JPS61124565A - Manufacture of tellurium or tellurium alloy target material - Google Patents

Manufacture of tellurium or tellurium alloy target material

Info

Publication number
JPS61124565A
JPS61124565A JP24564384A JP24564384A JPS61124565A JP S61124565 A JPS61124565 A JP S61124565A JP 24564384 A JP24564384 A JP 24564384A JP 24564384 A JP24564384 A JP 24564384A JP S61124565 A JPS61124565 A JP S61124565A
Authority
JP
Japan
Prior art keywords
tellurium
alloy
target material
powder
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24564384A
Other languages
Japanese (ja)
Other versions
JPH0355547B2 (en
Inventor
Masatoshi Fukushima
正俊 福島
Kosaburo Ko
廣 幸三郎
Soichi Fukui
福井 総一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP24564384A priority Critical patent/JPS61124565A/en
Publication of JPS61124565A publication Critical patent/JPS61124565A/en
Publication of JPH0355547B2 publication Critical patent/JPH0355547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture efficiently a uniform and large-sized target material having a high density by adjusting a particle size of a powder of Te or its alloy, bringing it to a vacuum packing to a vessel made of an elastic substance, and executing a cold hydrostatic pressure press forming. CONSTITUTION:An alloy containing at least >=10wt% Te is prepared as a target which is used in case of forming a thin film of a recording medium of an optical disk by extremely fragile Te or its alloy by a sputtering method. This alloy is crushed to a fine powder state of 60-635 meshes, packed in an elastic substance vessel of rubber, urethane, etc., made to form a vacuum state and sealed. It is pressed by a cold hydrostatic pressure press and a high density sintered body is formed by sintering the green compact, and it is used as a target. A large-sized target having a high density and a uniform material quality can be manufactured with a high yield by using Te or a Te alloy, whose material quality is extremely fragile.

Description

【発明の詳細な説明】 「型巣上の利用分野」 この発明は、光ディスクの配録媒体となるテルルまたは
テルル合金薄膜層をスパッタリング法により形成する場
合に使用されるテルルまたはテルル合金ターゲット材の
a遣方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of application for forming molds" This invention relates to the use of tellurium or tellurium alloy target materials used when forming tellurium or tellurium alloy thin film layers, which are recording media for optical discs, by sputtering. This is related to the method of sending a.

「従来の技術」 周知のように、テルルまたはテルル合金は、光ディスク
の記録媒体薄膜層に好適な素材として実用化されており
、同薄膜層は、一般にスパッタリング法によシ製造され
ている。このスパッタリング法で使われるターゲット材
は、円形あるいは角形の板とそれにロク付けされたバン
キングプレート(冷却板)とからなっている。従来、と
のよ、う°なスパッタリング用のテルル1七はテルル合
金製のターゲット材の製造方法としては、溶解vd造法
または粉末焼結法か採用されている。
"Prior Art" As is well known, tellurium or a tellurium alloy has been put to practical use as a suitable material for the recording medium thin film layer of an optical disk, and the thin film layer is generally manufactured by a sputtering method. The target material used in this sputtering method consists of a circular or square plate and a banking plate (cooling plate) attached to it. Conventionally, the melt VD method or the powder sintering method has been adopted as a method for manufacturing a tellurium alloy target material for tellurium 17 for sputtering.

「発明か解決しようとする問題点」 上記従来の製造方法のうち、一方の溶解鋳造法において
は、周知のようにテルルそのものか非常に脆いため合金
も含めて割れやすく、そのため製品への個数歩留シがた
いへん悪い。ま九、円形製品で100瓢φ(角形良品は
70X100.)を越えた製品を製造することはほとん
ど不可能であった。
``Problem to be solved by the invention'' Among the conventional manufacturing methods mentioned above, in one method, the melting casting method, as is well known, tellurium itself is very brittle and is prone to breakage, including the alloy. Rushi is very bad. It was almost impossible to manufacture circular products with a diameter exceeding 100 mm (70 x 100 mm for square products).

t+、他方の粉末焼結法は、ホットプレス法によシ粉体
な焼結体KL、この焼結体をターゲット材とする方法に
よっている。一般的に、従来のホントプレス法では原料
粉体は一方向から加圧され、かつ高温に晒らされるので
、得られた焼結体はホットプレスの形状によち比較的小
さく、かつプレス容器からの汚染や吸着ガスの揮発によ
る@度の不均一、化合物組成からのずれ等を免れかたい
t+, the other powder sintering method is based on a method in which a powdery sintered body KL is formed by a hot press method and this sintered body is used as a target material. Generally, in the conventional Hontopress method, the raw material powder is pressurized from one direction and exposed to high temperatures, so the resulting sintered body is relatively small due to the shape of the hot press, and It is difficult to avoid contamination from the container or volatilization of adsorbed gas, resulting in non-uniformity of @ degree and deviation from the compound composition.

従って、このような焼結体からは一時に多数個の同一形
状と同一の性能を有するターゲット材を生産することは
不可能であシ、得られたターゲット材によるスパッタリ
ング膜は膜厚の均一性、表面平滑性、電気的特性にバラ
ツキか生じるなどの欠点がある。
Therefore, it is impossible to simultaneously produce a large number of target materials with the same shape and performance from such a sintered body, and the sputtered film using the obtained target material has a uniform thickness. However, there are disadvantages such as variations in surface smoothness and electrical characteristics.

この発明は上記事情に鑑みてなされたもので、高密度、
均一で大きな寸法のテルルまたはテルル合金ターゲット
材を効率よく、低コストに製造することのできる方法を
提供することを目的とするものである。
This invention was made in view of the above circumstances, and has high density,
The object of the present invention is to provide a method that can efficiently produce a tellurium or tellurium alloy target material having uniform and large dimensions at a low cost.

「問題点を解決する九めの手段」 本発明方法は、テルルまたはテルル合金の塊をボールミ
ルなどの粉砕機により粉末化し、この粉体な望ましくは
ふるい分けして粒度な所定範囲内にそろえ、得られた粉
体な弾性物質製容器に詰めて真空に封じ、冷間静水圧プ
レスに入れて加圧し、得られな高密度均一成形体を機械
加工してターゲット材とする方法である。さらに本発明
の詳細な説明する。
"Ninth Means for Solving the Problem" The method of the present invention involves pulverizing a lump of tellurium or tellurium alloy using a grinder such as a ball mill, and preferably sieving this powder to make the particle size within a predetermined range. This method involves filling a container made of a powdery elastic material, sealing it in a vacuum, placing it in a cold isostatic press and applying pressure, and machining the resulting high-density uniform molded object to use it as a target material. Further, the present invention will be explained in detail.

まず、本発明方法において、原料として使用されるテル
ル合金は、テルルを1ozl<4以上含有する合金であ
シ、使用するテルルまたはテルル合金は60〜63jメ
ツシユ、望ましくは100〜631メツシュの粉体とす
る。これは、粉体か60メツシュ以上で6つ−hh、6
aメツシュ以上の粗い粒子が混入していると、得られる
プレス成形体の強度か上がらず、加工中に割れたり、ス
パッタ中に割れfcシ、また密度むらが起き、その結果
、スパツメ速度のバラツキ、スパッタ中の異常放電か生
じたシするからである。また、逆に4Jrメツシユ以下
に粒子か細かくなりすぎると、成形体の密度は低くな〕
、成形しにくく脆くなシ、そのため加工中の割れやスパ
ッタ中の割れか発生してしまうからである。
First, in the method of the present invention, the tellurium alloy used as a raw material is an alloy containing tellurium of 1 ozl<4 or more, and the tellurium or tellurium alloy used is a powder of 60 to 63J mesh, preferably 100 to 631 mesh. shall be. This is powder or 60 mesh or more - hh, 6
If coarse particles larger than a mesh are mixed in, the strength of the press-formed product obtained will not increase, and cracks may occur during processing, cracks during sputtering, and density unevenness will occur, resulting in variations in sputtering speed. This is because abnormal discharge may occur during sputtering. On the other hand, if the particles become too fine below 4Jr mesh, the density of the molded product will be low.]
This is because it is difficult to mold and brittle, and therefore cracks occur during processing or during sputtering.

また、100〜63jメツシュの粉体な原料とすると、
一定の条件下では密度比のバラツキがロフト内、ロフト
間、面内で士J%に抑えることかでき、さらに強度の高
い均一なプレス成形体を得ることかできる。
Also, if it is a powder raw material with a mesh size of 100 to 63j,
Under certain conditions, the variation in density ratio within a loft, between lofts, and within a plane can be suppressed to J%, and it is also possible to obtain a uniform press-formed product with high strength.

上記のような粉体調整につづいて、本発明方法では、上
記粉体原料をゴムやフレタン尋の弾性物jlt容器VC
Pjめて真空に封じ、これを冷間静水圧プレスに入れて
、常温で全方向からプレス成形体を得る1、そのため、
このプレス成形体は従来のホツドブレス法で得られt成
形体よ〕はるかに均一で高密度である。また、上記弾性
物質製容器は60信φX/ 00眞程度の大容積のもの
か可能であるので、得られる上記プレス成形体は従来の
ホットプレス法の場合よシ大容量のものか製造可能とな
る。
Following the powder preparation as described above, in the method of the present invention, the powder raw material is placed in an elastic material such as rubber or flexible container VC.
Pj, seal it in vacuum, and put it in a cold isostatic press to obtain a press molded product from all directions at room temperature 1. Therefore,
This press-formed body is much more uniform and denser than the T-shaped body obtained by the conventional hot press method. In addition, since the container made of the elastic material can have a large capacity of about 60mm x 00mm, the press molded product obtained can be produced with a larger capacity than the conventional hot press method. Become.

また、上記原料粉体は、表面積かたいへん大きく、ガス
吸着性か大きいので、冷間静水圧プレスの前処理として
真空脱ガス沃塩な行なうことが望ましい。この真空脱ガ
ス処理によって冷間静水圧プレスのみの場合よ〕さらに
高密度かつ均一なターゲット材を提供することができる
。なお、この真を脱ガス処理条件としては、温度はio
a℃以上から粉体そのものの蒸気圧が/ Torr以下
である温度までの範囲が最適で、真空度はi ’I’o
rr以下とし、7〜5時間の処理でよい。この真空脱ガ
ス処理は、場合によってはスパッタリング前のターゲッ
ト材に施すこともある。
Further, since the raw material powder has a very large surface area and a high gas adsorption property, it is desirable to carry out vacuum degassing iodide treatment as a pretreatment for cold isostatic pressing. This vacuum degassing treatment makes it possible to provide a target material with higher density and uniformity than in the case of cold isostatic pressing alone. In addition, if this is true as the degassing treatment condition, the temperature is io
The optimal temperature range is from a degree Celsius or higher to a temperature where the vapor pressure of the powder itself is /Torr or less, and the degree of vacuum is i'I'o.
rr or less, and a treatment time of 7 to 5 hours is sufficient. This vacuum degassing treatment may be applied to the target material before sputtering depending on the case.

また、本発明方法では冷間静水圧プレスによって得られ
たプレス成形体を焼結させろことによシ、さらに得られ
る成形体の密度を数−〜1Oacs向上させることかで
きる。
Furthermore, in the method of the present invention, by sintering the press molded body obtained by cold isostatic pressing, it is possible to further improve the density of the obtained molded body by several to 1 Oacs.

この上うに1本発明方法はターゲット材の素材であるプ
レス成形体を製造するのに冷間静水圧プレス法を採用す
るものであシ、必要に応じてこの冷間静水圧プレス法に
真空脱ガス処理と熱処理とを適宜組み合わせるものであ
る。
In addition, the method of the present invention employs a cold isostatic pressing method to produce a press-formed body that is the material of the target material, and if necessary, the cold isostatic pressing method may be added to the vacuum desorption method. Gas treatment and heat treatment are appropriately combined.

「作用」 上記本発明方法によれば、下肥のような作用効果を得る
ことができる。
"Action" According to the above-mentioned method of the present invention, it is possible to obtain an effect similar to that of a manure.

中 冷間静水圧プレスは常温で行なうので、プレス中忙
粉体原料からの吸着ガスの揮発はなく、かつ静水圧によ
る全方向プレスであるので、得られたプレス成形体は従
来の方法で得られた成形体に比べてはるかに均一で、か
つよシ高い密度と強度を有し、そのため通常の機械加工
によって所望の形状に高い寸法精度で加工することかで
きる。すなわち、本発明のプレス成形体くは平滑度を出
すための平面7ライス加工、真円度を出すための円筒研
削、一定の厚みのものな多数細切シだす大めのダイヤモ
ンドカッターやハンドソーなどほとんどの機械加工を適
用できる。
Since cold isostatic pressing is carried out at room temperature, there is no volatilization of adsorbed gas from the powder raw material during the pressing process, and since the press is performed in all directions using hydrostatic pressure, the resulting press molded product is comparable to that obtained by conventional methods. It is much more uniform and has much higher density and strength than a molded body, and therefore can be machined into a desired shape with high dimensional accuracy by ordinary machining. In other words, the press-formed product of the present invention can be processed by 7-plane milling to achieve smoothness, cylindrical grinding to create roundness, and a large diamond cutter or hand saw to cut into multiple pieces of a certain thickness. Most machining processes can be applied.

これに対し、従来のホットプレス法による焼結体は、プ
レス中に粉体原料の吸着ガスか揮発し、その影響で得ら
れた焼結体は不均一な密度を有し脆いものとなってしま
う。
On the other hand, in the case of sintered bodies made using the conventional hot pressing method, adsorbed gases from the powder raw materials volatilize during pressing, and as a result, the sintered bodies obtained have uneven density and become brittle. Put it away.

(11)冷間静水圧プレスは常温で行なうか、蒸気圧の
高い粉体でもプレスすることかできる。そのtめ化合物
の場合も出発材料である粉体の時の組成比がそのまま冷
間静水圧プレス後の成形体に残存、保持される。これに
対し、従来のホットプレス法では、粉体そのものの蒸気
圧が高いものはプレス中に高温のtめ揮発し、特に合金
の場合は組成がずれるので、ターゲット材としては不適
なものとなってしまう。
(11) Cold isostatic pressing can be performed at room temperature, or powders with high vapor pressure can also be pressed. In the case of the second compound as well, the composition ratio of the powder as the starting material remains and is maintained in the molded product after cold isostatic pressing. On the other hand, in the conventional hot pressing method, if the powder itself has a high vapor pressure, it will volatilize due to the high temperature during pressing, and especially in the case of alloys, the composition will shift, making it unsuitable as a target material. I end up.

411)冷間静水圧プレスは常温で行なうので、プレス
容器からの汚染か少なく、たとえ汚染があってもプレス
成形体の表面層のみに限定される。
411) Since cold isostatic pressing is carried out at room temperature, there is little contamination from the press container, and even if there is contamination, it is limited to the surface layer of the press-formed product.

そのため、後工程における機械加工や脱脂、酸洗などの
後処理によシ汚染され上表面を容易に取除くことができ
、従来方法では得られないきわめて純度の高いターゲッ
ト材か得られる。
Therefore, the contaminated upper surface can be easily removed during post-processing such as machining, degreasing, and pickling in subsequent steps, and a target material with extremely high purity, which cannot be obtained using conventional methods, can be obtained.

(IV)  上記(1)〜4iDの記述から明らかなよ
うに、大容量のプレス成形体から機械加工によシ同一の
形状で、均一、高密度かつ高強度でしかも高い寸法fl
i1度のターゲット材を一時に多数個生産することかで
きる。そのなめ、これらターゲット材は、取扱いが容易
であシ、スパッタリング条件もターゲット材毎に設定し
なおす必要もなく、バラツキのない高品質の光記鍮媒体
薄膜層を効率的忙提供することかできる。これに対し、
従来のホットプレス法による場合は、得られ九焼結体は
、前記したように1形状において比較的小さく、シかも
プレス容器からの汚染中吸看ガスの揮発による密度の不
均一、そして化合物組成からのずれかあシ、さらに加工
性か悪いので、同一の形状および性能を有するターゲッ
ト材を一時忙多数個生産することは不可能で、しかも得
られたターゲット材は慎重な取扱いを必要とし、スパッ
タリング条件もターゲット材ととに設定しなおす必要が
ある。
(IV) As is clear from the descriptions of (1) to 4iD above, a large-capacity press-formed body can be machined into the same shape, uniform, high density, high strength, and with high dimensions.
It is possible to produce a large number of i1 degree target materials at once. Therefore, these target materials are easy to handle, and there is no need to set sputtering conditions for each target material, making it possible to efficiently provide uniform, high-quality optical recording medium thin film layers. . On the other hand,
In the case of the conventional hot pressing method, the obtained sintered body is relatively small in one shape as described above, and may have non-uniform density due to volatilization of intake gas during contamination from the press container, and a compound composition. Due to misalignment and poor processability, it is impossible to produce a large number of target materials with the same shape and performance at once, and the obtained target materials require careful handling. The sputtering conditions also need to be reset depending on the target material.

次に本発明方法の実施例を示す。Next, examples of the method of the present invention will be shown.

「実施例」 各々表1に示すように、7種類(実施例)〜7)の組成
および粒度の原料粉体を調整し、そのうち実施例ノと7
は真窒脱ガス処理を施こさず、実施例2〜≦は各々/ 
Torr以下で、かつ同表に示す各温度、時間で真窒脱
ガス処理を施こした。この後、各原料粉体な各々表1に
示した容量のゴム製容器に同表に示し上置を話めて、各
プレス圧にてj分間冷間静水圧プレスして成形体を得た
"Example" As shown in Table 1, seven types (Example) to 7) of raw material powders with compositions and particle sizes were adjusted, and among them, Example No. and No. 7
was not subjected to true nitrogen degassing treatment, and Examples 2 to ≦ were each /
True nitrogen degassing treatment was performed at a temperature below Torr and at each temperature and time shown in the same table. After this, each raw material powder was placed in a rubber container with the capacity shown in Table 1 according to the conditions shown in the same table, and cold isostatically pressed for j minutes at each press pressure to obtain a molded body. .

上記のようにして得九実施例俤、!の成形体は、そのま
まで同じく表IK示した寸法に機械加工し、他の実施例
の成形体は同表に示した温度、時間で焼結させ、各焼結
体を同表に示し七寸法に機械加工し七。各々機械加工前
の成形体から表1に示す個数のターゲット材が得られた
。得られなターゲット材には、機械加工による割れはな
かつ九。また、各ターゲット材をスパッタリングしなと
ころ割れは生じなかった。
Nine examples 俤, obtained as above! The compacts were machined as they were to the dimensions shown in Table IK, and the compacts of other examples were sintered at the temperature and time shown in the same table. Machined into seven. The number of target materials shown in Table 1 was obtained from each molded body before machining. The resulting target material has no cracks due to machining. Furthermore, no cracks were observed when sputtering each target material.

これに対し1表2に示す製造法および条件、組成、粒度
、機械加工寸法で比較例を作ml−なところ、同表に示
したように機械およびスパッタリングによる割れが発生
した。
On the other hand, when a comparative example was prepared using the manufacturing method, conditions, composition, particle size, and machining dimensions shown in Table 1, cracks due to mechanical and sputtering occurred as shown in the same table.

「発明の効果」 以上説明し虎ように、本発明方法によれは、均一、高密
度で、比較的大容量で、高い性能を有し、かつ取扱いの
容易なスパッタリング用のテルルまたはテルル合金ター
ゲット材を多数個一時に能率よく生産することができ、
その結果、バラツキのない高品質の光記録媒体薄膜を大
量に提供することができる。
"Effects of the Invention" As explained above, the method of the present invention produces a tellurium or tellurium alloy target for sputtering that is uniform, high density, relatively large capacity, high performance, and easy to handle. A large number of materials can be efficiently produced at once,
As a result, it is possible to provide a large quantity of uniformly high quality optical recording medium thin films.

手続補正書(自発〕Procedural amendment (voluntary)

Claims (6)

【特許請求の範囲】[Claims] (1)テルルまたはテルルを含む合金の粉体を弾性物質
製の容器に詰めて、これを真空に封じ、この容器を冷間
静水圧プレスにより均一加圧し、得られた高密度均一成
形体を機械加工してスパッタ用ターゲット材とすること
を特徴とするテルルまたはテルル合金ターゲット材の製
造方法。
(1) Powder of tellurium or an alloy containing tellurium is packed into a container made of an elastic material, the container is sealed in a vacuum, and the container is uniformly pressurized using a cold isostatic press to produce a high-density uniform molded body. A method for producing a tellurium or tellurium alloy target material, which comprises machining it into a sputtering target material.
(2)テルルまたはテルルを含む合金の粉体を真空脱ガ
ス処理した後、この粉体を弾性物質製の容器に詰めて、
これを真空に封じ、この容器を冷間静水圧プレスにより
均一加圧し、得られた高密度均一成形体を機械加工して
スパッタ用ターゲット材とすることを特徴とするテルル
またはテルル合金ターゲット材の製造方法。
(2) After vacuum degassing the powder of tellurium or an alloy containing tellurium, the powder is packed in a container made of an elastic material,
A tellurium or tellurium alloy target material characterized by sealing the container in a vacuum, applying uniform pressure to the container using a cold isostatic press, and machining the obtained high-density uniform molded product to make a sputtering target material. Production method.
(3)テルルまたはテルルを含む合金の粉体を弾性物質
製の容器に詰めて、これを封じ、この容器を冷間静水圧
プレスにより均一加圧し、得られた高密度均一成形体を
焼結させた後、機械加圧してスパッタ用ターゲット材と
することを特徴とするテルルまたはテルル合金ターゲッ
ト材の製造方法。
(3) Powder of tellurium or an alloy containing tellurium is packed into a container made of an elastic material, the container is sealed, and the container is uniformly pressurized using a cold isostatic press, and the resulting high-density uniform compact is sintered. 1. A method for producing a tellurium or tellurium alloy target material, the method comprising: applying mechanical pressure to obtain a sputtering target material.
(4)テルルまたはテルルを含む合金の粉体を真空脱ガ
ス処理した後、この粉体を弾性物質製の容器に詰めて、
これを真空に封じ、この容器を冷間静水圧プレスにより
均一加圧し、得られた高密度均一成形体を焼結させた後
、機械加工してスパッタ用ターゲット材とすることを特
徴とするテルルまたはテルル合金ターゲット材の製造方
法。
(4) After vacuum degassing the powder of tellurium or an alloy containing tellurium, the powder is packed in a container made of an elastic material,
This is sealed in a vacuum, and the container is uniformly pressurized using a cold isostatic press, and the obtained high-density uniform molded body is sintered and then machined to be used as a sputtering target material. Or a method for manufacturing a tellurium alloy target material.
(5)テルルを含む合金が10重量%以上のテルルを含
む合金である特許請求の範囲第1項ないし第4項のいず
れかに記載のテルルまたはテルル合金ターゲット材の製
造方法。
(5) The method for producing a tellurium or tellurium alloy target material according to any one of claims 1 to 4, wherein the tellurium-containing alloy is an alloy containing 10% by weight or more of tellurium.
(6)テルルまたはテルルを含む合金の粉体が60ない
し635メッシュ、望ましくは100ないし635メッ
シュの粒径である特許請求の範囲第1項ないし第4項の
いずれかに記載のテルルまたはテルル合金ターゲット材
の製造方法。
(6) The tellurium or tellurium alloy according to any one of claims 1 to 4, wherein the tellurium or tellurium-containing alloy powder has a particle size of 60 to 635 mesh, preferably 100 to 635 mesh. Method for manufacturing target material.
JP24564384A 1984-11-20 1984-11-20 Manufacture of tellurium or tellurium alloy target material Granted JPS61124565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24564384A JPS61124565A (en) 1984-11-20 1984-11-20 Manufacture of tellurium or tellurium alloy target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24564384A JPS61124565A (en) 1984-11-20 1984-11-20 Manufacture of tellurium or tellurium alloy target material

Publications (2)

Publication Number Publication Date
JPS61124565A true JPS61124565A (en) 1986-06-12
JPH0355547B2 JPH0355547B2 (en) 1991-08-23

Family

ID=17136701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24564384A Granted JPS61124565A (en) 1984-11-20 1984-11-20 Manufacture of tellurium or tellurium alloy target material

Country Status (1)

Country Link
JP (1) JPS61124565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115364A (en) * 1988-10-22 1990-04-27 Dowa Mining Co Ltd Tellurium target and production thereof
US5244623A (en) * 1991-05-10 1993-09-14 Ferro Corporation Method for isostatic pressing of formed powder, porous powder compact, and composite intermediates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203771A (en) * 1981-06-10 1982-12-14 Mitsubishi Metal Corp Manufacture of target for vapor-deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203771A (en) * 1981-06-10 1982-12-14 Mitsubishi Metal Corp Manufacture of target for vapor-deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115364A (en) * 1988-10-22 1990-04-27 Dowa Mining Co Ltd Tellurium target and production thereof
US5244623A (en) * 1991-05-10 1993-09-14 Ferro Corporation Method for isostatic pressing of formed powder, porous powder compact, and composite intermediates

Also Published As

Publication number Publication date
JPH0355547B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
JP3342898B2 (en) Silicon sintered body and wafer holding board, sputtering target and silicon wafer formed using the same
JP5684821B2 (en) Method for manufacturing tungsten target
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
WO1997037801A1 (en) Single phase tungsten-titanium sputter targets and method of producing same
CN112391596A (en) Preparation method of high-quality tungsten-titanium sputtering target material
JP4689011B2 (en) Low oxygen high density Cu / Cr sputtering target manufacturing method
CN115974552B (en) Preparation method of conductive lithium tantalate target for magnetron sputtering
JPS61124565A (en) Manufacture of tellurium or tellurium alloy target material
CN116396076A (en) Preparation method of conductive lithium niobate target material
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
JP5038553B2 (en) Manufacturing method of sputtering target
JPH1161395A (en) Ito sputtering target
JPH0247261A (en) Silicide target and production thereof
JPH0317905B2 (en)
KR20160066239A (en) Preparation method of tungsten sputtering target and the tungsten sputtering target prepared thereby
JPH0372153B2 (en)
JPS62148362A (en) Manufacture of target material for sputtering
JPS6328987B2 (en)
GB2037264A (en) Cadmium mercury telluride sputtering targets
JP7494567B2 (en) Cr-Si sintered body
JPS63162863A (en) Manufacture of chromium target for sputtering
WO2021241522A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
JP2725331B2 (en) Target material manufacturing method
JPH01309961A (en) Cr-cu target material and its production