JPS6337561A - Production of electrode for plastic cell positive electrode - Google Patents

Production of electrode for plastic cell positive electrode

Info

Publication number
JPS6337561A
JPS6337561A JP61180885A JP18088586A JPS6337561A JP S6337561 A JPS6337561 A JP S6337561A JP 61180885 A JP61180885 A JP 61180885A JP 18088586 A JP18088586 A JP 18088586A JP S6337561 A JPS6337561 A JP S6337561A
Authority
JP
Japan
Prior art keywords
electrolytic polymerization
current collector
positive electrode
mol
pyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61180885A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nonobe
康宏 野々部
Shoji Yokoishi
章司 横石
Toru Onishi
徹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61180885A priority Critical patent/JPS6337561A/en
Publication of JPS6337561A publication Critical patent/JPS6337561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the capacity per unit area by dissolving pyrrole in an organic solvent made of acetonitrile, dissolving borolithium fluoride as an electrolyte, and using this electrolytic polymerization liquid and a current collector made of a carbon graphite sheet to perform electrolytic polymerization. CONSTITUTION:An electrolytic polymerization jar 10 is formed with fluororesin which is an insulating material, and only its upper side is opened. Aluminum plates 12, 14 as a conductor, a sheet-shaped current collector 16 knit with carbon fibers so as to have gaps, and an electrolytic polymerization liquid 18 are stored to perform electrolysis. 0.3-0.6 mol/l of pyrrole as a conductive polymer material is dissolved in an organic solvent made of acetonitrile, 0.5-1.0 mol/l of borolithium fluoride as an electrolyte is dissolved, this electrolytic polymerization liquid and a current collector made of a carbon graphite sheet are used to perform electrolytic polymerization at the current density of 6-8 mA/cm<2> for 2-4 hours. Accordingly, a large output density and a large capacity per unit area can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック電池に用いられる電極の製造方
法に関し、詳細には、高分子材料からなる正極の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an electrode used in a plastic battery, and more particularly to a method for manufacturing a positive electrode made of a polymeric material.

〔従来の技術〕[Conventional technology]

従来、電極として導電性高分子材料を用いたプラスチッ
ク電池が知られている。このプラスチック電池は鉛電池
に比較して開路電圧が大きく、しかも軽量であるため出
力密度が大きいという優れた利点を有する。
Conventionally, plastic batteries using conductive polymer materials as electrodes are known. This plastic battery has excellent advantages over lead batteries in that it has a higher open circuit voltage, is lighter in weight, and has a higher output density.

高分子材料からなる電極は、正極および負極の両極に用
いられる場合と、負極をリチウムとして正極にのみ用い
られる場合とがある。後者は、約3.7vと高い開路電
圧を発生する。
An electrode made of a polymeric material may be used as both a positive electrode and a negative electrode, or may be used only as a positive electrode with lithium as the negative electrode. The latter generates a high open circuit voltage of about 3.7v.

そして、高分子材料の正極を製造するに際して、次のよ
うな方法が採られていた。
The following method has been used to manufacture positive electrodes made of polymeric materials.

すなわち、電解重合液を収容した電解重合槽中に、高分
子薄膜を析出させるための集電体とそれに対向する導電
体を浸漬し、集電体を電源の正極に接続するとともに、
導電性基板を電源の負極に接続する。そして、電解重合
を行い、正極の集電体の表面に高分子材料の薄膜を形成
する。それと同時に、負極の導電体の表面にはリチウム
薄膜が形成される。そして、使用される電解重合液は、
アセトニトリルを有機溶媒とし、導電性高分子材料とし
てピロールを有機溶媒に溶解させるとともに、電解質と
してホウフッ化リチウム(LiBF4)を用いたものを
本出願人は、先に提案済である(TSN84−530の
公開番号)。
That is, a current collector for depositing a polymer thin film and a conductor facing it are immersed in an electrolytic polymerization tank containing an electrolytic polymerization solution, and the current collector is connected to the positive electrode of a power source.
Connect the conductive substrate to the negative pole of the power supply. Then, electrolytic polymerization is performed to form a thin film of the polymer material on the surface of the current collector of the positive electrode. At the same time, a lithium thin film is formed on the surface of the negative electrode conductor. The electrolytic polymerization solution used is
The applicant had previously proposed a method using acetonitrile as an organic solvent, pyrrole as a conductive polymer material dissolved in the organic solvent, and lithium borofluoride (LiBF4) as an electrolyte (TSN84-530). Publication number).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記方法により得られるプラスチック電
池は、出力密度は(Wh/kg)は大きいものの、単位
面積当たりの容量(A)I/cd)が小さく、車載用の
鉛電池と同一の掻板面積、同一の容積の場合は、約2/
3程度の正極容量しか得ることができない。
However, although the plastic battery obtained by the above method has a high output density (Wh/kg), the capacity per unit area (A) I/cd) is small, and the plate area is the same as that of an automotive lead-acid battery. For the same volume, approximately 2/
A positive electrode capacity of only about 3 can be obtained.

したがって、本発明の目的は、ポリピロールを用いたプ
ラスチック電池用正極において、大きな出力密度を満足
するとともに、単位面積当たりの容量を向上した製造方
法を提供することにある。
Therefore, an object of the present invention is to provide a manufacturing method for a plastic battery positive electrode using polypyrrole that satisfies a high output density and improves the capacity per unit area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、この問題の解決のため、鋭意研究の結果
、次の知見を得た。
In order to solve this problem, the present inventors have obtained the following findings as a result of intensive research.

すなわち、有機溶媒、電解質材料のおよびその濃度、集
電体の材料、電流密度、重合時間等の選択およびそれら
の組み合わせに最適範囲があることが判った。
That is, it has been found that there is an optimum range in the selection of the organic solvent, electrolyte material and its concentration, current collector material, current density, polymerization time, etc., and combinations thereof.

そこで、本発明は、それらの最適な重合条件で電解重合
を行ったことを特徴とする。
Therefore, the present invention is characterized in that electrolytic polymerization was performed under these optimal polymerization conditions.

具体的には、本発明は次の構成からなる。Specifically, the present invention consists of the following configuration.

本発明は、導電性材料からなる集電体の表面に、電解重
合によって導電性高分子材料の薄膜を形成してプラスチ
ック電池の正極用電極を製造する方法である。そして、
集電体を電源の正極側に接続するとともに、この集電体
と対向する導電体を電源の負極側に接続させ、集電体お
よび前記導電体を電解重合液に浸漬した状態で、この両
体間に定電流を通電して電解重合が行なわれる。
The present invention is a method for manufacturing a positive electrode for a plastic battery by forming a thin film of a conductive polymer material on the surface of a current collector made of a conductive material by electrolytic polymerization. and,
A current collector is connected to the positive electrode side of a power source, and a conductor facing the current collector is connected to the negative electrode side of the power source, and both the current collector and the conductor are immersed in the electrolytic polymerization solution. Electrolytic polymerization is carried out by passing a constant current between the bodies.

本製造方法における重合条件は、次の通りである。The polymerization conditions in this production method are as follows.

アセトニトリルを有機溶媒とし、導電性高分子材料とし
て0.3ないし0.6モル/lのピロールを有機溶媒に
溶解させるとともに、電解質として0゜5ないし1.0
モル/1のホウフッ化リチウムを溶解させた電解重合液
に、カーボングラファイトシートからなる集電体を用い
、6ないし8mA/cdの電流密度で2ないし4時間、
電解重合を行うものである。
Acetonitrile is used as an organic solvent, 0.3 to 0.6 mol/l of pyrrole is dissolved in the organic solvent as a conductive polymer material, and 0.5 to 1.0 mol/l is dissolved as an electrolyte.
A current collector made of a carbon graphite sheet is used in an electrolytic polymerization solution in which lithium fluoroborate is dissolved in an amount of mol/1, and a current density of 6 to 8 mA/cd is applied for 2 to 4 hours.
It performs electrolytic polymerization.

上記の構成において、集電体としては、カーボングラフ
ァイトシートが用いられる。これは、たとえばカーボン
繊維によって繊維間に間隔を有するようにシート状に加
工したもの等を挙げることができる。なお、カーボン繊
維は導電性を有するために、特に他の導電性材料を被覆
する必要はないが、より導電性を向上させるために他の
導電性材料を被覆したものを用いてもよい。その際の導
電性材料としては、金、銀、銅等の金属材料の他、I 
nt o、  S n Oxの固溶体等を用いることが
できる。そして、導電性材料は真空蒸着法、イオンブレ
ーティング、スパッタリング等の適宜手段によってカー
ボン繊維の表面に形成することができる。
In the above configuration, a carbon graphite sheet is used as the current collector. Examples of this include carbon fibers processed into a sheet shape with spaces between the fibers. Note that since carbon fibers have conductivity, it is not necessary to coat them with other conductive materials; however, in order to further improve the conductivity, carbon fibers coated with other conductive materials may be used. In this case, conductive materials include metal materials such as gold, silver, and copper, as well as I
A solid solution of nto, SnOx, etc. can be used. The conductive material can be formed on the surface of the carbon fiber by appropriate means such as vacuum evaporation, ion blasting, and sputtering.

また、集電体の対掻となる導電体としては、アルミニウ
ム、ニッケル、銅、銀等の金属材料を挙げることができ
る。
Furthermore, examples of the conductor that serves as a counterbalance to the current collector include metal materials such as aluminum, nickel, copper, and silver.

〔作用〕[Effect]

上記した本発明のプラスチック電池正極用電極の製造方
法によれば、有機溶媒、電解質材料のおよびその濃度、
集電体の材料、電流密度、重合時間等の選択およびそれ
らの組み合わせの最適範囲の重合条件で電解重合を行わ
れる。
According to the above-described method for manufacturing a plastic battery positive electrode of the present invention, the organic solvent, the electrolyte material and its concentration,
Electrolytic polymerization is carried out under polymerization conditions within an optimal range of selection of current collector material, current density, polymerization time, etc., and combinations thereof.

導電性高分子材料としてのピロールは、0.3モル/1
未満の場合は、容量が急激に低下し、0.6モル/lを
越えても容量は一定で変化がないため、0.3〜0.6
モル/lとした。
Pyrrole as a conductive polymer material is 0.3 mol/1
If it is less than 0.3 to 0.6, the capacity will decrease rapidly, and even if it exceeds 0.6 mol/l, the capacity will remain constant and will not change.
It was set as mol/l.

電解質としてのホウフッ化リチウムは、0.5モル/p
未満では容量が低く、1.0モル/lを越えても容量は
一定で変化がないため、0.5〜1.0モル/1とした
Lithium borofluoride as an electrolyte is 0.5 mol/p
If it is less than 1.0 mol/l, the capacity is low, and even if it exceeds 1.0 mol/l, the capacity remains constant and does not change.

電流密度は、6mA/−未満および8mA/−を越える
場合は、急激に容量が低下するので、6〜8mA/−と
した。
The current density was set to 6 to 8 mA/- because the capacity decreases rapidly when it is less than 6 mA/- or more than 8 mA/-.

重合時間は、2時間未満では容量が低く、また、4時間
を越えても容量は一定で変化がないため、2〜4時間と
した。
The polymerization time was set to 2 to 4 hours because the capacity was low if it was less than 2 hours, and the capacity was constant and did not change even if it exceeded 4 hours.

〔実施例〕〔Example〕

次に、図面に基づき、本発明の実施例にかかるプラスチ
ック電池用電極の製造方法を説明する。
Next, a method for manufacturing an electrode for a plastic battery according to an embodiment of the present invention will be explained based on the drawings.

第1図ないし第5図は、本発明の実施例のプラスチック
電池用電極の製造方法を説明するための図面である。
1 to 5 are drawings for explaining a method of manufacturing an electrode for a plastic battery according to an embodiment of the present invention.

第1図は、電解重合装置の断面図、第2図は、電流密度
に対する正極容量の関係を示すグラフ、第3図は、ピロ
ール濃度に対する正極容量の関係を示すグラフ、第4図
は、ホウフッ化リチウム濃度に対する正極容量の関係を
示すグラフ、そして、第5図は、重合時間に対する正極
容量の関係を示すグラフである。
FIG. 1 is a cross-sectional view of the electrolytic polymerization apparatus, FIG. 2 is a graph showing the relationship between positive electrode capacity and current density, FIG. 3 is a graph showing the relationship between positive electrode capacity and pyrrole concentration, and FIG. 4 is a graph showing the relationship between positive electrode capacity and pyrrole concentration. FIG. 5 is a graph showing the relationship between positive electrode capacity and lithium chloride concentration, and FIG. 5 is a graph showing the relationship between positive electrode capacity and polymerization time.

まず、本実施例で使用される電解重合装置を、第1図に
基づいて説明する。
First, the electrolytic polymerization apparatus used in this example will be explained based on FIG. 1.

第1図において、符号10は箱形状に形成されている電
解重合槽であって、この電解重合槽10は絶縁性材料で
あるフッ素系樹脂によって形成されており、上方のみが
開放されている。この電解槽重合10に、次のように導
電体としてのアルミニウム板12.14カーボン繊維に
よって間隔を有するように編み込んだシート状の集電体
16、電解重合液18等を入れて、電気分解を行う。な
お、導電体12.14の表面は、濾紙からなるセパレー
タ20.22で覆われている。
In FIG. 1, reference numeral 10 denotes an electrolytic polymerization tank formed in a box shape. This electrolytic polymerization tank 10 is made of fluororesin, which is an insulating material, and is open only at the top. In this electrolytic cell polymerization 10, a sheet-like current collector 16 woven with aluminum plates 12 and 14 carbon fibers as conductors at intervals, an electrolytic polymerization liquid 18, etc. are placed, and electrolysis is carried out. conduct. Note that the surface of the conductor 12.14 is covered with a separator 20.22 made of filter paper.

集電体16の表面に導電性高分子材料の薄膜を形成する
際には、ピロール(C4Hs N)とホウフッ化リチウ
ム(L i B Fa )を後述の濃度でアセトニトリ
ル(CHz CN)に溶かして電解重合液を調製し、こ
れをモレキュラシーブス(脱水剤)で脱水処理した電解
液18を、第2図に示すように電解重合槽10に収容す
る。
When forming a thin film of conductive polymer material on the surface of the current collector 16, pyrrole (C4HsN) and lithium borofluoride (L i B Fa ) are dissolved in acetonitrile (CHz CN) at the concentrations described below and electrolyzed. An electrolytic solution 18 obtained by preparing a polymerization solution and dehydrating it using molecular sieves (dehydrating agent) is placed in an electrolytic polymerization tank 10 as shown in FIG.

その後、集電体16および導電体12.14を、それぞ
れ電源20の正極側および負極側に接続する。この状態
で、電源20より通電し、電解重合を行った。
Thereafter, the current collector 16 and the conductor 12.14 are connected to the positive and negative sides of the power source 20, respectively. In this state, electricity was applied from the power source 20 to perform electrolytic polymerization.

この時、正極側に接続されている集電体16の表面には
テトラフルオロボレートイオン(BF4)がドープされ
た黒色で、しかも導電性のポリピロール(C4H,N)
nが全体に析出された。また、負極側に接続されている
導電体12.14の表面にはリチウム(Li)が析出さ
れた。
At this time, the surface of the current collector 16 connected to the positive electrode side is made of black, conductive polypyrrole (C4H,N) doped with tetrafluoroborate ions (BF4).
n was precipitated throughout. Furthermore, lithium (Li) was deposited on the surface of the conductor 12.14 connected to the negative electrode side.

(実験例1) 電流密度を変化させ、実験を行った。(Experiment example 1) Experiments were conducted by varying the current density.

ピロールを0.2モル/1の濃度とし、ホウフッ化リチ
ウムは、0.5モル/Itの濃度でアセトニトリル中に
溶解した。
Pyrrole was dissolved at a concentration of 0.2 mol/It and lithium borofluoride was dissolved in acetonitrile at a concentration of 0.5 mol/It.

通電電荷量を7mAH/−として、1〜20mA/−の
間で種々値を変えて、その値で一定電流の通電を行い、
電解重合を行った。
Assuming that the amount of electric charge to be applied is 7 mAH/-, various values are changed between 1 and 20 mA/-, and a constant current is applied at that value.
Electrolytic polymerization was performed.

第2図に示すように、6〜8mA/cjの電流密度で電
解重合したものが、正極の容量を多く得られることが分
かる。
As shown in FIG. 2, it can be seen that a large positive electrode capacity can be obtained by electrolytically polymerizing at a current density of 6 to 8 mA/cj.

(実験例2) 導電高分子材料であるピロールの濃度を変化させて実験
を行った。
(Experiment Example 2) An experiment was conducted by changing the concentration of pyrrole, which is a conductive polymer material.

ホウフッ化リチウムは、0.5モル/lの濃度でアセト
ニトリル中に溶解した。
Lithium borofluoride was dissolved in acetonitrile at a concentration of 0.5 mol/l.

通電電流は、7mA/−の一定電流とし、50分間通電
した。ピロール濃度は、0.1〜2.0モル/lの間で
種々値を変えて電解重合を行った。
The applied current was a constant current of 7 mA/-, and the current was applied for 50 minutes. Electrolytic polymerization was performed with various pyrrole concentrations ranging from 0.1 to 2.0 mol/l.

第3図に示すように、とロールの濃度が低濃度側では、
正極容量が小さいが、これは、ピロールモノマーの絶対
量が不足し、容量が小さくなっているためと考えられる
。従って、0.3モル/1以上の濃度であれば、ピロー
ルの絶対量が確保され、とロールの濃度依存性が無くな
る。
As shown in Figure 3, when the concentration of the roll is on the low concentration side,
The positive electrode capacity is small, but this is thought to be because the absolute amount of pyrrole monomer is insufficient, resulting in a small capacity. Therefore, if the concentration is 0.3 mol/1 or more, the absolute amount of pyrrole is ensured, and the concentration dependence of roll is eliminated.

(実験例3) 電解質であるホウフッ化リチウムの濃度を変化させて実
験を行った。
(Experiment Example 3) An experiment was conducted by changing the concentration of lithium fluoroborate as an electrolyte.

ピロールの濃度は、0.5モル/lとした。The concentration of pyrrole was 0.5 mol/l.

通電電流は、7III^/cdの一定電流とし、50分
間通電した。
The current applied was a constant current of 7III^/cd, and the current was applied for 50 minutes.

ホウフッ化リチウムは、0.1〜2.0モル/lの間で
種々値を変えて電解重合を行った。
Electrolytic polymerization was performed with various values of lithium fluoroborate ranging from 0.1 to 2.0 mol/l.

第4図に示すように、ホウフッ化リチウムの濃度が1.
0モル/1前後で正極容量が最も大きくなるが、少なく
とも0.5モル/IIあれば、従来例に対して充分な容
量の向上が得られる。
As shown in FIG. 4, the concentration of lithium borofluoride is 1.
The positive electrode capacity is maximized at around 0 mol/II, but if it is at least 0.5 mol/II, a sufficient improvement in capacity can be obtained over the conventional example.

(実験例4) 重合時間を変化させて実験を行った。(Experiment example 4) Experiments were conducted by varying the polymerization time.

ピロールの濃度を0.5モル/l、ホウフッ化リチウム
の濃度を1.0モル/!でアセトニトリルに溶解した。
The concentration of pyrrole is 0.5 mol/l, and the concentration of lithium borofluoride is 1.0 mol/l! and dissolved in acetonitrile.

通電電流は、7−A/−の一定電流とし、50分間通電
した。
The current applied was a constant current of 7-A/-, and the current was applied for 50 minutes.

重合時間は、35分ないし4時間の間で種々値を変化さ
せて電解重合を行った。
Electrolytic polymerization was performed while varying the polymerization time from 35 minutes to 4 hours.

第5図に示すように、重合時間は、少なくとも2時間は
必要であるが、3〜4時間で正極容量の増加は一定とな
る。
As shown in FIG. 5, the polymerization time is required to be at least 2 hours, but the increase in positive electrode capacity becomes constant after 3 to 4 hours.

(実験例5) 以上の種々の実験の内で、最大の正極容量が得られる条
件を求めた。
(Experimental Example 5) Among the various experiments described above, conditions under which the maximum positive electrode capacity could be obtained were determined.

0.5モル/1のピロール、1.0モル/Itのホウフ
ッ化リチウムをアセトニトリルに溶解させた電解重合液
を用い、7mA/−の一定電流で、重合時間3時間で電
解重合を行った。
Using an electrolytic polymerization solution in which 0.5 mol/1 pyrrole and 1.0 mol/It lithium borofluoride were dissolved in acetonitrile, electrolytic polymerization was carried out at a constant current of 7 mA/- for a polymerization time of 3 hours.

この結果、2.7−A/dの正極容量が得られた。As a result, a positive electrode capacity of 2.7-A/d was obtained.

また、この正極を用いて、鉛蓄電池であるN540ZA
(JIS規格)と同容量(28AH)の二次電池を構成
したが、その容積を約30%減らすことができた。これ
は、極板面積で換算した場合、本実験例のものが4OA
Hの容量であるのに対し、NS 40 ZAが28AH
であり、本実験例のものが海かに高い容量を有するため
である。
In addition, using this positive electrode, N540ZA, which is a lead acid battery,
(JIS standard) and the same capacity (28AH), but the volume was able to be reduced by about 30%. When converted to the electrode plate area, this is 4OA in this experimental example.
While the capacity of NS 40 ZA is 28AH
This is because the one in this experimental example has an extremely high capacity.

また、総重量では、NS 40 ZAに対し、約1/2
〜1/3の重量低減になる。
Also, in terms of total weight, it is approximately 1/2 that of NS 40 ZA.
The weight is reduced by ~1/3.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係るプラスチック電池正
極用電極の製造方法においては、有機溶媒、電解質材料
のおよびその濃度、集電体の材料、電流密度、重合時間
等の選択およびそれらの組み合わせの最適範囲の重合条
件で電解重合を行うので、大きな出力密度および単位面
積当たりの大きな容量が得られる。
As explained above, in the method for manufacturing a positive electrode for a plastic battery according to the present invention, the selection of the organic solvent, the electrolyte material and its concentration, the material of the current collector, the current density, the polymerization time, etc., and the combination thereof. Since electrolytic polymerization is carried out under the optimum range of polymerization conditions, high output density and large capacity per unit area can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、本発明の実施例のプラスチック
電池用電極の製造方法を説明するための図面である。 第1図は、電解重合装置の断面図、 第2図は、電流密度に対する正極容量の関係を示すグラ
フ、 第3図は、ピロール濃度に対する正極容量の関係を示す
グラフ、 第4図は、ホウフッ化リチウム濃度に対する正極容量の
関係を示すグラフ、 そして、第5図は、重合時間に対する正極容量の関係を
示すグラフである。 10−・〜電解重合槽 12.14・−−−−−−・導電体 16−・・−集電体 18−・−電解重合液 24−・−・−電源
1 to 5 are drawings for explaining a method of manufacturing an electrode for a plastic battery according to an embodiment of the present invention. Figure 1 is a cross-sectional view of the electrolytic polymerization apparatus. Figure 2 is a graph showing the relationship between positive electrode capacity and current density. Figure 3 is a graph showing the relationship between positive electrode capacity and pyrrole concentration. Figure 4 is a graph showing the relationship between positive electrode capacity and pyrrole concentration. FIG. 5 is a graph showing the relationship between positive electrode capacity and lithium chloride concentration. FIG. 5 is a graph showing the relationship between positive electrode capacity and polymerization time. 10-- Electrolytic polymerization tank 12.14--Conductor 16--Current collector 18--Electrolytic polymerization liquid 24--Power source

Claims (1)

【特許請求の範囲】 導電性材料からなる集電体の表面に、電解重合によって
導電性高分子材料の薄膜を形成してプラスチック電池の
正極用電極を製造するに当り、集電体を電源の正極側に
接続するとともに、この集電体と対向する導電体を電源
の負極側に接続させ、集電体および前記導電体を電解重
合液に浸漬した状態で、この両体間に定電流を通電して
電解重合を行なうプラスチック電池正極用電極の製造方
法であって、 アセトニトリルを有機溶媒とし、導電性高分子材料とし
て0.3ないし0.6モル/lのピロールを有機溶媒に
溶解させるとともに、電解質として0.5ないし1.0
モル/lのホウフッ化リチウムを溶解させた電解重合液
に、カーボングラファイトシートからなる集電体を用い
、6ないし8mA/cm^2の電流密度で2ないし4時
間、電解重合を行うことを特徴とするプラスチック電池
用電極の製造方法。
[Claims] When manufacturing a positive electrode for a plastic battery by forming a thin film of a conductive polymer material on the surface of a current collector made of a conductive material by electrolytic polymerization, the current collector is connected to a power source. At the same time, a conductor facing the current collector is connected to the negative electrode side of the power source, and a constant current is applied between the two bodies while the current collector and the conductor are immersed in the electrolytic polymerization solution. A method for producing an electrode for a positive electrode for a plastic battery in which electrolytic polymerization is carried out by applying electricity, the method comprising using acetonitrile as an organic solvent, dissolving 0.3 to 0.6 mol/l of pyrrole as a conductive polymer material in the organic solvent, and , 0.5 to 1.0 as an electrolyte
It is characterized by carrying out electrolytic polymerization at a current density of 6 to 8 mA/cm^2 for 2 to 4 hours using a current collector made of a carbon graphite sheet in an electrolytic polymerization solution in which lithium borofluoride is dissolved in an amount of mol/l. A method for manufacturing an electrode for a plastic battery.
JP61180885A 1986-07-31 1986-07-31 Production of electrode for plastic cell positive electrode Pending JPS6337561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180885A JPS6337561A (en) 1986-07-31 1986-07-31 Production of electrode for plastic cell positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180885A JPS6337561A (en) 1986-07-31 1986-07-31 Production of electrode for plastic cell positive electrode

Publications (1)

Publication Number Publication Date
JPS6337561A true JPS6337561A (en) 1988-02-18

Family

ID=16091036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180885A Pending JPS6337561A (en) 1986-07-31 1986-07-31 Production of electrode for plastic cell positive electrode

Country Status (1)

Country Link
JP (1) JPS6337561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418198A (en) * 1990-05-10 1992-01-22 Tomoegawa Paper Co Ltd Composite material of paper with conductive polymeric compound and production thereof
CN1091547C (en) * 1996-09-09 2002-09-25 东芝株式会社 Lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418198A (en) * 1990-05-10 1992-01-22 Tomoegawa Paper Co Ltd Composite material of paper with conductive polymeric compound and production thereof
CN1091547C (en) * 1996-09-09 2002-09-25 东芝株式会社 Lithium battery

Similar Documents

Publication Publication Date Title
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
US6195251B1 (en) Electrode assembly and electric double layer capacitor having the electrode assembly
EP0845158B1 (en) Rechargeable lithium battery having improved reversible capacity
CN111785898B (en) Cellulose-based integrated zinc ion battery and preparation method thereof
US5151162A (en) Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
CN112909234A (en) Preparation method and application of lithium cathode or sodium cathode
IL109845A (en) Rechargeable electrochemical cell
JPH09501001A (en) Rechargeable lithium battery electrode
EP0797846A1 (en) Electrolytic cell and electrolytic process
JP2002329495A (en) Lithium secondary battery and production process thereof
JP2003331838A (en) Lithium secondary battery
JPS6337561A (en) Production of electrode for plastic cell positive electrode
JP2023513815A (en) Anode piece, battery and electronic device employing said electrode piece
JPH04190557A (en) Lithium secondary battery
JPS6355853A (en) Manufacture of electrode for plastic cell
JPH0821430B2 (en) Secondary battery
JPS6332873A (en) Plastic cell
JPS63152867A (en) Polyaniline
JPS6324550A (en) Manufacture of electrodes for plastic cell
JPS63285867A (en) Manufacture of electrode for plastic battery positive electrode
JPS63105462A (en) Manufacture of electrode for plastic battery
Fujii et al. New type polymer electrode using soluble polyaniline
CN114864937A (en) Preparation method and application of negative electrode protective layer and negative electrode plate of magnesium metal secondary battery
JPS61158673A (en) Zinc-halogen battery with porous electrode
JPS60225376A (en) Plastic electrode