JPS61122845A - Measurement of temperature or pressure in living body - Google Patents

Measurement of temperature or pressure in living body

Info

Publication number
JPS61122845A
JPS61122845A JP59243098A JP24309884A JPS61122845A JP S61122845 A JPS61122845 A JP S61122845A JP 59243098 A JP59243098 A JP 59243098A JP 24309884 A JP24309884 A JP 24309884A JP S61122845 A JPS61122845 A JP S61122845A
Authority
JP
Japan
Prior art keywords
frequency
probe
living body
resonant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59243098A
Other languages
Japanese (ja)
Other versions
JPH0587248B2 (en
Inventor
宏一 平間
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP59243098A priority Critical patent/JPS61122845A/en
Publication of JPS61122845A publication Critical patent/JPS61122845A/en
Publication of JPH0587248B2 publication Critical patent/JPH0587248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は生体内の温度又は圧力等の測定方法、fFにこ
れらの自動測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring temperature or pressure in a living body, and a method for automatically measuring fF.

(従来技術) 従来生物学、医学上の研究或は特にガンの治療等を目的
として生体内各部の温度を測定する為長期間生体内に埋
込んだ無電源プローブと生体外の測定器との間を有線に
て接続することなしに測温する方法が提案されている。
(Prior art) Conventionally, in order to measure the temperature of various parts of a living body for the purpose of biological or medical research or especially cancer treatment, a non-powered probe implanted in a living body for a long period of time and a measuring device outside the living body are used. A method has been proposed for measuring temperature without a wired connection.

上述の如き測温方法としてはアンテナ・コイルに水晶振
動子全接続したプローブを生体内の所望の位置に外科的
に埋込むか或はこれを消化器内に流すと共に生体外から
所要周波数の電磁照 エネルギを、蝉射し前記アンテナ・コイルを介して前記
水晶振動子に与えこれが共振する際のエネルギ吸収を観
測するか或は前記電磁エネルギ照 の絢射金中止した直後に於ける前記水晶振動子の残響を
前記アンテナ・コイルを介して受信する手法がある。
The above-mentioned temperature measurement method involves surgically implanting a probe with a crystal oscillator fully connected to the antenna coil at a desired location within the body, or passing it into the digestive tract and injecting electromagnetic waves at the desired frequency from outside the body. The irradiation energy is radiated to the crystal oscillator via the antenna coil, and the energy absorption when it resonates is observed, or the oscillation of the quartz crystal immediately after the electromagnetic energy irradiation is stopped. There is a method of receiving the child's reverberations through the antenna coil.

しかしながら上記いずれの方法に於いても生照 体外部から電磁エネルギを饋射し前記生体内プローブを
構成する共振回路と一致する周波数に於けるエネルギ吸
収現象所謂ディップ現象を観!東 測するか或は前記電磁エネルギ凄射中正直後の短時間に
生ずる前記生体内プローブ内の共振体の残響を検出する
ものであるからいづれも対象とするレベル又は範囲が極
めて小さくその観測或は測定が非常にむずかしいと云う
欠陥があった。
However, in any of the above methods, when electromagnetic energy is emitted from the outside of the living body, an energy absorption phenomenon, the so-called dip phenomenon, occurs at a frequency that matches the resonance circuit that constitutes the in-vivo probe! Since the reverberation of the resonant body within the in-vivo probe that occurs in a short period of time after the electromagnetic energy is emitted is detected, the target level or range is extremely small, making it difficult to observe or There was a flaw in that it was extremely difficult to measure.

更に、この測定全自動化し前述のディツプ点或は前記共
振点全自動追尾する場合、前記照射電磁波の周波数と被
測定回路之る前記プローブの共振特性との相関関係を有
する情報を抽出し、該情報によって前記電磁波の発振周
波数を制御する必要があるが、一般にこのようなプo 
−ブと外部測定回路との結合は極めて微弱なため上述の
従来の測定方法ではいづれもこの情報両得ることが困難
であって自動測定に適しないものであった。
Furthermore, when this measurement is fully automated and the aforementioned dip point or the aforementioned resonance point is fully automatically tracked, information having a correlation between the frequency of the irradiated electromagnetic wave and the resonance characteristic of the probe of the circuit under test is extracted, and the Although it is necessary to control the oscillation frequency of the electromagnetic waves using information, generally such
Since the coupling between the -b and the external measurement circuit is extremely weak, it is difficult to obtain both of this information using the conventional measurement methods described above, making them unsuitable for automatic measurement.

(発明の目的) 本発明はこのような従来の生体内温度又は圧力等の測定
方法の問題点に鑑みてなされたものでありて、生体内プ
ローブとの結合が微弱であっても正確にその共振周波数
検出が可能であって、更には共振点を自動追尾するうえ
で極めて便利な測定方法全提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the problems of the conventional methods for measuring in-vivo temperature, pressure, etc. It is an object of the present invention to provide a complete measurement method that is capable of detecting resonance frequencies and is also extremely convenient for automatically tracking resonance points.

(発明の概要) 本発明ではこの目的のため以下の如き手段全とる。即ち
、前述の如く生体外からプローブに照射する電磁波に低
周波信号によってFM或はPM変調ヲ施すと共に、前記
グローブの共振周波数近傍に於いて前記被変調電磁波に
生ずるAMf調歪調停成分出し、該成分信号によって前
記電磁波発振器の中心周波数を制御するよう構成する。
(Summary of the Invention) The present invention takes all of the following measures for this purpose. That is, as described above, FM or PM modulation is applied to the electromagnetic waves irradiated to the probe from outside the body using a low frequency signal, and the AMf harmonic distortion mediation component that occurs in the modulated electromagnetic waves near the resonant frequency of the glove is extracted. The center frequency of the electromagnetic wave oscillator is controlled by the component signals.

(実施例) 以下本発明を図示した実施例に基づいて詳細に説明する
(Example) The present invention will be described in detail below based on an illustrated example.

第1図は本発明に係かる生体内温度測定装置の一実施例
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an in-vivo temperature measuring device according to the present invention.

同図に於いて1は水晶撮動子Xとアンテナ・コイlvL
+とで構成した生体内プローブであって、生体外に於い
て前記プローブと対向せしめたアンテナ・コイルL2に
低周波発振器2の出アンテナ・コイルにAM検波回路4
を付加しそ・の出力を増幅器5を介して前記低周波発振
器2の出力を同期信号とする同期検波回路6に入力せし
めかつその出力でもって前記■COの発振周波数を制御
する如く構成し念ものである。
In the same figure, 1 is the crystal camera X and the antenna coil lvL.
+ and an antenna coil L2 facing the probe outside the living body, and an AM detection circuit 4 at the output antenna coil of a low frequency oscillator 2.
is added, and its output is inputted via an amplifier 5 to a synchronous detection circuit 6 which uses the output of the low frequency oscillator 2 as a synchronous signal, and the oscillation frequency of the CO is controlled by the output. It is.

このように構成した生体内温度測定装置は以下の如く動
作する。
The in-vivo temperature measuring device configured as described above operates as follows.

即ち、第2図は前記プローブの共振周波数f。That is, FIG. 2 shows the resonant frequency f of the probe.

近傍に於ける照射電磁波が受けるA M f調歪の状態
を示す波形図である。
FIG. 3 is a waveform diagram showing a state of A M f-toned distortion that is applied to irradiated electromagnetic waves in the vicinity.

今、前記低周波信号を80Hz、周波数偏位全±2 K
 Hz電磁波周波数t19MH2から21MHzまで可
変とし前記プローブの共振周波数をfo=20MHzと
すると、前記周波数に調を受けた電磁波はその中心周波
数から±2KH2にわたって80 Hzの周期で振動す
る。
Now, the low frequency signal is 80Hz, and the frequency deviation is ±2K.
If the Hz electromagnetic wave frequency is variable from 19 MH2 to 21 MHz and the resonant frequency of the probe is fo = 20 MHz, the electromagnetic wave tuned to the frequency oscillates at a period of 80 Hz over ±2 KH2 from its center frequency.

従ってその中心周波数がプローブの共振特性曲線上をそ
の共振点fOよりΔf低い点((l、fO(ロ)及びΔ
f高い点(ハ)の三つの点に位置する場合矢 のAM9調歪は夫々同図中擲印にて示した。ような波形
を呈する。
Therefore, the point where the center frequency is Δf lower than the resonance point fO on the resonance characteristic curve of the probe ((l, fO(b) and Δ
The AM9 tone distortion of the arrow when located at the three high points (c) is indicated by a cross mark in the same figure. It exhibits a waveform like this.

これは前記プローブの共振回路に電磁エネルギーが吸収
されるためで、このときプローブに対向した外部装置の
コイルL2の両端には第3図(cl fdl (elに
示すようなAM変調ヲうけた波形が現れる。
This is because the electromagnetic energy is absorbed by the resonant circuit of the probe, and at this time, a waveform receiving AM modulation as shown in Figure 3 (cl fdl (el) appears.

即ち、$3図は前記l!1図に示したブロック図の各部
の信号波形金示したものであって(alは低周波発振器
2の波形、(b)は該低周波信号によってF M変調を
うけた電磁波でコイA/L2に印加される信号波形、(
cl(di及び(e)は夫々前記篇2図のプローブ共振
特性曲線t()(ロ)及び(→に於ける前記コイルL2
両端に生ずる波形である。
That is, the $3 figure is the above l! The signal waveforms of each part of the block diagram shown in Figure 1 are shown (al is the waveform of the low frequency oscillator 2, and (b) is the electromagnetic wave that has been FM modulated by the low frequency signal and is the waveform of the carp A/L2. The signal waveform applied to, (
cl(di and (e) are the probe resonance characteristic curves t() (b) and (→) of the probe resonance characteristic curves t() and (→) in Figure 2 of the previous section, respectively.
This is a waveform that occurs at both ends.

更にこれら(cl (dl (elの波形IAM検波す
ると夫々同図(fl (gl (hlに示す如く、前記
プローブにエネルギ吸収された結果中じた前述のAMJ
調成分成分出される。
Furthermore, when the waveform IAM of these (cl (dl (el)
The preparation ingredients are extracted.

同図から明らかな如く、前記電磁波の中心周波数がプロ
ーブの共振特性曲線のどの位置にあるかによって夫々の
AM変調波形が異なり例えば、プローブ共振点foを含
んでこれよりΔf低い点(イ)に於いては周波数偏位が
+側にてレベルが小となり前記共振点を越えると2倍歪
金生じ、−側にてレベルは増大し、しかも−側のレベル
増加分が大きい2次KfOの点(ロ)に於いて! は偏位−即ちfoにて最小レベルとなり±Δfのいづれ
に偏位してもレベルが増大するからAM歪周波数は2倍
即ち2fa=160Hzとなる。
As is clear from the figure, each AM modulation waveform differs depending on where the center frequency of the electromagnetic wave is located on the resonance characteristic curve of the probe. In this case, when the frequency deviation is on the + side, the level becomes small, and when it exceeds the resonance point, double distortion occurs, and on the - side, the level increases, and moreover, there is a second-order KfO point where the level increase on the - side is large. In (b)! becomes the minimum level at the deviation - that is, fo, and the level increases regardless of the deviation within ±Δf, so the AM distortion frequency becomes twice, that is, 2fa=160 Hz.

一方fot:周波数偏位中に含みこれを越えてΔf高い
点(ハ)では前記(イ)と全く逆となる。
On the other hand, at the point (c) where Δf is higher than fot: included in the frequency deviation, the situation is completely opposite to the above (a).

従ってこの変化を何等かの手段によって検出すれば、そ
のときの電磁波の中心周波数が前記プローブの共振特性
曲線上のどの点に位置するかが識別できる。
Therefore, by detecting this change by some means, it is possible to identify at which point on the resonance characteristic curve of the probe the center frequency of the electromagnetic wave at that time is located.

本実施例では、このようにして復調した波形を同期検波
回路6に於いて、前記低周波信号金基鵡として同期検波
したのち波形成形して早3図(il (jl (klに
示す如く夫々のAMiill歪に対応した矩形波を得、
該矩形波のデユーティ比を検出する如く構成し、前記プ
ローブの共振点fOに於ける該デユーティ比が1:1と
なることを利用してそのときの周波数を検出しもって生
体内の温度を測定するものである。
In this embodiment, the thus demodulated waveform is synchronously detected as the low frequency signal in the synchronous detection circuit 6, and then the waveform is shaped into the following waveforms as shown in Figure 3 (il (jl (kl)). Obtain a square wave corresponding to the AMill distortion of
The probe is configured to detect the duty ratio of the rectangular wave, and the duty ratio at the resonance point fO of the probe is 1:1.The frequency at that time is detected and the temperature inside the living body is measured. It is something to do.

更に、前記矩形波を積分したのち直流電圧に変換すれば
前述のデユーティ比に対応した直流電圧を得しかもこれ
は前記グローブの共振特性曲線上の各点に一対一に対応
した値となる。
Further, by integrating the rectangular wave and converting it into a DC voltage, a DC voltage corresponding to the duty ratio described above is obtained, and this value corresponds one-to-one to each point on the resonance characteristic curve of the globe.

即ち+fOに於いて相対値が0.5vとなりf。That is, at +fO, the relative value becomes 0.5v, and f.

より低い方で0.5V以下にかつ高い方で0.5v以上
となる。
The lower value is 0.5V or less, and the higher value is 0.5V or more.

従って、上述の直流電圧音用いてvCOの周波数制御電
圧を制御するよう構成すればこれら各ブロックは閉ルー
プを形成し前記電磁波の中心周波数をプローブの共振点
foに自動的に調整することが可能となる。
Therefore, if the frequency control voltage of the vCO is controlled using the DC voltage sound described above, each of these blocks will form a closed loop, and the center frequency of the electromagnetic wave can be automatically adjusted to the resonance point fo of the probe. Become.

つまり前述の直流電圧がO,SVになるように又は、こ
の直流電圧出力をQ、5Ve基準電圧とした比較器に入
力しその差出力がOとなる如く前記閉ループ全作動せし
めればサーボ制御ループ系を構成することができ、これ
を利用して前記プローブの共振点foが温度に従って移
動する際のその周波数の自動測定を行なうことができる
In other words, if the closed loop is fully activated so that the aforementioned DC voltage becomes O, SV, or this DC voltage output is input to a comparator with Q, 5Ve reference voltage, and the difference output becomes O, the servo control loop A system can be constructed and used to automatically measure the frequency of the resonant point fo of the probe as it moves with temperature.

このように本発明を用いたサーボ系を構成すれば、従来
の7エーズロツクループ(PLL)i用いたものと比較
して次のような特徴をもつ。
If a servo system is constructed using the present invention in this way, it will have the following features compared to a system using a conventional 7-speed lock loop (PLL) i.

即ち、従来のPLLが閉ループ中で信号の位相を検出し
その差を直流信号に変換してサーボ系を構成するもので
あって、−投に位相情報を抽出するには大きいレベルの
信号を要するのに対し2本発明はFM波に生ずるAM歪
を抽するものであるから比較的低レベル信号であっても
これが可能である。
In other words, a conventional PLL detects the phase of a signal in a closed loop and converts the difference into a DC signal to form a servo system, and extracting phase information for -throw requires a high-level signal. On the other hand, since the present invention extracts AM distortion occurring in FM waves, this is possible even with relatively low level signals.

更に9両者のループ感度及びロックレンジを比較すれば
、PLLに於いては周波数可変範囲全域例えば2MHz
kフルスケールとしてその中の極めて狭い位相範囲例え
ば数K Hz  にロックに対し2本発明では上述の周
波数偏位例えば±2 K Hzがフルスケールであって
その中の変調信号周波数の2倍例えば160Hzi抽出
するか或は波形のデユーティ比1:1を検出すれば足リ
fa述のロックレンジとフルスケール比は小さくなり従
来のPLLに比して系の制御が極めて容易であることが
理解できよう。
Furthermore, comparing the loop sensitivity and lock range of both 9, it is found that in PLL, the frequency can be varied over the entire frequency range, for example, 2 MHz.
In the present invention, the above-mentioned frequency deviation, for example ±2 KHz, is the full scale and is twice the modulation signal frequency, for example 160 Hz. You can understand that if you extract or detect a waveform duty ratio of 1:1, the lock range and full scale ratio mentioned above will become smaller, and the control of the system will be much easier than with a conventional PLL. .

伺上記実施例は本発明の一具体例であってこれに限定さ
れることはなく他に様々な実施方法があること明らかで
ある。例えば前記低周波信号は三角波形の如く左右対象
波であればよいし、又前記同期検波回路も同期をとった
位相検波回路としてもよい。
It is clear that the above-mentioned embodiment is a specific example of the present invention, and that the present invention is not limited thereto, and that there are various other implementation methods. For example, the low frequency signal may be a left-right symmetrical wave such as a triangular waveform, and the synchronous detection circuit may also be a synchronized phase detection circuit.

更に2本発明は被測定回路の共振周波数の検出にとどま
らずその特性が極大極小値の停留点(ステーション・ポ
イント)をもって変化するとき該変化を周波数の変化に
置換せしめればどのようなもの例えばイ/ピーダノスの
停留点或は電流、電圧の変化又はその他の物理変化のめ
らゆる停留点検出に応用可能なること明らかであろう。
Furthermore, the present invention is not limited to detecting the resonant frequency of a circuit under test, but also detects, for example, when the characteristic changes at a station point of a maximum or minimum value, the change can be replaced with a change in frequency. It will be obvious that the present invention can be applied to detecting the stopping point of I/Pedanos or any stopping point of a change in current, voltage or other physical change.

本発明の他の応用例としては2例えば圧力によって共振
周波数が変化する素子或は回路寺前記グローブとなし前
記実施例に示したブロック図と同様に構成した装置を用
いてその共振周波敷金検出すれば上述の説明と同一の方
法によって圧力の検出が可能であり、このようにすれば
めで有効である。
Another application example of the present invention is to detect the resonant frequency of an element or circuit whose resonant frequency changes depending on pressure using a device configured in the same manner as the block diagram shown in the above embodiment. For example, the pressure can be detected by the same method as described above, and this method is effective.

又、上述の例では共振回路のディツプ点を検出する場合
を示し九が1本発明はこれに限らず物理量の変化の極大
点を検出することも可能である。このときは前記外部回
路のアンテナ・コイルとAM検波回路とを直列共振せし
めそのイノビーダンスを低くすれば被測定回路が呈する
物理量変化の極大点を検出することができる。
Further, the above example shows a case where a dip point of a resonant circuit is detected, but the present invention is not limited to this, and it is also possible to detect a maximum point of a change in a physical quantity. In this case, by making the antenna coil of the external circuit and the AM detection circuit resonate in series and lowering their innovation dance, it is possible to detect the maximum point of the physical quantity change exhibited by the circuit under test.

(発明の効果) 本発明は以上説明した如く構成し機能するものであるか
ら、ある物理量が停留点をもって変化する際の該停留点
の検出を行う手段として便利であって、更にこの検出金
自動化をはかるうえで極めて都合がよい。
(Effects of the Invention) Since the present invention is configured and functions as explained above, it is convenient as a means for detecting a stopping point when a certain physical quantity changes with a stopping point, and furthermore, it is useful as a means for detecting the stopping point when a certain physical quantity changes with a stopping point. It is extremely convenient for measuring.

特に、生体内の温度を測定するときの体内プローブから
情報を抽出する如く、物理変化情報が非常に小さい場合
であっても正確にこれを検出するうえで極めて大きな効
果がある。
In particular, it is extremely effective in accurately detecting physical change information even when the information is very small, such as when extracting information from an in-vivo probe when measuring the temperature inside a living body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図及
び第3図は前記第1図に示したブロック図の各部の動作
全説明するための波形図である。 1・・・・・・・・・水晶振動子、  2・・・・・・
・・・低周波発振器、  3・・・・・・・・・電圧制
御発振器(VCO)。 4・・−・・・・・・AM検波回路、  5・・・・・
・・・・増幅器。 6・・・・・・・・・同期検波回路、   L+及びL
2・由由・・コイル。 特許出願人  東洋通信機株式会社 責20 (^ン1) 3 図 (g・舶がk ゛ (h)八d
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are waveform diagrams for explaining the operation of each part of the block diagram shown in FIG. 1. 1......Crystal oscillator, 2...
...Low frequency oscillator, 3... Voltage controlled oscillator (VCO). 4...--AM detection circuit, 5...
····amplifier. 6......Synchronized detection circuit, L+ and L
2. Yuyu... Coil. Patent applicant Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】 1、温度又は圧力等の依存性をもった共振回路より構成
するプローブを生体内に埋込みこれに前記生体外から所
定周波数の電磁エネルギを与えこれが共振する際のその
共振周波数を観測或は測定することによって生体内の温
度又は圧力等を測定する方法に於いて、前記電磁波を低
周波信号によって周波数変調(FM)或は位相変調(P
M)すると共に該電磁波の中心周波数を変化せしめ、前
記プローブの共振周波数近傍に於いて前記被変調電磁波
が受ける振幅変調 (AM)歪を検出することによって前記プローブの共振
周波数を検出しもって生体内の温度又は圧力等を測定し
たことを特徴とする生体内の温度又は圧力等の測定方法
。 2、前記電磁波のAM歪を検出する体外装置の構成を、
AM検波回路を付加したアンテナ・コイルに低周波信号
でFM又はPMを施した電圧制御発振回路(VCO)出
力を印加すると共に、前記AM検波回路出力を前記低周
波信号で同期検波して得る出力で前 記電圧制御発振回路の周波数制御電圧を制御する如く閉
ループを構成しもって前記プローブの共振点を自動追尾
したことを特徴とする特許請求の範囲第1項記載の生体
内の温度又は圧力等の測定方法。
[Scope of Claims] 1. A probe composed of a resonant circuit that is dependent on temperature or pressure, etc. is implanted in a living body, and electromagnetic energy of a predetermined frequency is applied from outside the living body to determine the resonant frequency when the probe resonates. In this method, the electromagnetic waves are subjected to frequency modulation (FM) or phase modulation (P) using a low frequency signal.
M) At the same time, the center frequency of the electromagnetic wave is changed, and the resonant frequency of the probe is detected by detecting the amplitude modulation (AM) distortion that the modulated electromagnetic wave receives in the vicinity of the resonant frequency of the probe. A method for measuring temperature, pressure, etc. inside a living body, characterized by measuring temperature, pressure, etc. 2. The configuration of the extracorporeal device that detects AM distortion of the electromagnetic waves,
An output obtained by applying a voltage controlled oscillator circuit (VCO) output subjected to FM or PM with a low frequency signal to an antenna coil to which an AM detection circuit is added, and synchronously detecting the output of the AM detection circuit with the low frequency signal. The resonant point of the probe is automatically tracked by configuring a closed loop to control the frequency control voltage of the voltage controlled oscillation circuit. Measuring method.
JP59243098A 1984-11-16 1984-11-16 Measurement of temperature or pressure in living body Granted JPS61122845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59243098A JPS61122845A (en) 1984-11-16 1984-11-16 Measurement of temperature or pressure in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59243098A JPS61122845A (en) 1984-11-16 1984-11-16 Measurement of temperature or pressure in living body

Publications (2)

Publication Number Publication Date
JPS61122845A true JPS61122845A (en) 1986-06-10
JPH0587248B2 JPH0587248B2 (en) 1993-12-16

Family

ID=17098757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59243098A Granted JPS61122845A (en) 1984-11-16 1984-11-16 Measurement of temperature or pressure in living body

Country Status (1)

Country Link
JP (1) JPS61122845A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122336U (en) * 1989-03-17 1990-10-05
US7001329B2 (en) 2002-07-23 2006-02-21 Pentax Corporation Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7109933B2 (en) 2004-03-08 2006-09-19 Pentax Corporation Wearable jacket having communication function, and endoscope system employing wearable jacket
US7465271B2 (en) 2003-09-01 2008-12-16 Hoya Corporation Capsule endoscope
WO2011081102A1 (en) * 2009-12-28 2011-07-07 株式会社 フルヤ金属 Wireless measurement device and wireless temperature measurement system
JP2020513955A (en) * 2017-03-09 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Measurement of body properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648313B1 (en) * 2014-11-01 2016-08-16 삼성에스디아이 주식회사 Adhesive composition, adhesive film prepared by the same and display member comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122336U (en) * 1989-03-17 1990-10-05
US7001329B2 (en) 2002-07-23 2006-02-21 Pentax Corporation Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7465271B2 (en) 2003-09-01 2008-12-16 Hoya Corporation Capsule endoscope
US7109933B2 (en) 2004-03-08 2006-09-19 Pentax Corporation Wearable jacket having communication function, and endoscope system employing wearable jacket
WO2011081102A1 (en) * 2009-12-28 2011-07-07 株式会社 フルヤ金属 Wireless measurement device and wireless temperature measurement system
JP2011137737A (en) * 2009-12-28 2011-07-14 Fukuda Crystal Laboratory Wireless measurement device and wireless temperature measurement system
JP2020513955A (en) * 2017-03-09 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Measurement of body properties

Also Published As

Publication number Publication date
JPH0587248B2 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
US4160971A (en) Transponders
US5548217A (en) Microwave spectrometers
TWI559691B (en) Wireless sensor reader
JP2001505305A (en) Device for tracking resonance frequency
JPS61122845A (en) Measurement of temperature or pressure in living body
Yu et al. Highly linear phase-canceling self-injection-locked ultrasonic radar for non-contact monitoring of respiration and heartbeat
JP4908594B2 (en) Ferroelectric material polarization direction detection device and polarization direction detection method
JPS61120974A (en) Detection of resonance frequency
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JPS61181923A (en) Non-contact type measurement of temperature or the like
JPH0216426A (en) Non-contact temperature measuring device
JPS612839A (en) Measurement of temperature of living body
RU2126173C1 (en) Device with capacitance gauge
JPS576346A (en) Nmr lock circuit
Hong et al. Advanced non-contact near-field proximity vital sign sensor using phase locked loop
SU1539698A1 (en) Method of local measurement of saturation magnetization of ferrite film
JPS61188698A (en) Probe for measuring temperature and pressure
JPS635228A (en) Temperature or pressure sensor
JPH0527832B2 (en)
Holmer et al. Ultrasonic recording of the fundamental frequency of a voice during normal speech
JPS61181094A (en) Temperature measurement for heating body of electromagnetic heating
Parks Automatic Measurement of Ultrasonic Velocity Changes
JPS61181924A (en) Temperature/pressure sensor with active type oscillator and measurement therewith
JP2003083815A (en) Noncontact temperature measuring device and temperature sensor
JPS62159642A (en) Method and system for measuring temperature in living body by ultrasonic wave

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees