JPS61125169A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61125169A
JPS61125169A JP24630884A JP24630884A JPS61125169A JP S61125169 A JPS61125169 A JP S61125169A JP 24630884 A JP24630884 A JP 24630884A JP 24630884 A JP24630884 A JP 24630884A JP S61125169 A JPS61125169 A JP S61125169A
Authority
JP
Japan
Prior art keywords
island
forming
region
recrystallizing
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24630884A
Other languages
Japanese (ja)
Other versions
JPH0340513B2 (en
Inventor
Shigenobu Akiyama
秋山 重信
Shigeji Yoshii
吉井 成次
Yasuaki Terui
照井 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24630884A priority Critical patent/JPS61125169A/en
Publication of JPS61125169A publication Critical patent/JPS61125169A/en
Publication of JPH0340513B2 publication Critical patent/JPH0340513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an element having high speed properties and low leakage current characteristics by a simple manufacturing process by melting and recrystallizing one part of a SOI having island structure, forming a channel region to one part of a recrystallizing layer and shaping a MOS transistor. CONSTITUTION:A polycrystalline silicon layer is formed onto an insulating substrate 2 consisting of SiO2, etc., and a polycrystalline silicon island 1 surrounded by SiO22 is shaped through a photoetching process and an SiO2 forming process by thermal oxidation, etc. The central section of the major axis of the rectangle of the island 1 is irradiated vertically by laser beam 4 while being scanned by them, thus forming a melting recrystallizing region A. A gate electrode 5 is shaped in the region A, and source and drain electrodes 6 are formed while a contact pattern is formed so as to be connected to the region A and non-melting regions B.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、S OI (Sem1conductor 
0nInsulator)構造素子として知られる半導
体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to SOI (Sem1 conductor
The present invention relates to a method of manufacturing a semiconductor device known as a structural element (Insulator).

従来例の構成とその問題点 絶縁体上に形成される素子として従来より、S OS 
(5ilicon On 5apphire )素子が
知られているが、絶縁体として用いられるアルミナ(A
1203)から結晶シリコン層へのA/の汚染による電
気特性の劣化や絶縁基板としてのサフアイヤが高価であ
ることなどの問題点が存在している。このような問題点
を改善するために最近、絶縁体としてSiO2を用いる
SOI構造の研究開発が活発に行なわれている。SOI
構造の場合、基板となる5lo2は非晶質であるために
、SiO2上4 に形成される半導体層は、非晶質もし
くは多結晶となり、このままでは、実用に耐え得るだけ
の素子を形成することは困難である。したがって、51
02上の半導体層をエネルギービームやグラファイトヒ
ータなどにより加熱して熔融再結晶化して大粒径化する
ことが行なわれている。しかし。
Conventional structure and its problems Traditionally, SOS is used as an element formed on an insulator.
(5ilicon on 5apphire) elements are known, but alumina (A
There are problems such as deterioration of electrical characteristics due to contamination of A/ into the crystalline silicon layer from 1203) and the high cost of sapphire as an insulating substrate. In order to improve these problems, research and development on SOI structures using SiO2 as an insulator have recently been actively conducted. SOI
In the case of the structure, since the substrate 5lo2 is amorphous, the semiconductor layer formed on SiO2 is amorphous or polycrystalline, and as it is, it is difficult to form a device that can withstand practical use. It is difficult. Therefore, 51
The semiconductor layer on 02 is heated by an energy beam, a graphite heater, etc. to melt and recrystallize it to increase the grain size. but.

現在のところICをつくることができる程の大面積に亘
り単結晶化あるいは大結晶粒化することは困難であり、
かくして形成されたSOI構造にMOS (Metal
 0xfde Sem1conductor) トラン
ジスタから成るICを形成した場合チャネル領域の多数
の結晶粒界によりトランジスタの電気特性の劣化をきた
してしまうという問題点がある。
At present, it is difficult to produce single crystals or large crystal grains over a large enough area to make ICs.
MOS (Metal
When an IC including a transistor is formed, there is a problem in that the electrical characteristics of the transistor deteriorate due to the large number of crystal grain boundaries in the channel region.

発明の目的 本発明は、レーザや電子ビームなどのエネルギービーム
の照射によりSOI構造を形成し、SO■素子を形成す
る方法において、島構造のSOIの一部を熔融再結晶化
して良好な結晶化層を形成し、この結晶化層の一部にチ
ャネル領域を形成してMO3)ランジスタを形成するこ
とにより、すぐれた電気特性の素子を実現するための半
導体装置の製造方法を提供するものである。
Purpose of the Invention The present invention provides a method for forming an SOI structure by irradiating an energy beam such as a laser or an electron beam to form an SO element. The present invention provides a method for manufacturing a semiconductor device for realizing an element with excellent electrical characteristics by forming a MO3) transistor by forming a channel region in a part of the crystallized layer. .

発明の構成 本発明の構成を第1図に従って説明する。Composition of the invention The configuration of the present invention will be explained with reference to FIG.

第1図の(−)に示すように5IQ2などの絶縁基板2
上に絶縁分離された半導体の島1にエネルギービームと
してたとえばレーザビーム4を矢印の方向に走査して半
導体の島1の一部を熔融再結晶化して、第1図の(b)
に示すように再結晶化部Aと未熔融部Bから成る半導体
の島1′を形成する。しかる後、第1図の(c)に示す
ように半導体の島1′の再結晶化部Aの一部にゲート電
極5およびソース・ドレインのPN接合を形成し、再結
晶化部Aの一部と未熔融部Bの一部から成るコンタクト
部7を有するソースおよびドレイン電極6を形成してM
OS)ランジスタを形成する。
As shown in (-) in Figure 1, an insulating substrate 2 such as 5IQ2
A part of the semiconductor island 1 is melted and recrystallized by scanning an energy beam, such as a laser beam 4, in the direction of the arrow on the semiconductor island 1 which is insulated and isolated above, as shown in FIG. 1(b).
A semiconductor island 1' consisting of a recrystallized part A and an unmelted part B is formed as shown in FIG. After that, as shown in FIG. 1(c), a gate electrode 5 and a source/drain PN junction are formed in a part of the recrystallized part A of the semiconductor island 1', and a part of the recrystallized part A is formed. A source and drain electrode 6 having a contact portion 7 consisting of a part of the unmelted part B and a part of the unmelted part B is formed.
OS) form a transistor.

実施例の説明 本発明にかかわる半導体装置の製造方法の一実施例を第
2図に基づき説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to FIG.

たとえば熔融石英板あるいはシリコン基板上に形成され
たS x O23ノ上K、たと、ufLPCVD法によ
り多結晶シリコン層を形成したのちホトエツチング工程
およびSi○2形成工程によpsio22で囲まれた多
結晶シリコンの島1を形成する。
For example, a layer of S x O23 formed on a fused quartz plate or a silicon substrate is formed, and after a polycrystalline silicon layer is formed by the ufLPCVD method, the polycrystalline silicon surrounded by psio22 is formed by a photoetching process and a Si○2 forming process. Island 1 is formed.

S 1022は熱酸化法により形成してもよいし、CV
D法により形成してもよいことは言うまでもない。また
多結晶シリコンの島1の形状はこの場合、矩形であるが
、他の形状でもよい。この場合の矩形の大きさは200
ミフロンXSミクロンとしたが、場合に応じて、所望の
大きさにできることは言うまでもない。
S1022 may be formed by thermal oxidation method, or CV
Needless to say, it may be formed by method D. Further, although the shape of the polycrystalline silicon island 1 is rectangular in this case, other shapes may be used. The size of the rectangle in this case is 200
Although Miflon XS micron is used, it goes without saying that it can be made to any desired size depending on the situation.

次に第2図の(C)に示すように、多結晶シリコンの島
1に矢印の方向にたとえば、アルゴンCWレーザビーム
4を走査しながら照射する。この場合レーザの照射条件
は、パワー3〜7W、ビーム径3oミクロン、走査速度
1100rtr/秒として、多結晶シリコン島1の矩形
の長軸の中央部に垂直に入射するように走査した。この
結果、多結晶シリコン島1は、島の中央部に熔融再結晶
化した巾  ・30ミクロン程度の領域Aと両端部の巾
10ミクロン程度の未熔融部Bとから成るシリコン島1
′か形成される。再結晶化部Aの中央部は巾1oξクロ
ン程度の単結晶になっている。
Next, as shown in FIG. 2C, the polycrystalline silicon island 1 is irradiated with, for example, an argon CW laser beam 4 while scanning in the direction of the arrow. In this case, the laser irradiation conditions were a power of 3 to 7 W, a beam diameter of 30 microns, and a scanning speed of 1100 rtr/sec, and the laser was scanned so as to be incident perpendicularly to the center of the rectangular long axis of the polycrystalline silicon island 1. As a result, the polycrystalline silicon island 1 consists of a melted and recrystallized region A of about 30 microns in the center of the island and an unmelted region B of about 10 microns wide at both ends.
’ is formed. The central part of the recrystallized part A is a single crystal with a width of about 10ξcm.

次に第2図の(d)に示すようにゲート酸化やホトリン
グラフィおよび拡散工程等の通常のIC形成工程を用い
てシリコン島1’KMOs)ランジスタを形成する。ゲ
ート電極5は前記/リコン島1′の再結晶化部Aの中央
部に合わせ精度1ミクロン以下で形成し、ソースおよび
ドレイン電極6は、前記シリコン島1′再結晶化部Aと
未熔融部Bとに接続するよう建コンタクトパターン7を
有して形成されている。したがって、ソース・ドレイン
のPN接合は再結晶化部AK影形成れていることになる
Next, as shown in FIG. 2(d), a silicon island transistor (1'KMOs) is formed using conventional IC forming processes such as gate oxidation, photolithography, and diffusion process. The gate electrode 5 is formed with an accuracy of 1 micron or less in alignment with the center of the recrystallized part A of the silicon island 1', and the source and drain electrodes 6 are formed in the center of the recrystallized part A of the silicon island 1' and the unmelted part. It is formed with a vertical contact pattern 7 so as to be connected to B. Therefore, the source/drain PN junction is shadowed by the recrystallized portion AK.

ゲート電極やソースおよびドレイン電極を半導体の島1
′のそれぞれの所望の位置に設置するために、エネルギ
ービーム4と半導体の島1との位置合せ精度を数ミクロ
ン以下にすることが望ましい。また、半導体の島1′と
ゲート電極6やソースおよびドレイン電極6との位置合
せは通常のホトリソグラフィ一工程の程度の精度(1ミ
クロン以下)驚であれば良い。
The gate electrode, source and drain electrodes are connected to the semiconductor island 1.
In order to install the energy beam 4 and the semiconductor island 1 at each desired position, it is desirable that the alignment accuracy of the energy beam 4 and the semiconductor island 1 be several microns or less. Further, the alignment between the semiconductor island 1' and the gate electrode 6 and the source and drain electrodes 6 only needs to be as accurate as one step of ordinary photolithography (1 micron or less).

次に、多結晶シリコン島1の中央部により制御性よく単
結晶領域を得るための一実施例を第3図に従って説明す
る。
Next, an embodiment for obtaining a single crystal region with better controllability in the center of polycrystalline silicon island 1 will be described with reference to FIG.

第3図の(a)に多結晶/リコン島1の中央部にたとえ
ば3000への凹部8を設け、第3図の(b)に示すよ
うに、この凹部8の中央部にレーザビーム4が照射され
るようにする。このときの大きさ、位置関係はたとえば
、多結晶シリコン島1を20ミクロンX50ミクロンの
串形とし、凹部8の大きさをたとえば巾10ミクロン長
さ30ミクロンの矩形としてfJES図の(坤忙示すよ
うに多結晶シリコン島1の中央部に形成する。このよう
Kして、再結晶化後のシリコン島1′は第3図の(c)
K示すように、巾約30ミクロンの再結晶化部Aと巾約
1oミクロン、両端部の未熔融部Bから成り、さらに再
結晶化部Aに含まれている凹部では全体が単結晶Cとな
ることが実験的に確認されている。
As shown in FIG. 3(a), a recess 8, for example 3000 mm, is provided in the center of the polycrystalline/licon island 1, and as shown in FIG. Make it irradiated. The size and positional relationship at this time are, for example, if the polycrystalline silicon island 1 is a 20 micron x 50 micron skewer, and the recess 8 is a rectangle with a width of 10 microns and a length of 30 microns. The polycrystalline silicon island 1 is formed in the central part of the polycrystalline silicon island 1 as shown in FIG. 3(c).
As shown in K, it consists of a recrystallized part A with a width of about 30 microns and an unmelted part B with a width of about 10 microns at both ends, and furthermore, in the recessed part included in the recrystallized part A, the whole is a single crystal C. It has been experimentally confirmed that

MOS)ランジスタを形成する場合、ゲート電極がこの
単結晶Cにくるように設定すればよい。
When forming a MOS (MOS) transistor, the gate electrode may be placed on this single crystal C.

発明の効果 以上の説明で明らか外ように、本発明により形成したM
O9)ランジスタは、ゲート電極直下のチャネルおよび
チャネルとソース・ドレイ/の接合部が結晶粒界を含ま
ない結晶で形成されるとともに、未熔融の多結晶シリコ
ンは、ソース・ドレインの拡散領域となっているために
、通常の単結晶シリコン基板に形成されたMOS)ラン
ジスタを同等のリーク電流等の電気特性を有する。し7
たがって、本発明により形成したMOS)ランジスンは
SOI素子本来の利点である、高速性とノ(ルクシリコ
ンを成した素子の低リーク電流特性とを兼ね備えた高性
能素子でちゃ、製造工種も簡琳与でき、SO8などに比
べて低価格等の利点を有するものである。
Effects of the Invention As is clear from the above explanation, the M formed according to the present invention
O9) In the transistor, the channel directly under the gate electrode and the junction between the channel and the source/drain are formed of crystal that does not contain grain boundaries, and the unmelted polycrystalline silicon becomes the source/drain diffusion region. Therefore, it has electrical characteristics such as leakage current that are equivalent to MOS transistors formed on a normal single-crystal silicon substrate. 7
Therefore, the MOS transistor formed according to the present invention should be a high-performance device that combines the inherent advantages of SOI devices, such as high speed and low leakage current characteristics of devices made of solid silicon, and can be manufactured easily. It has advantages such as low cost compared to SO8 and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示すものであり、同図の(−)
は半導体の島へのレーザビームの走査の位置関係を示す
ものであり、同図の伽)けレーザ照射による再結晶化後
の半導体の島を示し、同図の(C)は再結晶化後の半導
体の島に形成したMO8I−ランジスタのゲート電極、
ソース・ドレイン電極の位置を示す図、第2図は本発明
の一実施例の方法を示す゛ものであり、同図の(、) 
、 (b)は絶縁基体1忙形成された多結晶シリコン島
の平面図および断面図、同図の(C)はレーザ再結晶化
後のシリコン島を示し、同図の(d)はシリコン島忙形
成したMOS )ランジスタの平面図、第3図は再結晶
化後のシリコン島の単結晶化領域を制御するための他の
方法を示すものであり、同図のla)は凹部を有する多
結晶シリコン島の断面図、同図の伽)はレーザと・シリ
コン島の位置関係を示す図、同図の(1,)は凹部を有
するシリコン島の°レーザ再結晶化後の平面図である。 1・・・・・・多結晶シリコン島、1′・・−・・・再
結晶イヒ後のシリコン島、2.3・・・・・・5i02
.4・・・・・・レーザビーム、S・・・・・・ケート
を極、6・・・・・・7−ス・ドレイン電極、7・・・
・・・コンタフレリーン、8・・・・・・・シリコン島
の凹部、A・・・・・・シリコン島の再結晶f上領域、
B・・・・・・シリコン島の未熔融領域、C・・・・・
シ1Jコン島凹部の単結晶領域。 特許出願人 工業技術院長 等々力  達第1図 第2図 第3図
FIG. 1 shows the method of the present invention, and (-) in the same figure shows the method of the present invention.
(C) in the same figure shows the positional relationship of laser beam scanning to the semiconductor island, and (C) in the figure shows the semiconductor island after recrystallization by laser irradiation. The gate electrode of the MO8I-transistor formed on the semiconductor island of
Figure 2 shows the position of the source and drain electrodes, and shows a method according to an embodiment of the present invention.
, (b) is a plan view and a cross-sectional view of the polycrystalline silicon island formed on the insulating substrate 1, (C) of the same figure shows the silicon island after laser recrystallization, and (d) of the same figure shows the silicon island. Figure 3 shows another method for controlling the single crystallized region of the silicon island after recrystallization, and la) in the same figure shows a plan view of a MOS transistor with a recess. A cross-sectional view of a crystalline silicon island, (1) in the same figure is a diagram showing the positional relationship between the laser and the silicon island, and (1,) in the same figure is a plan view of a silicon island with a concave part after laser recrystallization. . 1...Polycrystalline silicon island, 1'...Silicon island after recrystallization, 2.3...5i02
.. 4... Laser beam, S... Kate pole, 6...7-S drain electrode, 7...
... Contour free line, 8... Concavity of silicon island, A... Region above recrystallization f of silicon island,
B... Unmelted area of silicon island, C...
Single-crystal region of Si 1J concavity. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絶縁基体上に島状に絶縁分離された非単結晶半導体層を
形成する工程と前記島状非単結晶半導体の少なくとも一
部をエネルギービームの照射により熔融再結晶化して、
同一島内に再結晶化部と未熔融部を形成する工程と、前
記半導体の島の再結晶化部の少なくとも一部にゲート電
極とソースおよびドレインのPN接合部分を形成する工
程と、前記半導体の島の再結晶化部の少なくとも一部と
未熔融部の少なくとも一部から成るソースおよびドレイ
ン電極を形成する工程とを有することを特徴とする半導
体装置の製造方法。
forming a non-single-crystalline semiconductor layer insulated into islands on an insulating substrate; melting and recrystallizing at least a portion of the island-like non-single-crystalline semiconductor by irradiation with an energy beam;
forming a recrystallized part and an unmelted part in the same island; forming a gate electrode and a PN junction part of a source and drain in at least a part of the recrystallized part of the semiconductor island; 1. A method of manufacturing a semiconductor device, comprising the step of forming source and drain electrodes made of at least a portion of a recrystallized portion of an island and at least a portion of an unmelted portion.
JP24630884A 1984-11-22 1984-11-22 Manufacture of semiconductor device Granted JPS61125169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24630884A JPS61125169A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24630884A JPS61125169A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61125169A true JPS61125169A (en) 1986-06-12
JPH0340513B2 JPH0340513B2 (en) 1991-06-19

Family

ID=17146617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24630884A Granted JPS61125169A (en) 1984-11-22 1984-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61125169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281735A (en) * 1988-05-07 1989-11-13 Fujitsu Ltd Manufacture of gettering source
JP2011101057A (en) * 2002-01-28 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114440A (en) * 1981-12-28 1983-07-07 Fujitsu Ltd Manufacture of substrate for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114440A (en) * 1981-12-28 1983-07-07 Fujitsu Ltd Manufacture of substrate for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281735A (en) * 1988-05-07 1989-11-13 Fujitsu Ltd Manufacture of gettering source
JP2011101057A (en) * 2002-01-28 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH0340513B2 (en) 1991-06-19

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
JPS58176929A (en) Manufacture of semiconductor device
JPH113860A (en) Manufacture of thin film transistor
JPS59161014A (en) Crystallization of semiconductor thin film
JP2507464B2 (en) Method for manufacturing semiconductor device
JPH0450746B2 (en)
KR100250182B1 (en) Method of forming semiconductor crystal and semiconductor device
JPS61125169A (en) Manufacture of semiconductor device
JPS58192381A (en) Manufacture of mos field effect transistor
JPH0556314B2 (en)
JPH02864B2 (en)
JPH0236051B2 (en)
JPS6159820A (en) Manufacture of semiconductor device
JPH0136972B2 (en)
JPS6346776A (en) Manufacture of thin film transistor
KR890008943A (en) Method of manufacturing single crystal layer on substrate
JPS6091624A (en) Semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPS61166074A (en) Insulated gate type transistor and manufacture thereof
JPH0560668B2 (en)
JPS60161396A (en) Manufacture of silicon thin film
JPH0136244B2 (en)
JPS61123125A (en) Manufacture of semiconductor device
JPH0410212B2 (en)
JPS62213114A (en) Recrystalizing method for active region in high withstand voltage transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term