JPS61125133A - Low temperature plasma electromagnetic field control structure - Google Patents

Low temperature plasma electromagnetic field control structure

Info

Publication number
JPS61125133A
JPS61125133A JP24616484A JP24616484A JPS61125133A JP S61125133 A JPS61125133 A JP S61125133A JP 24616484 A JP24616484 A JP 24616484A JP 24616484 A JP24616484 A JP 24616484A JP S61125133 A JPS61125133 A JP S61125133A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature plasma
plasma
electric field
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24616484A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
和夫 鈴木
Atsushi Chiba
淳 千葉
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP24616484A priority Critical patent/JPS61125133A/en
Publication of JPS61125133A publication Critical patent/JPS61125133A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To create a thin film without defect of excellent quality by a method wherein a plasma particle flow, which drifts in a selected direction along an operating substrate, is produced and then plasma incident angle on the operating substrate is made to possess constant directivity. CONSTITUTION:Low temperature plasma 12 of stock gas injected from a supply tube 9, 10 is created by the means that electron cyclotron resonance is generated caused by a magnetic field coil 7 disposed to outside periphery of a plasma creating chamber 1 and microwave 8 supplied from a wave guide 6. The low temperature plasma introduced to a reaction chamber 2 is subjected to Lorentz force F produced by magnetic field Bz in an axis direction impressed by a control magnetic field coil 26 on the surface of an operation substrate 4, i.e., (z) direction, and electric field Er in a direction crossing at right angle for the axis impressed by an electric field electrode 25, i.e., (r) direction and the said plasma is drifted while holding directivity in crossing at right angle to the magnetic field Bz and electric field Er.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は低温プラズマ亀磁界制御機構に係り、特に4膜
生成あるいはエツチング用に生成された低温プラズマを
電磁界によって制御する低温プラズマ電磁界制御機構に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a low-temperature plasma electromagnetic field control mechanism, and particularly to a low-temperature plasma electromagnetic field control mechanism for controlling low-temperature plasma generated for four-layer production or etching using an electromagnetic field. Regarding.

〔発明の背景〕[Background of the invention]

近年、半導体薄膜生成などの表面処理装置として、膜均
一度、成膜速度、表面処理速度等の性能向上のために、
電離あるいは励起された多原子分子、化合物等の低温プ
ラズマを利用したものが広く採用されている。
In recent years, as surface treatment equipment for semiconductor thin film production, etc., in order to improve performance such as film uniformity, film formation speed, and surface treatment speed,
Methods that utilize low-temperature plasma of ionized or excited polyatomic molecules, compounds, etc. are widely used.

第7図は「応用物理」第52巻第2号(1983)の第
118頁に掲載された従来の半島体薄膜袈造装置を示す
FIG. 7 shows a conventional peninsular thin film lining device published on page 118 of Applied Physics, Vol. 52, No. 2 (1983).

排気管11から真空引きされた容器内は、プラズマ引出
し窓5によってプラズマ生成室1と反応室2とを形成し
ている。プラズマ生成室1の外周に。
The inside of the container, which is evacuated through the exhaust pipe 11, forms a plasma generation chamber 1 and a reaction chamber 2 by the plasma extraction window 5. At the outer periphery of plasma generation chamber 1.

は磁界コイル7が配置され、導波管6から供給したマイ
クロ波8とによつ″′ct子サイクサイクロトロン共鳴
し、供給管9,10から注入した材料ガスの低温プラズ
マ12を生成する。反応室2のプラズマ引出し窓5の下
方には基板取付台3が設けられ、この基板取付台3上に
作業基叡4が固定されている。プラズマ生成室1内の低
温プラズマ12 +’! 、プラズマ引出し窓5から反
応室2へ引出され、作業基板4の薄膜生成あるいはエツ
チングを行なう。
A magnetic field coil 7 is arranged, and the cyclotron resonates with the microwave 8 supplied from the waveguide 6 to generate a low-temperature plasma 12 of the material gas injected from the supply pipes 9 and 10.Reaction. A substrate mount 3 is provided below the plasma extraction window 5 of the chamber 2, and a work base 4 is fixed on the substrate mount 3.The low-temperature plasma 12 +'!, plasma in the plasma generation chamber 1 It is drawn out into the reaction chamber 2 through the draw-out window 5, and a thin film is formed or etched on the work substrate 4.

しかし、このような従来装置な了、作業基板4への低温
プラズマが自由拡散であるため不具合が生じており、薄
膜生成の場合の不具合を第8図により、またエツチング
の場合の不具合を第9図によって説明する。
However, such a conventional device has problems due to the free diffusion of low-temperature plasma onto the work substrate 4, and the problems in the case of thin film formation are shown in Figure 8, and the problems in the case of etching are shown in Figure 9. This will be explained using figures.

第8図は、基板材料13上に配線材料14が配線され、
その上に絶縁材料ガスのプラズマ12で絶縁膜15を生
成する場合を示している。第7図で説明したように低温
プラズマ12は自由拡散であるため、配線材料14のな
い凹部16の溝埋込入性が悪く、オーバーハング部ある
いは空隙欠陥を作ってしまう。
In FIG. 8, a wiring material 14 is wired on a substrate material 13,
A case is shown in which an insulating film 15 is formed thereon by plasma 12 of an insulating material gas. As explained with reference to FIG. 7, since the low-temperature plasma 12 is free-diffusion, it is difficult to fill the recess 16 in which there is no wiring material 14, resulting in the formation of overhangs or void defects.

第9図は基板材料13の上に配線材料14を配線するエ
ツチングの場合を示している。基板材料13上に一様に
成膜された配線材料14の上に、感光材17によってマ
スクパターンを作り、その状態で、エツチング用低温プ
ラズマ12を用いて不必斐な配線材料を削り飛ばしてい
る。このとき低温プラズマ12ハ自由拡散であるため、
アンダーカット(削り過ぎ)等の不具合を生ずるという
欠点があった。
FIG. 9 shows the case of etching for wiring the wiring material 14 on the substrate material 13. A mask pattern is created using a photosensitive material 17 on the wiring material 14 uniformly formed on the substrate material 13, and in this state, unnecessary wiring material is scraped off using low temperature etching plasma 12. . At this time, since the low temperature plasma 12 is free diffusion,
This has the drawback of causing problems such as undercutting (over-shaving).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、欠陥のない良質の14膜生成およびエ
ツチング等の表面処理が可能な低温プラズマms界制御
機構を提供するにある。
An object of the present invention is to provide a low-temperature plasma MS field control mechanism that is capable of producing a defect-free, high-quality 14 film and performing surface treatments such as etching.

〔発明の一概要〕[Summary of the invention]

本発明は、生成した低温プラズマに作業基板表面上で所
定の電界および磁界を与え1作業基板に添って任意の一
方向にドリフトするプラズマ程子流を作り、作業基板に
至るプラズマの入射角に一定の指向性を持たせたことを
特徴とする。
The present invention applies a predetermined electric field and magnetic field to the generated low-temperature plasma on the surface of a work substrate to create a plasma flow that drifts in one arbitrary direction along one work substrate, and maintains a constant angle of incidence of the plasma toward the work substrate. It is characterized by having the directivity of

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すように、プラズマ生成室lの外周に配置さ
れた磁界コイル7は、導波管6から供給したマイクロ波
8とによって電子サイクロトロン共鳴を起こし、供給管
9.IOから注入した材料ガスの低温プラズマ12を生
成する。これは前述の従来例と同じである。反応室2の
外周には磁界発生手段として制御磁界コイルがか磁界の
強さを制御可能に配置されている。反応室容器区内には
制御磁界コイル局の磁界の方向とほぼ直交するように基
板取付台3が配置され、この基板取付台3に作業基板4
が固定されている。反応室容器ρと制御磁界コイルがと
の間には第2図に示すように電界電極δが配置され、こ
の電界電極25は対向配蓋されたものが2対あり、それ
ぞれスイッチ手段を介して[1源28に接続されて電界
発生手段が構成されている。
As shown in FIG. 1, the magnetic field coil 7 arranged around the outer periphery of the plasma generation chamber 1 causes electron cyclotron resonance with the microwave 8 supplied from the waveguide 6, and the supply pipe 9. A low temperature plasma 12 of material gas injected from IO is generated. This is the same as the conventional example described above. A control magnetic field coil is arranged around the outer periphery of the reaction chamber 2 as a magnetic field generating means so that the strength of the magnetic field can be controlled. A board mount 3 is arranged in the reaction chamber container section so as to be substantially orthogonal to the direction of the magnetic field of the control magnetic field coil station, and a work board 4 is mounted on this board mount 3.
is fixed. Between the reaction chamber vessel ρ and the control magnetic field coil, electric field electrodes δ are arranged as shown in FIG. [1] is connected to the source 28 to constitute an electric field generating means.

反応室2に導かれた低温プラズマ1丁、作業基板40表
面上で、制御磁界コイル28により印加された軸方向つ
まり2方向の磁界B、と、電界電極石により印加された
軸直角方向つまりY方向の電界f!Jrとによるローレ
ンツ力F (= Wr X Bg (ベクトル積))を
受け、磁界Bs と電界Erに直交する方向に指向性を
持ってドリフトする。電界電極5の電源部に、交流電源
あるいは所定間隔で極性を反転する直流電源を用いると
1作業基板40表面上で往復ドリフトとなる。また電界
電極5と電#羽間のスイッチ手段を操作したり、基板取
付台3を図示しない方向で周方向つまりθ方向に回転す
ることにより、ドリフトの方向を制御することができる
。このような構成は、第3図に示すように作業基板4上
に直交する凹凸の配線あるいは膜形状を構成したものに
適用すると、配線あるいを1膜形状に添った第3図のX
、Y方向に低温プラズマをドリフトすることができる。
One low-temperature plasma guided into the reaction chamber 2, a magnetic field B applied in the axial direction, that is, two directions, applied by the control magnetic field coil 28, and a magnetic field perpendicular to the axis, that is, Y, applied by the electric field electrode on the surface of the work substrate 40. The electric field in the direction f! It receives the Lorentz force F (= Wr x Bg (vector product)) due to the magnetic field Bs and the electric field Er, and drifts with directionality in the direction perpendicular to the magnetic field Bs and the electric field Er. If an AC power source or a DC power source whose polarity is reversed at predetermined intervals is used as the power source of the electric field electrode 5, a reciprocating drift will occur on the surface of one work substrate 40. Further, the direction of the drift can be controlled by operating the switch means between the electric field electrode 5 and the electrode blade, or by rotating the substrate mount 3 in a direction not shown in the circumferential direction, that is, in the θ direction. When such a configuration is applied to a configuration in which uneven wiring or a film shape is perpendicular to the work substrate 4 as shown in FIG.
, it is possible to drift the low temperature plasma in the Y direction.

このドリフトの結果を微視的に見ると第4図および第5
図のようである。
The results of this drift can be seen microscopically in Figures 4 and 5.
As shown in the figure.

第4図は上述の低温プラズマ電磁界制御機構を薄膜生成
用に用いた場合を示しており、基板材料13の上に配線
材料14が配線され、その上に絶縁材料ガスの低温プラ
ズマ12によって絶縁膜15を生成する。配線材料14
間の溝に直角な方向20に低温プラズマ12がドリフト
するように、第2図のスイッチ手段を切り換えたり基板
取付台3もしくは電界電極δを回転制御すると、第4図
のように配線材料14の一方の側壁、つまりドリフト方
向に対向する側の壁に膜厚の大きな埋め込みを行なうこ
とができる。次に、適当な時間後、電源あの極性が反転
したり、あるいは基板取付台3を180度回転する。す
ると低温プラズマ12のドリフト方向に1180度変え
られ、同図の点線で示すように他方の側の壁を膜厚19
のように成膜することができる。このようにして、配線
材料14間の凹部溝の埋め込み性が改善され、オーバー
ハング部あるいは空隙等の欠陥のない成膜ができる。
FIG. 4 shows a case where the above-mentioned low temperature plasma electromagnetic field control mechanism is used for thin film production, in which a wiring material 14 is wired on a substrate material 13 and is insulated by a low temperature plasma 12 of an insulating material gas. A film 15 is produced. Wiring material 14
When the switch means shown in FIG. 2 is switched or the board mounting base 3 or the electric field electrode δ is controlled to rotate so that the low temperature plasma 12 drifts in the direction 20 perpendicular to the groove between them, the wiring material 14 drifts as shown in FIG. It is possible to embed a large film thickness on one side wall, that is, the wall on the side opposite to the drift direction. Next, after a suitable period of time, the polarity of the power supply is reversed or the board mount 3 is rotated 180 degrees. Then, the drift direction of the low-temperature plasma 12 is changed by 1180 degrees, and the wall on the other side is made to have a film thickness of 19 degrees, as shown by the dotted line in the figure.
The film can be formed as follows. In this way, the filling properties of the recessed grooves between the wiring materials 14 are improved, and a film can be formed without defects such as overhangs or voids.

第5図は前述の低温プラズマ!磁界制御機構をエツチン
グ用に用いた場合を示しており、基板材料13の上に配
線材料14を配線するエツチングの例である。基板材料
13の上に一様に成膜された配線材料14を感光材17
によるマスクパターンに従ってエツチングする時、配線
材料14間の凹部溝の方向21に添ってエツチング材料
ガスの低温プラズマ12をドリフトさせるように、第2
図のスイッチ手段を切り換えたり基板取付台3あるいは
電界電極δを回転制御する。すると、感光材17のマス
クパターンに添ってエツチングされ、アンダーカット等
のないエツチングとなる。
Figure 5 shows the aforementioned low-temperature plasma! This shows a case where the magnetic field control mechanism is used for etching, and is an example of etching in which wiring material 14 is wired on substrate material 13. The wiring material 14 uniformly formed on the substrate material 13 is transferred to the photosensitive material 17.
When etching according to the mask pattern, the second
The switch means shown in the figure is switched or the rotation of the substrate mount 3 or the electric field electrode δ is controlled. Then, the photosensitive material 17 is etched along the mask pattern, resulting in etching without any undercuts or the like.

第6図は他の実施例による低温プラズマ電磁界。FIG. 6 shows a low-temperature plasma electromagnetic field according to another embodiment.

制御機構を示し1おり、プラズマ生成室と反応室が一体
に成されている容器n内[は、基板取付台3と電極四が
対向配置され、この両者間に′嘔源四が接続されている
。この′riLI2@あは電界の強さを制御可能1c#
l成されている。容器四の外部には磁界の強さを制御可
能な制御−界コイルJが配tl!tされ℃いる。
The control mechanism is shown in Fig. 1, in which a substrate mount 3 and an electrode 4 are arranged facing each other, and a source 4 is connected between them. There is. This'riLI2@A can control the strength of the electric field 1c#
It has been made. A control field coil J that can control the strength of the magnetic field is arranged outside the container 4. It's been warmed up.

排気口nから排気を行なって容64内を真値に成し、基
板取付台、3とit極四間に所定電圧を印加して2方向
に、交流電界Esを得る。この電界E凰とほぼ直交もし
くは斜交するr方向に制御磁界コイル園によっ″′cf
iii界Brを印加すると、供給管9から注入した材料
ガスの低温プラズマは1作業基取40表面で、電界に、
と磁界BrK直父する方向gF=EixBr(ベクトル
積)の力でドリフトする。従って、制御磁界コイル(9
)を容器nの外周で可回転的に成して磁界Brの方向を
制@することKより、先の実施例と(11J様の効果が
得られる。
Exhaust is performed from the exhaust port n to bring the inside of the container 64 to the true value, and a predetermined voltage is applied between the board mount 3 and the IT pole 4 to obtain an alternating current electric field Es in two directions. A control magnetic field coil field is applied in the r direction that is approximately perpendicular or oblique to this electric field E.
When the field Br is applied, the low-temperature plasma of the material gas injected from the supply pipe 9 is exposed to the electric field on the surface of the work base 40,
It drifts with the force of gF=EixBr (vector product) in the direction directly opposite to the magnetic field BrK. Therefore, the control magnetic field coil (9
) is rotatably formed around the outer periphery of the container n to control the direction of the magnetic field Br, the effects similar to those of the previous embodiment and (11J) can be obtained.

上記各実施例の説明かられかるように1本発明の実施に
あたっては、低温プラズマの生成と反応を真空の容器内
で行なうように構成すれば良く。
As can be seen from the description of each of the above embodiments, the present invention may be implemented in such a way that low temperature plasma generation and reaction are performed in a vacuum container.

プラズマ生成室と反応室を分離したり1つの室で兼用さ
せることができる。またドリフト方向を作業基板4や処
4に応じて変化させるため、基板取付台3や電界電極5
や制御磁界コイル刃を位置調整可能として構成したが、
はぼ直交する磁界と電界によるローレンツ力の方向を選
択する機構として構成すれば良い。
The plasma generation chamber and the reaction chamber can be separated or can be used as one chamber. In addition, in order to change the drift direction according to the work board 4 and location 4, the board mounting stand 3 and the electric field electrode 5
The control magnetic field coil blade was configured to be adjustable in position,
It may be configured as a mechanism that selects the direction of the Lorentz force due to the magnetic field and electric field that are orthogonal to each other.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、はぼ直交する関係の磁界
を発生する手段と電界を発生する手段と。
As explained above, the present invention provides a means for generating a magnetic field and a means for generating an electric field in a substantially orthogonal relationship.

これら磁界と電界によるローレンツ力の方向を選択する
機構とから低温プラズマ電磁界制御機構を構成したため
、指向性を持つ低温プラズマ粒子流を形成することがで
き、薄膜生成やエツチング等においてオーバーハング部
、9隙欠陥およびアンダーカット等の不具合をなくして
良質の表面処理を行なうことができる。
Since a low temperature plasma electromagnetic field control mechanism is constructed from a mechanism for selecting the direction of the Lorentz force caused by these magnetic fields and electric fields, it is possible to form a directional low temperature plasma particle flow, and it is possible to avoid overhanging parts in thin film formation, etching, etc. It is possible to perform high-quality surface treatment by eliminating defects such as 9-gap defects and undercuts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による低温プラズマ電磁界制
御機構の縦断面図、第2図は第1図の■−ff線に沿っ
た断面図、第3図は低温プラズマのドリフト方向を示す
作業基板の平面図、第4図および第5図は第1図の低温
プラズマ電磁界制御機構を薄膜生成およびエツチングに
通用した場合の基板断面拡大図、第6図は本発明の他の
実施例による低温プラズマ1iLFtii界制御機慣の
縦断面図、果7図は従来の低温プラズマを用いた半導体
IvM製造装置の縦断面図、第8図および第9図は第7
図の装置を薄膜生成およびエツチングに適用した場合の
基板断面拡大図である。 1・・・・・・プラズマ生成室、2・・・・・・反応室
、3・・・・・・基板取付台、4・・・・・・作業基板
、5・・・・・・電界電極。 あ・・・・・・制御磁界コイル、あ・・・・・・′に味
。 第4図 第5図 第6図 17図
FIG. 1 is a longitudinal cross-sectional view of a low-temperature plasma electromagnetic field control mechanism according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the -ff line in FIG. 1, and FIG. 4 and 5 are enlarged cross-sectional views of the substrate when the low-temperature plasma electromagnetic field control mechanism shown in FIG. 1 is used for thin film production and etching, and FIG. 6 is a plan view of a working substrate shown in FIG. A vertical cross-sectional view of a low-temperature plasma 1iLFtii field control mechanism according to an example.
FIG. 2 is an enlarged cross-sectional view of a substrate when the apparatus shown in the figure is applied to thin film formation and etching. 1...Plasma generation chamber, 2...Reaction chamber, 3...Substrate mounting stand, 4...Working board, 5...Electric field electrode. Ah... control magnetic field coil, ah...' taste. Figure 4 Figure 5 Figure 6 Figure 17

Claims (1)

【特許請求の範囲】 1、真空に成した容器内で低温プラズマを生成するよう
に構成したものにおいて、上記低温プラズマに対する磁
界を発生する手段と、上記磁界発生手段による磁界に対
してほぼ直交する電界を発生する手段と、上記磁界と上
記電界とによるローレンツ力の方向を選択する機構とを
有することを特徴とする低温プラズマ電磁界制御機構。 2、上記特許請求の範囲第1項記載のものにおいて、上
記電界発生手段は、少なくとも1対の電極と、この電極
間に極性を変換して電圧を印加する電源を接続して成る
ことを特徴とする低温プラズマ電磁界制御機構。
[Scope of Claims] 1. In a device configured to generate low-temperature plasma in a vacuum container, a means for generating a magnetic field for the low-temperature plasma, and a magnetic field substantially orthogonal to the magnetic field generated by the magnetic field generating means. A low temperature plasma electromagnetic field control mechanism, comprising means for generating an electric field, and a mechanism for selecting the direction of Lorentz force caused by the magnetic field and the electric field. 2. The electric field generating means described in claim 1 above is characterized in that the electric field generating means comprises at least one pair of electrodes and a power supply that applies a voltage with polarity changed between the electrodes. A low-temperature plasma electromagnetic field control mechanism.
JP24616484A 1984-11-22 1984-11-22 Low temperature plasma electromagnetic field control structure Pending JPS61125133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24616484A JPS61125133A (en) 1984-11-22 1984-11-22 Low temperature plasma electromagnetic field control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24616484A JPS61125133A (en) 1984-11-22 1984-11-22 Low temperature plasma electromagnetic field control structure

Publications (1)

Publication Number Publication Date
JPS61125133A true JPS61125133A (en) 1986-06-12

Family

ID=17144453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24616484A Pending JPS61125133A (en) 1984-11-22 1984-11-22 Low temperature plasma electromagnetic field control structure

Country Status (1)

Country Link
JP (1) JPS61125133A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142636A (en) * 1986-12-05 1988-06-15 Anelva Corp Vacuum apparatus
JPS6460925A (en) * 1987-08-31 1989-03-08 Semiconductor Energy Lab Fabricating method for superconductive material
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
JPH0774116A (en) * 1994-07-15 1995-03-17 Hitachi Ltd Plasma treatment apparatus
KR100239698B1 (en) * 1996-09-19 2000-01-15 김영환 Plasma chemical vapor deposition system
US6299725B1 (en) 1998-02-19 2001-10-09 Micron Technology, Inc. Method and apparatus for controlling the temperature of a gas distribution plate in a process reactor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142636A (en) * 1986-12-05 1988-06-15 Anelva Corp Vacuum apparatus
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5019117A (en) * 1986-12-29 1991-05-28 Sumitomo Metal Industries Ltd. Plasma apparatus
JPS6460925A (en) * 1987-08-31 1989-03-08 Semiconductor Energy Lab Fabricating method for superconductive material
JPH0559041B2 (en) * 1987-08-31 1993-08-30 Handotai Energy Kenkyusho
JPS6467823A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Formation of oxide superconducting film
JPH0556282B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPH0556281B2 (en) * 1987-09-07 1993-08-19 Handotai Energy Kenkyusho
JPS6467824A (en) * 1987-09-07 1989-03-14 Semiconductor Energy Lab Forming device for oxide superconducting material
JPS6476903A (en) * 1987-09-16 1989-03-23 Semiconductor Energy Lab Apparatus for producing oxide superconducting material
JPH0556283B2 (en) * 1987-09-16 1993-08-19 Handotai Energy Kenkyusho
JPH0774116A (en) * 1994-07-15 1995-03-17 Hitachi Ltd Plasma treatment apparatus
KR100239698B1 (en) * 1996-09-19 2000-01-15 김영환 Plasma chemical vapor deposition system
US6299725B1 (en) 1998-02-19 2001-10-09 Micron Technology, Inc. Method and apparatus for controlling the temperature of a gas distribution plate in a process reactor

Similar Documents

Publication Publication Date Title
KR900005347B1 (en) Plasma processor
US5945008A (en) Method and apparatus for plasma control
JPH09283300A (en) Plasma treatment device
JPS61125133A (en) Low temperature plasma electromagnetic field control structure
JP2001155899A (en) Plasma processing apparatus and process using the same
JP2000164578A (en) Plasma processing device and method
JPH0845699A (en) Plasma control method and plasma processing device
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JP3377784B2 (en) Charged particle control apparatus and method
JP2812477B2 (en) Semiconductor processing equipment
JPS61119036A (en) Low temperature plasma electromagnetic field controlling mechanism
JPS60163433A (en) Plasma treatment device
JPH09275097A (en) Semiconductor manufacturing device and semiconductor manufacturing method
JPS611025A (en) Plasma processing apparatus
JPH04346225A (en) Magnetron plasma etching method and device
JP2725327B2 (en) Plasma deposition equipment
JPS6129128A (en) Plasma treating device
JP5236777B2 (en) Plasma processing equipment
TW200402793A (en) Plasma treatment apparatus
JPH0578849A (en) High magnetic field microwave plasma treating device
JP2000012294A (en) Plasma treatment device
JPS6094724A (en) Dry etching device
JPS61217573A (en) Electric discharge device for vacuum treatment
KR910000507B1 (en) Dry process apparatus