode. Therefore, the electrolyte of the battery is
Good battery characteristics cannot be obtained even if the composition is selected by considering only the composition that gives the maximum ionic conductivity. The conductivity of a conductive polymer increases as the amount of dopant increases. Therefore, in order to maintain high energy capacity, it is necessary to use anions that can be easily doped and undoped, and to always use a high concentration of dopant. A supplyable salt concentration is required. We have found an electrolyte composition that fully satisfies the above conditions.

我々は、導電性高分子電極を用いた固体二次電池におい
て、高分子固体電解質に溶解させる塩として式BR4−
(R−アルキル基、フェニル基、ハロゲン)であられさ
れるアニオンからなる塩を用いるとドープ、脱ドープの
くり返し特性が優れていることを見いだした。
In solid secondary batteries using conductive polymer electrodes, we used the formula BR4-
It has been found that when a salt consisting of an anion formed by (R-alkyl group, phenyl group, halogen) is used, the repeatability of doping and dedoping is excellent.

電解質塩の解離性は塩の種類により大きく異なるため、
カチオンの種類を変えると、同塩濃度に調製しても、キ
ャリアーイオンの濃度は同じにならず、イオン伝導度が
異なる。すなわち、BR4−はカチオンと塩を形成した
ときにその格子エネルギーが750kJ/sol以下と
なるような組み合わせにおいて高分子固体電解質のイオ
ン伝導度を高く保ちまた、イオン伝導度の塩濃度依存性
を小さくすることがわかった。
Since the dissociation properties of electrolyte salts vary greatly depending on the type of salt,
If the type of cation is changed, the carrier ion concentration will not be the same even if the salt concentration is the same, and the ionic conductivity will be different. In other words, BR4- maintains the ionic conductivity of the polymer solid electrolyte high in combinations where the lattice energy is 750 kJ/sol or less when forming a salt with a cation, and also reduces the dependence of ionic conductivity on salt concentration. I found out that it does.

導電性高分子電極を用いた電池においてはドープ、脱ド
ープ反応により電極と電解質の界面で局所的に塩濃度の
差が生じる。特に高分子固体電解質はイオンの移動が通
常の電解液に比べ遅いため、このような現象は著しいと
考えられる。
In batteries using conductive polymer electrodes, doping and dedoping reactions cause local differences in salt concentration at the interface between the electrode and electrolyte. In particular, this phenomenon is considered to be significant in solid polymer electrolytes because the movement of ions is slower than in ordinary electrolytes.

安定な電池特性を得るためには、イオン伝導度の塩濃度
依存性が小さい電解質が望ましい。
In order to obtain stable battery characteristics, an electrolyte whose ionic conductivity is less dependent on salt concentration is desirable.

本発明者らは、充放電特性の優れた高エネルギー密度を
何する電池を得るには、電解質塩の組み合わせとして、
アニオンがBR4″″でかつカチオンがBR4−との塩
の格子エネルギーが750kJ/++ol以下であるも
のが良いことを見いだしてきたがさらに電解質の塩濃度
も電池のエネルギー容量に°大きく影響することを見い
だした。すなわち導電性高分子電極に高濃度のドーパン
トを常に供給できる電解質塩濃度はポリマーのイオン解
離基1ユニットあたり0,04個以上であった。
The present inventors believe that in order to obtain a battery with high energy density and excellent charge/discharge characteristics, as a combination of electrolyte salts,
We have found that a salt with an anion of BR4'' and a cation of BR4- has a lattice energy of 750 kJ/++ol or less, but it has also been found that the salt concentration of the electrolyte has a large effect on the energy capacity of the battery. I found it. That is, the electrolyte salt concentration at which a high concentration of dopant could always be supplied to the conductive polymer electrode was 0.04 or more per unit of ion dissociative groups of the polymer.

また、クロミック素子等地の素子においても塩濃度が上
記範囲よりも薄いと膜厚を大きくしたときの応答速度が
非常に小さかった。
Further, even in elements such as chromic elements, when the salt concentration was lower than the above range, the response speed when the film thickness was increased was very low.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明で用いられる高分子固体電解質、即ちイオン伝導
性高分子は、少なくとも、マトリックスとなる高分子と
キャリアとなる電解質塩とから構成されている。イオン
伝導は高分子マトリックス中へ溶媒和された電解質が、
解離してマトリックス中を電界にそった拡散移動をする
ことによって実現される。
The polymer solid electrolyte used in the present invention, that is, the ion-conducting polymer, is composed of at least a polymer serving as a matrix and an electrolyte salt serving as a carrier. Ionic conduction occurs when an electrolyte solvated into a polymer matrix
This is achieved by dissociation and diffusion movement along the electric field in the matrix.

高分子固体電解質は、高分子マトリックスと電解質塩の
みから構成される2成分系とこれらに高沸点を有する第
3成分を添加した3成分系に分類できる。前者のポリマ
ーマトリックスとしては に2         R2 (R+、R2がポリアルキレンオキシド、ポリエチレン
イシン) を主鎖、または側鎖に有したポリマーがあげられる。さ
らにこれらくり返し単位をブロックあるいはランダムに
共重合したものや架橋体でも良い。本発明においてこれ
ら2成分系固体電解質のうち特にポリアルキレンオキシ
ド架橋体を用いたとき良好な特性が得られた。
Polymer solid electrolytes can be classified into two-component systems consisting only of a polymer matrix and an electrolyte salt, and three-component systems in which a third component having a high boiling point is added to these systems. Examples of the former polymer matrix include polymers having 2 R2 (R+, R2 is polyalkylene oxide or polyethylene ysine) in the main chain or side chain. Further, it may be a block or random copolymerization product or a crosslinked product of these repeating units. In the present invention, among these two-component solid electrolytes, particularly when crosslinked polyalkylene oxide was used, good characteristics were obtained.

また、3成分系固体電解質のポリマーマトリックスの例
としては、上記のポリマーの他、ポリアクリロニトリル
、ポリビニリデンフルオライド等があげられる。これら
ポリマーに添加する高沸点、高誘電率を有する化合物と
しては、ポリエチレングリコール、モノメトキシポリエ
チレングリコール、ジメトキシポリエチレングリコール
、ポリプロピレングリコール、プロピレンカーボネート
、エチレンカーボネートくジメチルホルムアミド、ジメ
チルアセトアミ“ド等が挙げられる。これら化合物を添
加することにより、イオン伝導性は著しく増大した。
Examples of the polymer matrix of the three-component solid electrolyte include polyacrylonitrile, polyvinylidene fluoride, and the like, in addition to the above-mentioned polymers. Compounds with high boiling points and high dielectric constants to be added to these polymers include polyethylene glycol, monomethoxypolyethylene glycol, dimethoxypolyethylene glycol, polypropylene glycol, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylacetamide, etc. By adding these compounds, the ionic conductivity was significantly increased.

キャリアとなる電解質塩のアニオンとしては、−数式B
R4−(R+アルキル基、フェニル基、ハロゲン)であ
られされるイオン、例えばBF2−1B(Ph) 4−
等が挙げられる。これらアニオンと塩を形成したときに
、塩の格子エネルギーが750kJ/molとなるカチ
オンとしてはアルカリ金属カチオン、Ll+、K+、N
a+等があげられる。
As the anion of the electrolyte salt serving as a carrier, - Formula B
Ions formed by R4- (R+ alkyl group, phenyl group, halogen), such as BF2-1B(Ph) 4-
etc. When forming a salt with these anions, the cations that give the salt a lattice energy of 750 kJ/mol include alkali metal cations, Ll+, K+, N
Examples include a+.

高分子固体電解質、すなわち、ポリマーマトリックスと
電解質塩の複合体を作成するには、電解質を溶解せしめ
たポリマーが不溶の溶液に高分子マトリックスフィルム
を浸漬して含浸させる方法;ポリマーと電解質塩とを溶
かした溶液からキャスティング法によって成膜と同時に
電解質塩を複合化させる方法などが挙げられる。
To create a polymer solid electrolyte, that is, a composite of a polymer matrix and an electrolyte salt, a polymer matrix film is immersed in a polymer-insoluble solution in which an electrolyte is dissolved; Examples include a method in which an electrolyte salt is composited at the same time as a film is formed by a casting method from a dissolved solution.

本発明で用いられる導電性高分子はピロール、チオフェ
ン、フラン、ベンゼン、アズレン、アニリン、ジフェニ
ルベンジン、ジフェニルアミン、トリフェニルアミンあ
るいはこれら誘導体を重合した導電性あるいは半導電性
高分子があげられる。これら重合体は、重合と同時に電
解質アニオンと錯体を形成し、酸化還元反応にともなっ
てアニオンが出入りするが、カチオンと錯体を形成する
ポリマーとしてはポリチオフェン、ポリフェニレンの他
ポリフェニレンビニレン、ポリフェニレンキシリレンな
どがあげられる。
The conductive polymers used in the present invention include pyrrole, thiophene, furan, benzene, azulene, aniline, diphenylbenzine, diphenylamine, triphenylamine, and conductive or semiconductive polymers obtained by polymerizing derivatives thereof. These polymers form a complex with an electrolyte anion at the same time as they are polymerized, and the anion moves in and out as a result of redox reactions.Polymers that form complexes with cations include polythiophene, polyphenylene, polyphenylene vinylene, polyphenylene xylylene, etc. can give.

導電性高分子と錯体を形成するイオンとしては例”えば
、 ClO4−、PF6″″、 ASF&−1BF4−
、パラトルエンスルホン酸アニオン、ニトロベンゼンス
ルホン酸アニオン、Fe(CN)i−1CP(CN)S
−などの錯アニオンあるいはAlCl 3、) ccI
 3 、GaCl 3などのルイス酸等をあげることが
できる。
Examples of ions that form complexes with conductive polymers include ClO4-, PF6'', ASF&-1BF4-
, paratoluenesulfonate anion, nitrobenzenesulfonate anion, Fe(CN)i-1CP(CN)S
complex anions such as - or AlCl3,) ccI
3, Lewis acids such as GaCl3, and the like.

本発明において、素子を構成する導電性高分子のドーパ
ントとしては高分子固体電解質中のイオンと同種のもの
が望ましい。したがって、固体電解質中のイオンと同種
のドーパントを用いて導電性高分子を合成し、そのまま
素子に用いるか、または−旦異種のイオンを用いて重合
し、脱ドーピング処理を行ってから素子を組立てるのが
好ましい。さらに、脱ドーピング処理後固体電解質中の
イオンと同種のイオンをドーピングして素子に使用する
のが好ましい。
In the present invention, the dopant for the conductive polymer constituting the device is preferably the same type of ion as the ion in the solid polymer electrolyte. Therefore, a conductive polymer can be synthesized using the same type of dopant as the ions in the solid electrolyte and used as it is in a device, or it can be polymerized first using a different type of ion and subjected to dedoping treatment before being assembled into a device. is preferable. Further, it is preferable to dope the solid electrolyte with ions of the same type as the ions in the solid electrolyte after dedoping treatment and use the same type of ions in the device.

脱ドーピング処理は化学的脱ドーピングと電気化学的脱
ドーピングがあるが、本発明では重合膜を電解液に浸し
、膜が破壊しない範囲でより卑な電位をかけ電気化学的
脱ドーピングが行われる。また、ドーピング処理とはド
ーパントとして用いるイオンが存在する電解質溶液中に
膜を浸漬し、ドーピングが始まる責な電位をかけること
によって行われる。
Dedoping treatment includes chemical dedoping and electrochemical dedoping, and in the present invention, electrochemical dedoping is performed by immersing the polymer membrane in an electrolytic solution and applying a more base potential within a range that does not destroy the membrane. Further, doping treatment is performed by immersing the membrane in an electrolyte solution containing ions used as dopants, and applying a sufficient potential to initiate doping.

これら導電性高分子は化学重合あるいは電解重合により
得られるが、特に電解重合法によれば、導電性高分子は
電解用電極上に膜状に析出するため、電解用集電体とな
りうる。この導電性高分子の析出した電極をそのまま電
池用電極に用いることができ好ましい。
These conductive polymers can be obtained by chemical polymerization or electrolytic polymerization, and in particular, according to the electrolytic polymerization method, the conductive polymer is deposited in the form of a film on an electrode for electrolysis, so that it can serve as a current collector for electrolysis. The electrode on which the conductive polymer is deposited can be used as it is as a battery electrode, which is preferable.

電解重合法は、一般には例えば、 J、EIecLroches、Soc、、Vol、13
0.No、7,1508〜1509(1983)、 E
!ectrochem、AcLa、、Vol 、27 
、No、1.81〜85(1982)、J、Chem、
Soc、、Ches、Coml1un、、1199 〜
(!H4)などに示されているが、単量体と電解質塩と
を溶媒に溶解した液を所定の電解槽に入れ、電極を浸漬
し、陽極酸化あるいは陰極還元による電解重合反応を起
こさせることによって行うことができる。
Electrolytic polymerization methods are generally described, for example, in J. EIecLroches, Soc., Vol. 13.
0. No. 7, 1508-1509 (1983), E
! electrochem, AcLa,, Vol. 27
, No. 1.81-85 (1982), J. Chem.
Soc,, Ches, Comllun,, 1199 ~
(!H4) etc., a solution in which a monomer and an electrolyte salt are dissolved in a solvent is placed in a designated electrolytic bath, electrodes are immersed, and an electrolytic polymerization reaction is caused by anodic oxidation or cathodic reduction. This can be done by:

また電解質と溶媒の代りに固体電解質中で電解重合を行
うことにより固体電解質と導電性高分子の複合体を得る
ことも可能である。電解重合に用いる電極は、導電性高
分子を電極上に形成させたのち、そのまま電池用電極と
して用いるため、両者の密着性を向上させる方がよい。
Furthermore, it is also possible to obtain a composite of a solid electrolyte and a conductive polymer by performing electrolytic polymerization in a solid electrolyte instead of an electrolyte and a solvent. Since the electrode used for electrolytic polymerization is used as a battery electrode after forming a conductive polymer on the electrode, it is better to improve the adhesion between the two.

たとえば、研磨材、研磨機等による機械的方法、化学的
あるいは電気化学的方法により電極を粗面化して、表面
積を増大させ、電極と導電性高分子の密着性を向上させ
ることができる。さらに機械的方法、化学的あるいは電
気化学的方法により電極に孔を設け、電極両面より成長
してきた導電性高分子を孔を通して一体化させることに
より電極と導電性高分子の密着性を向上させることがで
きる。これらの方法により導電性高分子の電極からの脱
離、欠落は生じ難(、また集電効率は増大した。
For example, the surface of the electrode can be roughened by a mechanical method using an abrasive, a polisher, etc., or by a chemical or electrochemical method to increase the surface area and improve the adhesion between the electrode and the conductive polymer. Furthermore, holes are formed in the electrode by mechanical, chemical, or electrochemical methods, and the conductive polymer that has grown from both sides of the electrode is integrated through the hole, thereby improving the adhesion between the electrode and the conductive polymer. I can do it. With these methods, detachment or loss of the conductive polymer from the electrode is less likely to occur (and the current collection efficiency is increased).

電極を構成する材料としてはNl5Pts Aus A
t、Cu等の金属ステンレス鋼等の合金、Sn02、I
n2O3等の金属酸化物あるいは炭素体をポリエステル
、ポリ塩化ビニル等のプラスチック上に蒸着あるいは塗
布した導電性を持たせたコーティング電極あるいはこれ
らの複合体が用いられる。
The material constituting the electrode is Nl5Pts Aus A.
Metals such as T, Cu, alloys such as stainless steel, Sn02, I
A conductive coated electrode in which a metal oxide such as n2O3 or a carbon material is vapor-deposited or coated on a plastic such as polyester or polyvinyl chloride, or a composite thereof is used.

電極の形態としてはシート状であることが好ましく面積
は1 cj以上、厚さ5μm〜300μmが好ましい。
The electrode is preferably in the form of a sheet, with an area of 1 cj or more and a thickness of 5 μm to 300 μm.

本発明の電池は基本的には正極、負極および高分子固体
電解質より構成され、少なくとも一方の電極活物質には
導電性高分子材料が用いられる。
The battery of the present invention basically comprises a positive electrode, a negative electrode, and a polymer solid electrolyte, and a conductive polymer material is used as the electrode active material for at least one of the electrodes.

本発明の電池は、アニオンまたはカチオンによって導電
性高分子がドープされてエネルギーを貯え、脱ドープに
よって外部回路を通じてエネルギーを放出するものであ
る。また、本発明の電池においては、このドープ−脱ド
ープが可逆的に行われるので、二次電池として使用する
ことができる。
In the battery of the present invention, a conductive polymer is doped with anions or cations to store energy, and the energy is released through an external circuit by dedoping. Furthermore, in the battery of the present invention, this doping-dedoping is performed reversibly, so it can be used as a secondary battery.

負極としては、カチオンをドープすることのできるポリ
アセチレン、ポリチオフェン、ポリパラフェニレンの他
、ポリフェニレンビニレン、ポリフェニレンキシリレン
等の導電性性高分子、LI% Nas  K% Ags
 Zn5AISCu等の金属、あるいは、LiとAI、
Mg5Sis Pbq Gas Inとのリチウム合金
等を挙げることができる。
As a negative electrode, in addition to polyacetylene, polythiophene, and polyparaphenylene that can be doped with cations, conductive polymers such as polyphenylene vinylene and polyphenylene xylylene, LI% Nas K% Ags
Metals such as Zn5AISCu, or Li and AI,
Examples include a lithium alloy with Mg5Sis Pbq Gas In.

本発明にかかる二次電池の構成の一例を第1図に示す。An example of the configuration of a secondary battery according to the present invention is shown in FIG.

lは正極集電体、2は正極活物質、3は負極集電体、4
は負極活物質、5は高分子固体電解質、6は外装である
l is a positive electrode current collector, 2 is a positive electrode active material, 3 is a negative electrode current collector, 4
5 is a negative electrode active material, 5 is a polymer solid electrolyte, and 6 is an exterior packaging.

以下に、実施例を挙げ本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

正極の作成例1 アニリン0.5Mを含む1.5N硫酸水溶液中で反応極
として20μmのニッケルシート(反応面積3x 3c
m)対極も同様にニッケルを用い、1IIAlc−の定
電流によりアニリンの重合を行った。通電量は3c/c
dとした。このニッケルポリアニリン電極を流水にて十
分洗浄したのち、0.2N硫酸中で対極としてニッケル
、参照極として飽和甘こう電極(SCE)を用い、−0
,4VvsSCEまで電位をかけて充分に脱ドーピング
操作を行った。流水にて充分洗浄した後、3.5M電解
質塩を溶かしたプロピレンカーボネート/1.2−ジメ
トキシエタンの7:3溶液中で参照極に対して4.4v
まで電位をかけて、ドーピングを行った。用いた電解質
塩は、素子を構成する固体電解質中の電解質塩と同種の
ものを用いた。これを十分に乾燥させニッケルポリアニ
リン複合電極を得た。
Example of creating a positive electrode 1 A 20 μm nickel sheet (reaction area 3x 3c
m) Nickel was similarly used for the counter electrode, and aniline was polymerized using a constant current of 1IIIAlc-. The amount of current is 3c/c
It was set as d. After thoroughly washing this nickel polyaniline electrode with running water, using nickel as a counter electrode and a saturated sweet tooth electrode (SCE) as a reference electrode in 0.2N sulfuric acid, -0
, 4V vs SCE was applied to perform a sufficient dedoping operation. After thorough washing with running water, the reference electrode was heated at 4.4 V against the reference electrode in a 7:3 propylene carbonate/1,2-dimethoxyethane solution containing 3.5 M electrolyte salt.
Doping was performed by applying a potential up to The electrolyte salt used was of the same type as the electrolyte salt in the solid electrolyte constituting the device. This was sufficiently dried to obtain a nickel polyaniline composite electrode.

正極の作成例2 作成例1において反応極として60μmのアルミニウム
シートを用い、対極として白金、参照極としてSCEを
用い0.8VvsSCEの電位にてアニリンの重合を行
った以外は作成例1と同様に操作した。
Positive electrode creation example 2 Same as creation example 1 except that in creation example 1, a 60 μm aluminum sheet was used as the reaction electrode, platinum was used as the counter electrode, SCE was used as the reference electrode, and aniline was polymerized at a potential of 0.8 V vs SCE. operated.

実施例1 正極の作成例で示したニッケルーポリアニリン複合電極
上にディッピング法により高分子固体電解質層を添塗し
た。デイピング液はポリエチレンオキシドトリオール(
PEO)loog、LIBF+8.5g (イオン解離
基1ユニットあたり0.04個)ジブチルすずジラウレ
ート0.08g 、  トリレン−2,4−ジイソシア
ネート(TDI)8.5gをメチルエチルケトン(ME
K)100gに溶解して調製した。次に高分子固体電解
質を添塗した複合電極を70℃で5分間加熱し、PEO
を架橋体として電極上に固定化したのち、(固体電解質
層片面約30μm)電極の両面に60μmのLl−A1
合金を圧着、第1図に示すような電池を作成し、充放電
特性を測定した。
Example 1 A solid polymer electrolyte layer was coated on the nickel-polyaniline composite electrode shown in the positive electrode preparation example by a dipping method. The dipping liquid is polyethylene oxide triol (
PEO)loog, LIBF+8.5g (0.04 ionically dissociable groups per unit) dibutyltin dilaurate 0.08g, tolylene-2,4-diisocyanate (TDI) 8.5g, methyl ethyl ketone (ME)
K) Prepared by dissolving in 100g. Next, the composite electrode coated with the polymer solid electrolyte was heated at 70°C for 5 minutes, and the PEO
After immobilizing it on the electrode as a crosslinked body, (solid electrolyte layer one side approximately 30 μm) Ll-A1 of 60 μm
The alloy was crimped to create a battery as shown in Figure 1, and its charge and discharge characteristics were measured.

実施例2 実施例1のディッピング液に代えて1.プロピレンカー
ボネイト(PC)100gl:Liar+ 4.7g 
(イオン解M基1ユニットあたり0.04個)を溶かし
、ニーにポリビニリデンフルオライド(PVDP)15
gを混合し80℃とした溶液を用いた。
Example 2 In place of the dipping liquid in Example 1, 1. Propylene carbonate (PC) 100gl: Liar+ 4.7g
(0.04 per unit of ion-dissolving M group), and 15% polyvinylidene fluoride (PVDP) was added to the knee.
A solution obtained by mixing g and bringing the temperature to 80°C was used.

該溶液を添塗した電極2を室温まで放冷したのち(固体
電解質層片面約30μ目)両極両面に80μmリチウム
アルミニウム合金を圧着し第1図に示す電池を作成し、
充放電特性を測定した。
After allowing the electrode 2 coated with the solution to cool to room temperature (approximately 30 μm thick on one side of the solid electrolyte layer), 80 μm lithium aluminum alloy was bonded to both electrodes to create the battery shown in FIG. 1.
The charge and discharge characteristics were measured.

実施例3 正極の作成例2で示したアルミニウムポリアニリン複合
電極上にディッピングにより高分子固体電解質層を添塗
した。ディッピング溶液は実施例1で示したものと同じ
ものを用い、同様に第1図に示した電池を作成し、充放
電特性を測定した。
Example 3 A solid polymer electrolyte layer was coated on the aluminum-polyaniline composite electrode shown in Example 2 of positive electrode production by dipping. Using the same dipping solution as that shown in Example 1, the battery shown in FIG. 1 was prepared in the same manner, and its charge-discharge characteristics were measured.

実施例4 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより、高分子固体電解質層を添塗
した。ディッピング溶液は、PEO100g、 LiB
F421g  (イオン解M基1ユニットあたり0.1
個)ジブチルすずジラウレート0.08g%TD18.
5gをNEW 100gに溶解して調製した。次に高分
子固体電解質を添塗した複合電極を70℃で5分間加熱
し、PEOを架橋体として電極上に固定化したのち電極
の両面に60μmのLi−Al合金を圧着して第1図に
示すような電池を作成し、充放電特性を測定した。
Example 4 A solid polymer electrolyte layer was coated on the nickel-polyaniline composite electrode shown in Example 1 of positive electrode production by dipping. The dipping solution consists of 100g of PEO, LiB
F421g (0.1 per unit of ionolytic M group
) dibutyltin dilaurate 0.08g% TD18.
It was prepared by dissolving 5g in 100g of NEW. Next, the composite electrode coated with the solid polymer electrolyte was heated at 70°C for 5 minutes to fix PEO as a crosslinker on the electrode, and then 60 μm of Li-Al alloy was crimped onto both sides of the electrode. A battery as shown in Figure 1 was created and its charge/discharge characteristics were measured.

実施例5 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより高分子固体電解質を添塗した
。ディッピング溶液はPE0100g、 LiBF42
5g−ジブチルすずジラウレート0.0Bg 、 TD
I 8.5g、プロピレンカーボネート(PC)40g
をMEK 100gに溶解して調製した。次に高分子固
体電解質を添塗した複合電極を70℃で5分間加熱し、
PEO架橋体として電極上に片面約30μsAなるよう
に固定したのち、電極の両面に60μmのLl−A1合
金を圧着して第1図に示、すような電池を作成し、充放
電特性を測定した。
Example 5 A solid polymer electrolyte was coated on the nickel-polyaniline composite electrode shown in Example 1 of positive electrode production by dipping. Dipping solution is PE0100g, LiBF42
5g-dibutyltin dilaurate 0.0Bg, TD
I 8.5g, propylene carbonate (PC) 40g
was prepared by dissolving it in 100 g of MEK. Next, the composite electrode coated with a solid polymer electrolyte was heated at 70°C for 5 minutes.
After fixing the PEO cross-linked material on the electrode with an A of about 30 μs on one side, 60 μm of Ll-A1 alloy was crimped on both sides of the electrode to create a battery as shown in Figure 1, and the charge-discharge characteristics were measured. did.

実施例6 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより高分子固体重解質を添塗した
。ディッピング溶液はPE0100g、 Lil)F4
30g  (イオン解離基1ユニットあたり0.1 M
Y) 、ジブチルすずジラウレート0.06g 、 T
DI 8.5g、平均分子量が800であるポリエチレ
ングリコール40gを14HK 100gに溶解して調
製した。次に高分子固体電解質を添塗した複合電極を7
0℃で5分間加熱し、PEO架橋体として電極上に片面
的30μmとなるように固定したのち、電極の両面に6
0μmのLl−A1合金を圧着して第1図に示すような
電池を作成し、充放電特性を測定した。
Example 6 Creating a Positive Electrode On the nickel-polyaniline composite electrode shown in Example 1, a solid polymer polymer was coated by dipping. Dipping solution is PE0100g, Lil)F4
30g (0.1M per unit of ionic dissociative group)
Y), dibutyltin dilaurate 0.06g, T
It was prepared by dissolving 40 g of polyethylene glycol having a DI of 8.5 g and an average molecular weight of 800 in 100 g of 14HK. Next, 7 composite electrodes coated with polymer solid electrolyte were applied.
After heating at 0°C for 5 minutes and fixing it on the electrode as a PEO crosslinked body so that it has a thickness of 30 μm on one side, 6
A battery as shown in FIG. 1 was prepared by pressing a 0 μm Ll-A1 alloy, and its charge/discharge characteristics were measured.

実施例7 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより高分子固体電解質を添塗した
。ディッピング溶液はPEO]、00g、 LiB(P
h) 429g  (イオン解jii11基1ユニット
あたり0,04個)、ジブチルすずジラウレート0.0
6g 、 TDI 8.5g、をMEK 100gに溶
解して調製した。次に高分子固体電解質を添塗した複合
電極を70℃で5分間加熱し、PEO架橋体として電極
上に片面的30μmとなるように固定したのち、電極の
両面に80μmのLl−A1合金を圧着して第1図に示
すような電池を作成し、充放電特性を測定した。
Example 7 A solid polymer electrolyte was coated on the nickel-polyaniline composite electrode shown in Example 1 of positive electrode production by dipping. The dipping solution was PEO], 00g, LiB(P
h) 429g (0.04 pieces per unit of 11 groups of ionic molecules), dibutyltin dilaurate 0.0
6g of TDI and 8.5g of TDI were dissolved in 100g of MEK. Next, the composite electrode coated with the solid polymer electrolyte was heated at 70°C for 5 minutes, and the PEO crosslinked body was fixed on the electrode with a thickness of 30 μm on one side, and then 80 μm of Ll-A1 alloy was applied on both sides of the electrode. A battery as shown in FIG. 1 was prepared by crimping, and its charge/discharge characteristics were measured.

実施例8 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより高分子固体電解質を添塗した
。ディッピング溶液はPE0100g、 LIB(Ph
) 441gを溶かしくイオン解離基1ユニットあたり
0.1個) 、コニ l:PVDP15gを混合して8
0℃とした溶液を用いた。既溶液を片面的30μmとな
るように添塗して室温まで放冷したのち、電極の両面に
60μmのLl−A1合金を圧着して第1図に示すよう
な電池を作成し、充放電特性を測定した。
Example 8 A solid polymer electrolyte was coated on the nickel-polyaniline composite electrode shown in Example 1 of positive electrode production by dipping. The dipping solution is PE0100g, LIB(Ph
) 0.1 ion dissociative group per unit that dissolves 441g) , Koni l: Mix 15g of PVDP and make 8
A solution kept at 0°C was used. After applying the existing solution to a thickness of 30 μm on one side and allowing it to cool to room temperature, a 60 μm thick Ll-A1 alloy was bonded to both sides of the electrode to create a battery as shown in Figure 1, and the charge-discharge characteristics were determined. was measured.

実施例9 正極の作成例1で示したニッケルーポリアニリン複合電
極上にディッピングにより高分子固体電解質を添塗した
。ディッピング溶液はPIFoloog、 I、Ir3
(Ph) 472.5g  (イオン解AIM 1 !
=ニットたり0.1個)、ジブチルすずジラウレート0
.0(ig 、 TDl 8.58をMEK 100g
に溶解して調製した。次に高分子固体電解質を添塗した
複合電極を70℃で5分間加熱し、PEO架橋体として
電極上に片面的lioμmのLl−A1合金を圧着して
第1図に示すような電池を作成し、充放電特性を測定し
た。
Example 9 A solid polymer electrolyte was coated on the nickel-polyaniline composite electrode shown in Example 1 of positive electrode production by dipping. The dipping solution is PIFoloog, I, Ir3
(Ph) 472.5g (Ion solution AIM 1!
= 0.1 pieces per knit), dibutyltin dilaurate 0
.. 0(ig, TDl 8.58 to MEK 100g
It was prepared by dissolving it in Next, the composite electrode coated with the solid polymer electrolyte was heated at 70°C for 5 minutes, and a 1-sided lioμm Ll-A1 alloy was bonded onto the electrode as a PEO crosslinker to create a battery as shown in Figure 1. The charge and discharge characteristics were measured.

比較例1 実施例1においてディッピング溶液はPEOlong、
 LIBF44.2g (イオン解離2i!i1ユニッ
トあたり0.02個)ジブチルすずジラウレート0.0
6g 。
Comparative Example 1 In Example 1, the dipping solution was PEOlong,
LIBF44.2g (ion dissociation 2i!i 0.02 pieces per unit) dibutyltin dilaurate 0.0
6g.

TDI&、りgをMEKloogに溶解して調製し、以
下同様に電池を作成し充放電特性を測定した。
A battery was prepared by dissolving TDI&g in MEKloog, and a battery was prepared in the same manner, and the charge/discharge characteristics were measured.

比較例2 実施例1においてディッピング溶液はPEOlongS
LICIO40,88g  (イオン解離基1ユニット
あたり0.04個)ジブチルジラウレートo、oag 
Comparative Example 2 In Example 1, the dipping solution was PEOlongS.
LICIO40.88g (0.04 ion dissociative groups per unit) dibutyl dilaurate o, oag
.

TDl8.5gをMEに100gに溶解して調製し、以
下同様に電池を作成して充放電特性を測定した。
A battery was prepared by dissolving 8.5 g of TDl in 100 g of ME, and a battery was prepared in the same manner, and the charge/discharge characteristics were measured.

比較例3 実施例1においてディッピング溶液はPE0100g、
 LiBH42,口g(イオン解離基1ユニットあたり
0.04個)ジブチルすずジラウレート0.06g 。
Comparative Example 3 In Example 1, the dipping solution was PE0100g,
LiBH42, g (0.04 ionically dissociable groups per unit) dibutyltin dilaurate 0.06 g.

TD l 8 、5gをMEKloogに溶解して調製
し、以下同様に電池を作成して充放電特性をCI定した
A battery was prepared by dissolving 5 g of TD l 8 in MEKloog, and a battery was prepared in the same manner, and the charge/discharge characteristics were determined by CI.

[効 果] 以上説明したように、本発明に係る二次電池は、高分子
固体電解質における電解質とその濃度の選択によって、
エネルギー密度を著しく高 ゛めることができる。
[Effects] As explained above, the secondary battery according to the present invention has the following effects by selecting the electrolyte and its concentration in the solid polymer electrolyte.
Energy density can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二次電池の一例の構成を説明する図。 l・・・正極集電体、2・・・正極活物質、3・・・負
極集電体、4・・・負極活物質、5・・・高分子固体電
解質、6・・・外装。
FIG. 1 is a diagram illustrating the configuration of an example of a secondary battery of the present invention. l... Positive electrode current collector, 2... Positive electrode active material, 3... Negative electrode current collector, 4... Negative electrode active material, 5... Polymer solid electrolyte, 6... Exterior.

Claims (1)

【特許請求の範囲】[Claims]  高分子固体電解質と少なくとも一方が導電性高分子を
活物質とする電極からなる二次電池において、該高分子
固体電解質を構成する電解質塩が、格子エネルギー75
0kJ/mol以下となるBR_4^−(Rはアルキル
、フェニル、ハロゲンを表わす)で表されるアニオンと
この対カチオンから形成された塩を含有し、塩濃度が電
解質のイオン解離基1ユニットあたり0.04個以上で
あることを特徴とする該二次電池。
In a secondary battery consisting of a polymer solid electrolyte and an electrode in which at least one side uses a conductive polymer as an active material, the electrolyte salt constituting the polymer solid electrolyte has a lattice energy of 75
Contains a salt formed from an anion represented by BR_4^- (R represents alkyl, phenyl, or halogen) and its counter cation, and the salt concentration is 0 kJ/mol or less per unit of ion dissociative group of the electrolyte. .04 or more secondary batteries.
JP63151110A 1988-06-21 1988-06-21 Secondary battery Pending JPH01319268A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63151110A JPH01319268A (en) 1988-06-21 1988-06-21 Secondary battery
DE3920129A DE3920129A1 (en) 1988-06-21 1989-06-20 ELECTROCHEMICAL DEVICE
US07/369,122 US5011751A (en) 1988-06-21 1989-06-21 Electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151110A JPH01319268A (en) 1988-06-21 1988-06-21 Secondary battery

Publications (1)

Publication Number Publication Date
JPH01319268A true JPH01319268A (en) 1989-12-25

Family

ID=15511574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151110A Pending JPH01319268A (en) 1988-06-21 1988-06-21 Secondary battery

Country Status (1)

Country Link
JP (1) JPH01319268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127986A (en) * 2004-10-21 2013-06-27 Bathium Canada Inc Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP2014512026A (en) * 2011-04-06 2014-05-19 クロモジェニクス・アクチボラーグ Electrochromic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097561A (en) * 1983-10-31 1985-05-31 Hitachi Ltd Solid electrolyte secondary battery
JPS6298577A (en) * 1985-10-25 1987-05-08 Ricoh Co Ltd Conductive polymer electronic material
JPH01107474A (en) * 1987-10-20 1989-04-25 Hitachi Maxell Ltd Lithium ion conductive polymer electrolyte
JPH01311573A (en) * 1988-03-01 1989-12-15 Imperial Chem Ind Plc <Ici> Electrochemical or electrolytic apparatus and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097561A (en) * 1983-10-31 1985-05-31 Hitachi Ltd Solid electrolyte secondary battery
JPS6298577A (en) * 1985-10-25 1987-05-08 Ricoh Co Ltd Conductive polymer electronic material
JPH01107474A (en) * 1987-10-20 1989-04-25 Hitachi Maxell Ltd Lithium ion conductive polymer electrolyte
JPH01311573A (en) * 1988-03-01 1989-12-15 Imperial Chem Ind Plc <Ici> Electrochemical or electrolytic apparatus and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127986A (en) * 2004-10-21 2013-06-27 Bathium Canada Inc Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP2015165517A (en) * 2004-10-21 2015-09-17 バシウム・カナダ・インコーポレーテッド Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP2014512026A (en) * 2011-04-06 2014-05-19 クロモジェニクス・アクチボラーグ Electrochromic devices

Similar Documents

Publication Publication Date Title
Osaka et al. Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
JP4259617B2 (en) Electrochemical storage battery comprising at least one electrode prepared from a fluorophenylthiophene polymer
US4681822A (en) Novel composites of an ionic conducting polymer and an electronic conducting polymer
JPS5960967A (en) Eletrochemical generator
WO1999023711A9 (en) An electrochemical storage cell containing at least one electrode formulated from a phenylene-thienyl based polymer
Furukawa et al. Lithium batteries with polymer electrodes
Morita et al. Electrosynthesis of poly (p-phenylene) films and their application to the electrodes of rechargeable batteries
US6699621B2 (en) Method for electrochemical conditioning polymeric electrodes
JPH01319268A (en) Secondary battery
Dietz et al. Positive polyacetylene electrodes in aqueous electrolytes
JP2934450B2 (en) Polymer solid electrolyte and secondary battery using the same
JPS61203565A (en) Secondary battery and its electrode
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JPS59196573A (en) Cell
JP2934452B2 (en) Rechargeable battery
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JP2542221B2 (en) Battery using polyaniline composite electrode
JPH043066B2 (en)
CN115863745B (en) Polymer/graphene composite solid electrolyte membrane and preparation method thereof
JP2631910B2 (en) Polypyrrole molded article for polymer secondary battery and method for producing the same
JPS59196566A (en) Cell
JP2716132B2 (en) Polyaniline battery
JPS59112584A (en) Battery
JP2669672B2 (en) Joint