JPS635228A - Temperature or pressure sensor - Google Patents

Temperature or pressure sensor

Info

Publication number
JPS635228A
JPS635228A JP61149257A JP14925786A JPS635228A JP S635228 A JPS635228 A JP S635228A JP 61149257 A JP61149257 A JP 61149257A JP 14925786 A JP14925786 A JP 14925786A JP S635228 A JPS635228 A JP S635228A
Authority
JP
Japan
Prior art keywords
vibrator
sensor
antenna coil
ultrasonic transducer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61149257A
Other languages
Japanese (ja)
Inventor
Takeshi Oshima
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP61149257A priority Critical patent/JPS635228A/en
Publication of JPS635228A publication Critical patent/JPS635228A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sensor having circuit constitution having function defined by the self-resonance frequency and Q-value of a quartz vibrator and capable of enhancing a SN ratio, by constituting a closed circuit by connecting a piezoe lectric vibrator and an ultrasonic transducer in parallel to an antenna coil. CONSTITUTION:An ultrasonic transducer SW is connected to an antenna coil L1 and a quartz vibrator X in parallel to both of them. By this constitution, since electromagnetic wave energy received by the coil L1 is absorbed in the vicinity of the resonant point of the electromagnetic wave energy vibrator X by the vibrator X, the ultrasonic energy sent out from the transducer SW is reduced and becomes min at a series resonant point. That is, the operation mechanism of a measuring system using this sensor is substantially same to a conventional one and the relation between the max. and min of a detection level may be merely made reverse. The impedance matching between parts is easy to take and the resonant point of the vibrator X can be utilized as temp. or pressure information as it is and, since a Q-value is not lowered to a large extent, stable measurement can be performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度又は圧力センサ。殊に生体内の温度又は圧
力測定用のセ/すに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a temperature or pressure sensor. In particular, it relates to a chamber for measuring temperature or pressure inside a living body.

(従来技術)     ′ 近年生物学、医学上の研究或は特にガンの治療等を目的
として生体内各部の温度或は圧力を測定する為長期間生
体内に埋込んだ無電源セ/すと生体外の測定器との間を
有線にて接続することなしに測定する方法が提案されて
いる。
(Prior art) In recent years, unpowered cells have been implanted into living bodies for long periods of time to measure the temperature or pressure of various parts of the living body for the purpose of biological and medical research or especially for cancer treatment. A method has been proposed in which measurements can be made without a wired connection to an external measuring device.

上述の如き測温又は圧力測定方法としては。As a method of measuring temperature or pressure as described above.

アンテナ・コイルに水晶振動子と超音波トランスジュー
サーとを接続したセンサを生体内の所望の位置に外科的
に埋込み生体外から所要周波数の電磁エネルギを照射し
該エネルギを前記アンテナ・コイルを介して前記水晶振
動子に与え該振動子がこれに共感する際の電流によって
前記超音波トランスジューサーを制御することにより発
生する超音波を生体外から観測する方法がある(特願昭
60−021542参照)。
A sensor in which a crystal oscillator and an ultrasonic transducer are connected to an antenna coil is surgically implanted at a desired position within a living body, and electromagnetic energy of a desired frequency is irradiated from outside the living body, and the energy is transmitted through the antenna coil. There is a method of observing the ultrasonic waves generated from outside the living body by controlling the ultrasonic transducer using a current applied to the crystal oscillator and causing the oscillator to empathize with the current (see Japanese Patent Application No. 60-021542). .

この際使用する温度又は圧力センサ及び該センサから発
する超音波を生体外から検出するピックアップ装置とし
ては第2図(alに示すものが一般的である。
The temperature or pressure sensor used at this time and the pickup device for detecting the ultrasonic waves emitted from the sensor from outside the living body are generally those shown in FIG. 2 (al).

即ち、同図に於いてXは8MH2近傍に直列共振点をも
つ水晶振動子であってこれと閉ル−プをなす如くアンテ
ナコイルL1と超音波トランスジューサーSWを接続し
てセンサとし生体内の所要部に埋め込むと共に該センサ
に最寄の生体表面にアンテナ・コイルL2を位置<Lめ
これに8MHz近傍の電磁波を発生する可変周波数発振
器1と周波数計2とからなる送信部と超音波マイクロホ
ン3.高周波増幅器4及びレベルメータ6などからなる
受信部で測定系を構成する。
That is, in the figure, X is a crystal oscillator with a series resonance point near 8MH2, and an antenna coil L1 and an ultrasonic transducer SW are connected to this in a closed loop to be used as a sensor. Antenna coil L2 is embedded in the required part, and an antenna coil L2 is placed on the surface of the living body closest to the sensor.A transmitter section consisting of a variable frequency oscillator 1 and a frequency meter 2 that generate electromagnetic waves in the vicinity of 8 MHz, and an ultrasonic microphone 3 are installed. .. A measurement system is composed of a receiving section consisting of a high frequency amplifier 4, a level meter 6, and the like.

測定にあたっては可変周波数発掘器1の出力をこれに接
続したアンテナ・コイルL2を介して上述のセyすに照
射すると共に該センサが発振する前記超音波をマイクロ
ホン3によって受信しその電気信号を高周波アンプ4に
於いて所要レベルまで増幅したのちレベルメータ6によ
って監視しつつ前記可変周波数発掘器1の発掘周波数を
変化せしめ前記レベルメータの読みが最大となる点で上
述のセンサの水晶振動子の共振周波数を検出することが
できる(第2図(c)参照)。
In the measurement, the output of the variable frequency excavator 1 is irradiated to the above-mentioned area through the antenna coil L2 connected thereto, and the ultrasonic waves oscillated by the sensor are received by the microphone 3, and the electrical signals are converted into high frequency signals. After amplifying to a required level in the amplifier 4, the excavation frequency of the variable frequency excavator 1 is changed while being monitored by the level meter 6, and the resonance of the crystal oscillator of the sensor is detected at the point where the reading of the level meter becomes maximum. The frequency can be detected (see FIG. 2(c)).

従って、上述のセンサに組込んだ水晶振動子Xの共振周
波数と温度又は圧力との関係が既知であれば生体内の温
度又は圧力を正確に測定することができる。
Therefore, if the relationship between the resonance frequency of the crystal oscillator X incorporated in the sensor described above and the temperature or pressure is known, the temperature or pressure inside the living body can be accurately measured.

又、このような測定に用いる生体内埋込み用セッサの構
成は、従来第2図(blに示すようなものが一般的であ
った。
Furthermore, the configuration of a processor for implantation in a living body used for such measurements has conventionally been generally as shown in FIG. 2 (bl).

しかしながらこのような構成を有するセンサは水晶振動
子Xに対して超音波トランスジューサSW及びアンテナ
・コイルL1か1夕11に接続されているためにこの閉
回路を流れる電流の最大点は、該水晶振動子の持つ直列
共振周波数(fS )より低い方向にずれた周波数とな
る。斯くの如くセンサの共振周波数がその中に組み込ま
れた水晶振動子の自己共振周波数で定義し得ない以上周
波数校正等の測定を要し検査工数を複雑化しコストを上
昇させるという欠陥があった。また、該超音波トランス
ジューサーのイ/ゆ ビーダンス、特に直列抵抗分が高いと該閉回路のQ値が
大幅に低下しセ/すとしての機能が劣化するのみならず
生体内に埋込むセンサの如く小型のものが要求される場
合には超音波トランスジューサーを小型化する必要があ
るが斯くすることによりその1ンビーダンスが上昇しこ
の結果雑音の影響を受けやすくなるという欠陥があった
However, in a sensor having such a configuration, since the crystal oscillator X is connected to the ultrasonic transducer SW and the antenna coil L1 or 11, the maximum point of the current flowing through this closed circuit is The frequency is lower than the series resonance frequency (fS) of the child. As described above, since the resonant frequency of the sensor cannot be defined by the self-resonant frequency of the crystal oscillator incorporated therein, measurements such as frequency calibration are required, complicating the inspection process and increasing costs. In addition, if the I/V dance of the ultrasonic transducer, especially the series resistance component, is high, the Q value of the closed circuit will be significantly reduced, which will not only deteriorate the function as a sensor but also affect the ability of the sensor to be implanted in the living body. When such a compact device is required, it is necessary to downsize the ultrasonic transducer, but this has the disadvantage that its 1-beadance increases, making it more susceptible to noise.

(発明の目的) 本発明は上述した如き従来の超音波センサの欠陥を除去
するためになされたものであって。
(Object of the Invention) The present invention has been made in order to eliminate the defects of the conventional ultrasonic sensor as described above.

センサの機能がこれに組み込まれる水晶振動子の自己共
振周波数とQ値によって定義されかつS/Nを向上する
ことを可能とした回路構成を有する温度又は圧カセノサ
を提供することを目的とする。
It is an object of the present invention to provide a temperature or pressure case sensor whose sensor function is defined by the self-resonant frequency and Q value of a crystal oscillator incorporated therein, and which has a circuit configuration that makes it possible to improve S/N.

(発明の概要) 上述の目的を達成するため本発明に係るセンサは前記セ
ンサのアンテナ・コイルと並列に水晶振動子等の圧電振
動子と超音波トランスジューサーとを接続し閉回路を構
成する。
(Summary of the Invention) In order to achieve the above object, a sensor according to the present invention connects a piezoelectric vibrator such as a crystal vibrator and an ultrasonic transducer in parallel with the antenna coil of the sensor to form a closed circuit.

又、共振特性を制御すぺ〈アンテナ・コイルと超音波ト
ランスジューサーとのインビーダンス整合を行ない、こ
れら両者の合成インピーダンスと圧!振動子の直列共感
インピーダンスとの比を適切に選択するよう構成したも
のである。
In addition, we can control the resonance characteristics by performing impedance matching between the antenna coil and the ultrasonic transducer, and adjusting the combined impedance and pressure of both. The structure is such that the ratio to the series resonance impedance of the vibrator is appropriately selected.

(発明の実施例) 以下本発明を図示した実施例に基づいて詳細に説明する
。第1図(alは本発明の一実施例を示す回路図である
。同図においてL!はアンテナ・コイルであって共振周
波数が8MHz近傍の水晶振動子Xと並列にセラミック
振動子を用いた超音波トランスジューサーSWを接続す
る。
(Embodiments of the Invention) The present invention will be described in detail below based on illustrated embodiments. Figure 1 (al is a circuit diagram showing one embodiment of the present invention. In the figure, L! is an antenna coil, in which a ceramic resonator is used in parallel with a crystal resonator X whose resonance frequency is around 8 MHz. Connect the ultrasonic transducer SW.

このように構成したセンサの超音波出力の周波数特性は
従来のものとは逆になり第1図(blの如くとなる。即
ちアンテナ・コイルL1にテ受信した電磁波エネルギー
が水晶振動子Xの共振点近傍ではこの水晶振動子に吸収
されるため超音波トランスジューサーSWから送出する
超音波エネルギーは減少し、水晶振動子Xの直列共振点
で最小となる。この特性は水晶振動子Xの共振特性がそ
のままデイツプ現象として表われるからこのセンサを用
いた測定系の動作メカニズムは従来のものと実質的に同
様であり単に検出レベルの最大、最小の関係を逆にする
だけでよい。
The frequency characteristic of the ultrasonic output of the sensor configured in this way is opposite to that of the conventional one, as shown in Figure 1 (bl).In other words, the electromagnetic wave energy received by the antenna coil L1 resonates with the crystal oscillator Near this point, the ultrasonic energy sent out from the ultrasonic transducer SW decreases because it is absorbed by this crystal oscillator, and becomes the minimum at the series resonance point of the crystal oscillator X. This characteristic is the resonance characteristic of the crystal oscillator Since this directly appears as a dip phenomenon, the operating mechanism of a measurement system using this sensor is substantially the same as the conventional one, and it is only necessary to reverse the relationship between the maximum and minimum detection levels.

第3図(at 、’(b)および(clは本発明の他の
実施例を示す図であって、同図(a)はアンテナ・コイ
ルL1に並列にコンデ/すCを挿入して並列共振回路を
構成し水晶振動子Xの共振点近傍の周波数に同調をとる
ことによってアンテナ・コイルの内部インピーダンスと
超音波トランスジューサーSWとのインピーダンス整合
をとると共にこれらの合成インピーダンスと水晶振動子
のインピーダンスの比を適切に選ぶことによって前記デ
イツプ現象におけるデイツプを深く出来るようにしたも
のである。
FIG. 3 (at, '(b) and (cl) are diagrams showing other embodiments of the present invention, in which FIG. 3(a) is a diagram in which a condenser C is inserted in parallel to the antenna coil L1 and paralleled. By configuring a resonant circuit and tuning to the frequency near the resonance point of the crystal oscillator By appropriately selecting the ratio of , the dip in the dip phenomenon can be made deep.

父、$3図(blおよび、(C)は、超音波トランスジ
ューサーのインピーダンスが比較的低い場合に用いる回
路であってアンテナ・コイルL1を2次コイルL3付ま
たはタップ付としてインピーダンス整合を行なった実施
例である。
Father, $3 Figures (bl and (C)) are circuits used when the impedance of the ultrasonic transducer is relatively low, and impedance matching is performed by attaching the antenna coil L1 to the secondary coil L3 or with a tap. This is an example.

このような並列回路において、水晶振動子のQを低下さ
せずに用いるためには、アンテナ・コイルL1の並列抵
抗が出来るだけ高いものを用い更にセンサとしての感度
を上げるためにはアンテナ・コイ/L/L1と超音波ト
ランスジューサーSWとのインピーダンス整合をとるこ
とが重要である。
In such a parallel circuit, in order to use the crystal oscillator without reducing its Q, the antenna coil L1 should have a parallel resistance as high as possible, and in order to further increase the sensitivity of the sensor, the antenna coil L1 should have the highest possible parallel resistance. It is important to match the impedance between L/L1 and the ultrasonic transducer SW.

同、センサの具体的構成は、温度セッサの場合には第4
図に示す如く超音波トランスジューサーSWと水晶振動
子Xとの間にフェライト・コア7に巻いたコイルL1を
配置しその周囲をテフロン等の生体適合物質被膜9にて
被覆すればよく、又、圧力センサの場合には第5図(a
)に示す如く一般的な水晶振動子Xの両主面外周に金属
ダイアフラム10を固定しその収縮による共振周波数の
変化を利用するか或はベローズ11中に封止した双音叉
水晶振動子Xの圧縮又は引張りに基づく共振周波数変動
を利用すべくこれらを前記第4図の温度検出用水晶振動
子Xと置換すればよい。
Similarly, the specific configuration of the sensor is the fourth sensor in the case of a temperature sensor.
As shown in the figure, a coil L1 wound around a ferrite core 7 may be placed between the ultrasonic transducer SW and the crystal oscillator X, and its surroundings may be coated with a biocompatible material coating 9 such as Teflon. In the case of a pressure sensor, Fig. 5 (a
), a metal diaphragm 10 is fixed to the outer periphery of both main surfaces of a general crystal oscillator These may be replaced with the temperature detecting crystal oscillator X shown in FIG. 4 in order to utilize resonance frequency fluctuations based on compression or tension.

(発明の効果) 本発明は以上説明し友ように構成するものであるから9
部品間のインピーダンス整合がと9やすくかつ水晶振動
子の共振点をそのまま温度又は圧力の情報として利用で
きしかもQ値が大幅に低下しないため安定な測゛定を行
う上で効果的である。
(Effect of the invention) The present invention is constructed in accordance with the above explanation.9
Impedance matching between components is easy, the resonance point of the crystal oscillator can be directly used as temperature or pressure information, and the Q value does not drop significantly, making it effective for stable measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(blは夫々本発明の一実施例を示す
回路図及び周波数特性図、第2図1al乃至(clは夫
々生体内温度測定の一実施例を示す原理図。 従来のセンサ回路図及び周波数特性図、第3図(a) 
、 (bl及び(clは夫々本発明の他の実施例を示す
回路図、第4図は本発明に係る温度センサの具体的構成
の一実施例を示す断面図、第5図(al及び(blは夫
々圧力センサとして使用すべき水晶振動子の異った構成
を示す断面図である。 L1及ヒL 2・・・・・・・・・アンテナ・コイルL
3・・・・・・・・・2次コイル X・・・・・・・・・圧電振動子(水晶振動子)SW・
・・・・・・・・超音波トランスジューサー特許出願人
  東洋通信機株式会社 SW 第 4 図 篇 ぢ 図
Figures 1(a) and (bl) are circuit diagrams and frequency characteristic diagrams showing one embodiment of the present invention, respectively, and Figures 2 (1al to (cl) are principle diagrams showing one embodiment of in-vivo temperature measurement, respectively. Conventional Sensor circuit diagram and frequency characteristic diagram, Figure 3 (a)
, (bl and (cl are respectively circuit diagrams showing other embodiments of the present invention, FIG. 4 is a sectional view showing an embodiment of a specific configuration of the temperature sensor according to the present invention, and FIG. 5 is a circuit diagram showing another embodiment of the present invention. bl are cross-sectional views showing different configurations of crystal oscillators to be used as pressure sensors.L1 and L2...Antenna coil L
3... Secondary coil X... Piezoelectric resonator (crystal resonator) SW.
・・・・・・・・・Ultrasonic transducer patent applicant Toyo Tsushinki Co., Ltd. SW Part 4 Diagram ぢ

Claims (2)

【特許請求の範囲】[Claims] (1)共振周波数が温度又は圧力依存性をもった圧電振
動子にアンテナ・コイルと超音波トランスジューサーと
をそれぞれ並列に接続したことを特徴とする温度又は圧
力センサ。
(1) A temperature or pressure sensor characterized in that an antenna coil and an ultrasonic transducer are each connected in parallel to a piezoelectric vibrator whose resonance frequency is temperature or pressure dependent.
(2)前記アンテナ・コイルにタップ又は2次コイルを
設けて、アンテナ、コイルの内部インピーダンスと超音
波トランスジューサーの インピーダンスとを整合せしめることを特徴とする特許
請求の範囲(1)記載の温度又は圧力センサ。
(2) A tap or a secondary coil is provided in the antenna coil to match the internal impedance of the antenna and the coil with the impedance of the ultrasonic transducer. pressure sensor.
JP61149257A 1986-06-25 1986-06-25 Temperature or pressure sensor Pending JPS635228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149257A JPS635228A (en) 1986-06-25 1986-06-25 Temperature or pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149257A JPS635228A (en) 1986-06-25 1986-06-25 Temperature or pressure sensor

Publications (1)

Publication Number Publication Date
JPS635228A true JPS635228A (en) 1988-01-11

Family

ID=15471302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149257A Pending JPS635228A (en) 1986-06-25 1986-06-25 Temperature or pressure sensor

Country Status (1)

Country Link
JP (1) JPS635228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035004A1 (en) * 2005-09-26 2007-03-29 Epson Toyocom Corporation Tuning bi-fork piezoelectric oscillation element and pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534410A (en) * 1976-07-02 1978-01-17 Masakiyo Negishi Device for transmitting information wave using resonator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534410A (en) * 1976-07-02 1978-01-17 Masakiyo Negishi Device for transmitting information wave using resonator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035004A1 (en) * 2005-09-26 2007-03-29 Epson Toyocom Corporation Tuning bi-fork piezoelectric oscillation element and pressure sensor
US7677105B2 (en) 2005-09-26 2010-03-16 Epson Toyocom Corporation Double-ended tuning fork type piezoelectric resonator and pressure sensor

Similar Documents

Publication Publication Date Title
US7236092B1 (en) Passive sensor technology incorporating energy storage mechanism
JP6393022B2 (en) Wireless sensor reader
US8026729B2 (en) System and apparatus for in-vivo assessment of relative position of an implant
US6667725B1 (en) Radio frequency telemetry system for sensors and actuators
US5619997A (en) Passive sensor system using ultrasonic energy
EP2268218B1 (en) System and apparatus for in-vivo assessment of relative position of an implant
TWI504165B (en) Wireless sensor reader
WO2000038567A3 (en) Method and sensor for wireless measurement of physiological variables
US7017404B1 (en) Wireless system for measuring pressure and flow in tubes
JP2007256287A (en) Pressure sensor
JPS61181925A (en) Temperature sensor
Pichorim et al. A novel method to read remotely resonant passive sensors in biotelemetric systems
JPS635228A (en) Temperature or pressure sensor
JPH01119729A (en) Non-contact temperature//pressure detection method by ultrasonic wave
JP2605239B2 (en) Ultrasonic temperature / pressure measuring device
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
JPH0448176B2 (en)
KR20030003253A (en) Instrument for noncontact measurement of physical property
JP2018137815A (en) Wireless sensor reader
JPS61188698A (en) Probe for measuring temperature and pressure
JPS61230405A (en) Antenna coil for pickup
Janszen Electrostatic loudspeakers
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JPH06101384B2 (en) Method for measuring the temperature of the object to be heated in electromagnetic wave heating
JPS61181924A (en) Temperature/pressure sensor with active type oscillator and measurement therewith