JPS61120974A - Detection of resonance frequency - Google Patents

Detection of resonance frequency

Info

Publication number
JPS61120974A
JPS61120974A JP24309784A JP24309784A JPS61120974A JP S61120974 A JPS61120974 A JP S61120974A JP 24309784 A JP24309784 A JP 24309784A JP 24309784 A JP24309784 A JP 24309784A JP S61120974 A JPS61120974 A JP S61120974A
Authority
JP
Japan
Prior art keywords
frequency
circuit
probe
output
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24309784A
Other languages
Japanese (ja)
Other versions
JPH053911B2 (en
Inventor
Koichi Hirama
宏一 平間
Takeshi Oshima
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP24309784A priority Critical patent/JPS61120974A/en
Publication of JPS61120974A publication Critical patent/JPS61120974A/en
Publication of JPH053911B2 publication Critical patent/JPH053911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To enable highly accurate detection of resonance frequency, by applying to a circuit to be measured a carrier signal FM modulated by a required low frequency signal to demodulate the amplitude distortion incurred at the resonance frequency of the circuit being measured and near it. CONSTITUTION:An in-vivo probe 5 is made up of a crystal oscillating element X and an antenna coil L3. The output of a voltage control oscillator 7 as FM or PM modulated output of a low frequency oscillator 6 is applied to a coil L4 facing the probe 5 as in-vitro unit while an AM detection circuit 8 is added to the coil L4 to input the output to a synchronous detection circuit 10 using the output of the oscillator 6 through an amplifier 9 as synchronous signal to control the oscillation frequency of an oscillator 7 by the output thereof. The waveform demodulated is synchronously detected with the circuit 10 using a low frequency signal as reference, and shaped to obtain a square wave corresponding to an AM modulation distortion, the duty ratio of which is detected with a duty ratio detection circuit 11. Then, the resonance frequency is detected utilizing that the duty ratio will be 1:1 at the resonance point of the probe 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は周波数の変動に対応しである物理量る。[Detailed description of the invention] (Industrial application field) The present invention deals with a physical quantity that corresponds to frequency fluctuations.

(従来技術) 一般に、共振現象は自然界に広く存在するがこれは特に
電気回路に於いては極めて重要な現象であって種々様々
な回路或は装置に多用されている。
(Prior Art) Resonance phenomena generally exist widely in the natural world, but they are particularly important phenomena in electric circuits, and are frequently used in a variety of circuits and devices.

従って、これら電気回路或は回路素子等の共振周波数を
正確に測定することは不可欠の技術であるが一般に、共
振回路は周囲環境の影響を受は易く1周波数カウンター
等の測定器の入力端子全直接共振回路に接触せしめると
周波数が変動し正確な測定が不可能となることが多い。
Therefore, it is an essential technology to accurately measure the resonant frequency of these electric circuits or circuit elements, but in general, resonant circuits are easily affected by the surrounding environment, and all input terminals of measuring instruments such as frequency counters are If it comes into direct contact with a resonant circuit, the frequency will fluctuate and accurate measurement is often impossible.

従来、このような場合の共振周波数測定方法としては、
これら被測定回路等の近傍に非接触に配置、した周波数
可変発振器の発振エネルギーが前記被測定共振回路と同
一周波数に於いてこれに吸収される現象を用いたもの、
所謂ディップ・メータ法が一般的であった。
Conventionally, the resonant frequency measurement method in such cases is as follows:
A method using a phenomenon in which the oscillation energy of a variable frequency oscillator placed non-contact in the vicinity of the circuit under test, etc. is absorbed by the resonant circuit under test at the same frequency;
The so-called dip meter method was common.

このディップ・メータの原理を少しく説明すれば、第4
図に示すように電圧計(V、V)1?付加した周波数可
変発振器2にこれと並列共振回路全構成する如く接続し
たアンテナ・コイル3ft例えばインダクタンスLs及
びコンデンサC1とからなる被測定回路4に接近せしめ
前記発振器20周波数をflからf2まで変化すれば前
記コイ/L/3の両端に於ける周波数と前記電圧計の電
圧とは@5図に示す如く前記被測定回路の共振周波数f
oに於いて前記電圧計の値が最小となるよう変化する。
To explain the principle of this dip meter in a little more detail, the 4th dip meter
As shown in the figure, the voltmeter (V, V) 1? If an antenna coil 3ft connected to the added variable frequency oscillator 2 so as to form a complete parallel resonant circuit is brought close to the circuit under test 4 consisting of an inductance Ls and a capacitor C1, for example, and the frequency of the oscillator 20 is changed from fl to f2. The frequency at both ends of the coil/L/3 and the voltage of the voltmeter are the resonant frequency f of the circuit under test as shown in Figure @5.
The value of the voltmeter changes to a minimum value at o.

これは前述の通り。This is as mentioned above.

前記発掘器2のエネルギーがこれよりインビーダンスの
低い被測定共振回路に吸収されるために生ずるものであ
って測定者は電圧計の針の振れが最小となるよう前記発
振器2の周波数を調整することによってその点に於ける
周波数を検出することができる。
This occurs because the energy of the excavator 2 is absorbed by the resonant circuit to be measured whose impedance is lower than this, and the measurer adjusts the frequency of the oscillator 2 so that the deflection of the voltmeter needle is minimized. By doing so, the frequency at that point can be detected.

しかしながら、このような従来のレベルディップ法によ
る共振周波数測定方法はレベル最小値或はこれを電流変
換して電流の最大値を検出するものであるから正確な測
定が困難である。
However, such a conventional resonant frequency measuring method using the level dip method detects the minimum level value or converts this into a current to detect the maximum value of the current, making accurate measurement difficult.

即ち、上述のディツプ点に於ける電圧最小値は被測定共
振回路の抵抗分とりアクタンスの比所謂Q (qual
ity  factor) 、或は該回路と前記アンテ
ナコイ/I/3との相互インダクタンス等によって変化
するものであって都度具るものであるから一義的に特定
が困難なため、測定精度に欠けると云う欠陥があっ九。
That is, the minimum voltage value at the above-mentioned dip point is the ratio of the resistance component to the actance of the resonant circuit under test, so-called Q (qual
ity factor), or it changes depending on the mutual inductance between the circuit and the antenna coil/I/3, etc., and since it is implemented every time, it is difficult to identify it uniquely, so it is said that measurement accuracy is lacking. There are nine defects.

(発明の目的) 本発明は上述したような従来の共振周波数測定方法の欠
陥を解決する九めになされ九ものであって、測定条件と
無関係に一義的に共振点を検出することができしかも測
定精度が極めて高い共振周波数の検出方法を提供するこ
とを目的とする。
(Objective of the Invention) The present invention has been made to solve the deficiencies of the conventional resonance frequency measurement method as described above, and is capable of uniquely detecting a resonance point regardless of measurement conditions. The purpose of this invention is to provide a method for detecting resonance frequency with extremely high measurement accuracy.

(発明の構成) 上述の目的を達成する九めに本発明は以下の如き構成を
とる。
(Structure of the Invention) To achieve the above-mentioned object, the present invention has the following structure.

即ち、被測定回路に所要の低周波信号によって周波数変
調を施し九搬送波信号を印加せしめると共に、該搬送波
信号が前記被測定回路の共振周波数及びその近傍に於い
て受ける振幅歪を復調することによって前記共振周波数
を検出する如く構成する。
That is, by frequency-modulating the circuit under test with a required low frequency signal and applying a nine-carrier signal, and demodulating the amplitude distortion that the carrier signal receives at the resonant frequency of the circuit under test and its vicinity, It is configured to detect the resonance frequency.

(実施例) 以下本発明を図示した実施例に基づいて詳細に説明する
(Example) The present invention will be described in detail below based on an illustrated example.

その前に、上述したような非接触にて被測定回路等の共
振周波数を測定する場合の具体例をあげ、従来のディッ
プメータ法の欠点を少しく説明する。
Before that, we will give a specific example of measuring the resonant frequency of a circuit to be measured in a non-contact manner as described above, and briefly explain the shortcomings of the conventional dip meter method.

近年、生物学、医学上の研究特にガンの治療等を目的と
して生体内各部の温度を測定する為長期間生体内に埋込
んだ無電源プローブと生体外の測定器との間を有線にて
接続することなしに測温する方法が提案されている。
In recent years, in order to measure the temperature of various parts of a living body for the purpose of biological and medical research, especially cancer treatment, wired connections have been used to connect unpowered probes implanted in the living body for long periods and measuring instruments outside the living body. A method of measuring temperature without connection has been proposed.

上述の如き測温方法としてはアンテナ・コイルに水晶振
動子を接続したプローブを生体内の所望の位置に外科的
に埋込むか或はこれ全消化器内に流すと共に生体外から
所要周波数の電磁エネルギを放射し前記アンテナ・コイ
ル金倉シて前記水晶振動子に与えこれが共振する際のエ
ネルギ吸収を観測する方法、即ち上述のディップメータ
法を用い前記プローブの共振点を検出することによって
体内温度を測定するのが一般的である。
The above-mentioned temperature measurement method involves surgically implanting a probe with a crystal oscillator connected to an antenna coil at a desired location within the body, or passing it through the entire digestive tract and injecting electromagnetic waves at the desired frequency from outside the body. A method of emitting energy and applying it to the crystal resonator through the antenna coil and observing the energy absorption when it resonates, that is, by detecting the resonance point of the probe using the above-mentioned dip meter method, the internal temperature can be measured. It is common to measure

しかしながら、このように生体内に埋め込んだプローブ
と体外装置との結合は極めて疎であるうえ前述の如くデ
ィツプ点に於ける最小レベル量は測定条件によって変動
するから共振点の検出は非常に困mt要するものであっ
た。
However, the coupling between the probe implanted in the living body and the external device is extremely loose, and as mentioned above, the minimum level at the dip point varies depending on the measurement conditions, making it extremely difficult to detect the resonance point. It was necessary.

このような欠点を除去するため2本実施例では本発明の
共振周波数検出方法を応用して以下の如く構成した生体
内温度測定方法とする。
In order to eliminate such drawbacks, in this embodiment, the resonant frequency detection method of the present invention is applied to provide an in-vivo temperature measurement method configured as follows.

即ち、第1図は本発明に係かる生体内温度測定装置の一
実施例を示すブロック図である。
That is, FIG. 1 is a block diagram showing one embodiment of the in-vivo temperature measuring device according to the present invention.

同図に於いて5は水晶発振子Xとアンテナ・コイルL3
とで構成し之生体内プローブであって、生体外装置とし
て前記プローブと対向せしめたアンテナ・コイルL4に
、低周波発振器6の出力によりFM又はPM変調を施し
た電圧制御発振器(VCO)7の出力を印加すると共に
In the same figure, 5 is the crystal oscillator X and the antenna coil L3.
This in-vivo probe is composed of a voltage-controlled oscillator (VCO) 7 which performs FM or PM modulation using the output of a low-frequency oscillator 6 on an antenna coil L4 facing the probe as an in-vivo device. Along with applying the output.

前記アンテナ・コイルL4にAM検波回路8を付加しそ
の出力を増幅器9全介して前記低周波発掘器6の出力を
同期信号とする同期検波回路IOに人力せしめかつその
出力でもって前記VCo 7の発振周波数を制御する如
く構成したものである。
An AM detection circuit 8 is added to the antenna coil L4, and its output is passed through an amplifier 9 to a synchronous detection circuit IO which uses the output of the low frequency excavator 6 as a synchronous signal, and its output is used to control the VCo 7. The structure is such that the oscillation frequency is controlled.

このように構成した生体内温度測定装置は以下の如く動
作する。
The in-vivo temperature measuring device configured as described above operates as follows.

即ち、@2図は前記プローブの共振周波数fO近傍に於
いて照射電磁波が受けるAM変調歪の状態金子す波形図
である。
That is, Figure @2 is a waveform diagram showing the state of AM modulation distortion that the irradiated electromagnetic wave receives in the vicinity of the resonant frequency fO of the probe.

今、前記低周波信号を80Hz、周波数偏位を±2KH
z[磁波周波数を19MH−zから21MHzまで可変
とし前記グローブの共振周波数t−fO=20MHzと
すると、前記周波数f調を受けた電磁波はその中心周波
数から±2KH2Kわたって80 Hzの周期で撮動す
る。
Now, the low frequency signal is 80Hz, and the frequency deviation is ±2KH.
z [If the magnetic wave frequency is variable from 19 MHz to 21 MHz and the resonant frequency t-fO of the glove is 20 MHz, the electromagnetic wave that has received the frequency f harmonization is imaged at a cycle of 80 Hz over ±2KH2K from its center frequency. do.

従って、その中心周波数が前記グローブの共振特性曲線
上をその共振点fO1−含んでこれよりΔf低い点(イ
)efOと同一点(ロ)及びΔf高い点(ハ)の三つの
点に位置する場合のAM変調歪は夫々同図中矢印にて示
したような波形を呈する。
Therefore, the center frequency is located at three points on the resonance characteristic curve of the glove, including the resonance point fO1- and lower than it by Δf (a), the same point as efO (b), and a point higher than efO (c). The AM modulation distortion in each case exhibits a waveform as shown by the arrow in the figure.

即ち、前記電磁波の偏位周波数中にプローブの共振点f
oを包含する場合、該共振点を境にその偏位周波数の2
倍のAMi調歪金生ずる。
That is, during the deviation frequency of the electromagnetic wave, the resonance point f of the probe
o, the deviation frequency is 2
Double the amount of AMi-like distortion occurs.

この2倍歪はfoの上下に於いて1800位相が異なり
電磁波の中心周波数がfoと一致するとき前述の2倍歪
は直流的にはシフトしているがはy正弦波となる。
This double distortion has a phase difference of 1800 degrees above and below fo, and when the center frequency of the electromagnetic wave coincides with fo, the double distortion described above becomes a y sine wave, although it is shifted in terms of direct current.

これは前記グローブの共振回路に電磁エネルギーが吸収
される之めで、このときプローブに対向した外部装置の
コイルL2の両端には第3図(c) (dl (elに
示すようなAM変調をうけた波形が現れる。
This is because the electromagnetic energy is absorbed by the resonant circuit of the glove, and at this time, both ends of the coil L2 of the external device facing the probe receive AM modulation as shown in Figure 3(c) (dl (el). A waveform appears.

第3図は前記第1図に示し九ブロック図の各部の信号波
形を示し九ものであって(a)は低周波発振器6の波形
、(b)は該低周波信号によってFMi調金うけた電磁
波でコイ、A/L4に印加される信号波形、 (cl(
d)及びtelは夫々前記第2図に示しtグローブ共振
特性曲線上)(ロ)及び(ハ)に於ける前記コイルL4
両端に生ずる波形である。
FIG. 3 shows the signal waveforms of each part of the block diagram shown in FIG. The signal waveform applied to the carp and A/L4 with electromagnetic waves, (cl(
d) and tel are respectively shown in FIG.
This is a waveform that occurs at both ends.

更にこれら(cl (dl (elの波形をAM検波す
ると夫々同図(f)(gl(hlに示す如く、前記プロ
ーブにエネルギ吸収された結果生じた前述のAM変調成
分が抽出される。
Furthermore, when the waveforms of these (cl (dl) (el) are subjected to AM detection, the aforementioned AM modulation components generated as a result of energy absorption by the probe are extracted, as shown in FIG.

従ってこの変化を何等かの手段によって検出すれば、そ
のときの電磁波の中心周波数が前記プローブの共振特性
曲線上のどの点に位置するかが識別できる。
Therefore, by detecting this change by some means, it is possible to identify at which point on the resonance characteristic curve of the probe the center frequency of the electromagnetic wave at that time is located.

本実施例では、このようにして復調した波形を同期検波
回路6に於いて、前記低周波信号全基準として同期検波
したのち波形成形して第3図(illl(klに示す如
く夫々のAM変調歪に対応し九矩形波を得、該矩形波の
デユーティ比を検出する如く構成し、前記プローブの共
振点fOに於ける該デユーティ比が1:1となることを
利用してそのときの周波数を検出し、もって生体内の温
度全測定するものである。
In this embodiment, the waveform demodulated in this way is synchronously detected in the synchronous detection circuit 6 as the reference for all the low frequency signals, and then the waveform is shaped to obtain each AM modulation signal as shown in FIG. It is configured to obtain nine rectangular waves in response to distortion, detect the duty ratio of the rectangular waves, and use the fact that the duty ratio at the resonance point fO of the probe is 1:1 to determine the frequency at that time. This is used to measure the total temperature inside the living body.

更に、前記矩形波を積分したのち直流電圧に変換すれば
前述のデユーティ比に対応した直流電圧を得しかもこれ
は前記プローブの共振特性曲線上の各点に一対一に対応
した値となる。
Further, by integrating the rectangular wave and converting it into a DC voltage, a DC voltage corresponding to the duty ratio described above is obtained, and this value corresponds one-to-one to each point on the resonance characteristic curve of the probe.

即ちr f ’に於いて相対値が0.5VとなりfOよ
り低い方でO,SV以下にかつ高い方でも0.5V以上
となる。
That is, the relative value of r f ' is 0.5V, and the lower side than fO is below O, SV, and the higher side is 0.5V or more.

従って上述の直流電圧音用いて前記vCOの周波数制御
電圧を制御するよう構成すればこれら各ブロックは閉ル
ープを形成し前記電磁波の中心周波数をプローブの共振
点foに自動的に調贅することが可能となる。
Therefore, if the DC voltage sound mentioned above is used to control the frequency control voltage of the vCO, each of these blocks will form a closed loop, and the center frequency of the electromagnetic wave can be automatically adjusted to the resonance point fo of the probe. becomes.

つまり前述の直流電圧がO,SVになるように又は、こ
の直流電圧出力t O,5vt−基準電圧とじ之比較器
に入力しその差がOとなる如く前記閉ループを作動せし
めればサーボ制御ループ系を構成することができ、これ
を利用して前記プローブの共振点fOが温度に従って移
動する際れば、従来のフェーズロックループ(PLL)
を用いたものと比較して次のような特徴をもつ。
In other words, if the closed loop is operated so that the aforementioned DC voltage becomes O, SV, or this DC voltage output t O, 5vt - reference voltage is input to the comparator and the difference becomes O, the servo control loop If the resonant point fO of the probe moves according to the temperature using this system, a conventional phase-locked loop (PLL) can be used.
It has the following characteristics compared to the one using .

即ち、従来のPLLが閉ループ中で信号の位相を検出し
その差を直流信号に変換してサーボ系を構成するもので
あって、一般に位相情報を抽出するKは大きいレベルの
信号を要するのに対し2本発明はFM波に生ずるAM歪
を抽出するものであるから比較的低レベル信号であって
もこれが可能である。
In other words, a conventional PLL detects the phase of a signal in a closed loop and converts the difference into a DC signal to construct a servo system, and generally K to extract phase information requires a high level signal. On the other hand, since the present invention extracts AM distortion occurring in FM waves, this is possible even with relatively low level signals.

又2両者のループ感度及びロックレンジを比較すれば、
PLLに於いては周波数可変範囲全域例えば2MHzt
−フルスケールとしてその中の極めて狭い位相範囲例え
ば数KHzにロックィ/の安定性が系の安定性を大きく
左右するのに対し9本発明では上述の周波数偏位例えば
±2KHzがフルスケールであってその中の変調信号周
波数の2倍例えば160Hzt−抽出するか或は波形の
デユーティ比1:1を検出すれば足り前述のロックレン
ジとフルスケール比は小さくなり。
Also, if you compare the loop sensitivity and lock range of the two,
In PLL, the entire frequency variable range, for example 2MHzt
-While the stability of the lockie/lock within a very narrow phase range of full scale, e.g. several KHz, greatly influences the stability of the system, in the present invention, the above-mentioned frequency deviation, e.g. ±2 KHz, is the full scale. It is sufficient to extract twice the frequency of the modulated signal, for example 160 Hz, or to detect a waveform duty ratio of 1:1, and the lock range and full scale ratio described above become small.

従来のPLLに比して系の制御が極めて容易であること
が理解できよう。
It can be seen that the system is extremely easy to control compared to the conventional PLL.

伺上記実施例は本発明の一具体例であってこれに限定さ
れることはなく他に様々な実施方法があること明らかで
ある。例えば前記低周波信号は三角波形の如く左右対象
波であればよいし、又前記同期検波回路も同期音とった
位相検波回路としてもよい。
It is clear that the above-mentioned embodiment is a specific example of the present invention, and that the present invention is not limited thereto, and that there are various other implementation methods. For example, the low frequency signal may be a left-right symmetrical wave such as a triangular waveform, and the synchronous detection circuit may also be a phase detection circuit with synchronous sound.

更に9本発明は被測定回路の共振周波数の検出にとどま
らずその特性が極大極小値の停留点(ステージM)eポ
イント)をもって変化するとき該変化を周波数の変化に
置換せしめればどのようなもの9例えばイノビーダンス
の停留点或は電流、電圧の変化又はその他の物理変化の
めらゆる停留点検出に応用可能なること明らかであろう
Furthermore, the present invention is not limited to detecting the resonant frequency of a circuit under test, but also detects what happens when the characteristic changes at a maximum/minimum value stationary point (stage M) e point) by replacing the change with a frequency change. It will be obvious that the present invention can be applied to the detection of stopping points of innovations, for example, or any stopping points of changes in current, voltage, or other physical changes.

本発明の他の厄用例としては9例えば圧力によって共振
周波数が変化する素子或は回路を前記プローブとなし前
記実施例に示し九ブロック図と同様に構成し九装置を用
いてその共振周波数を検出すれば上述の説明と同一の方
法によって圧力の検出が可能であり、このよつにすれば
めて有効である。
As another example of the use of the present invention, for example, an element or a circuit whose resonance frequency changes depending on pressure is used as the probe, and the resonant frequency is detected using a device configured similarly to the block diagram shown in the above embodiment. Then, the pressure can be detected by the same method as described above, and this method is very effective.

又、上述の例では共振回路のディツプ点を検出する場合
を示したが2本発明はこれに限らず物理量の変化の極大
点を検出することも可能である。このときは前記外部回
路のアンテナコイルとAM検波回路とを直列共振せしめ
そのイノビーダンスを低くすれば被測定回路が呈する物
理量変化の極大点を検出することができる。
Further, although the above example shows the case of detecting the dip point of the resonant circuit, the present invention is not limited to this, and it is also possible to detect the maximum point of a change in a physical quantity. In this case, by making the antenna coil of the external circuit and the AM detection circuit resonate in series and lowering their innovation dance, it is possible to detect the maximum point of the physical quantity change exhibited by the circuit under test.

(発明の効果) 本発明は以上説明した如く構成し機能するものであるか
ら周波数変動に対応しである物理量が停留点をもって変
化する際の該停留点に於ける周波数を精密に検出する手
段に適し、更にこの検出の自動化をはかるうえで極めて
都合がよい。
(Effects of the Invention) Since the present invention is constructed and functions as explained above, it can be used as a means for accurately detecting the frequency at a stationary point when a physical quantity changes with a stationary point in response to frequency fluctuation. Furthermore, it is extremely convenient for automating this detection.

殊に、生体内の温度或は圧力全測定する際の体内埋込み
プローブから温度情報を抽出する場合の如く、物理変化
の情報が微弱な場合これを正確に検出するうえで極めて
大きな効果がある。
In particular, it is extremely effective in accurately detecting weak information on physical changes, such as when extracting temperature information from an implanted probe when measuring the total temperature or pressure inside a living body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図及
び第3図は前記第1図に示したブロック図の各部の動作
を説明するための波形図。 第4図及び第5図は共に従来の共振周波数測定方法を示
す原理図である。 l・・・・・・・・・電圧計、  2・・・−・・・・
・発振器。 3・・・・・・・・・アンテナコイル、  4・・・・
・・・・・被測定回路、  5・・・・・・・・・プロ
ーブ、  6・・・・川・・低周波発振器、  7・・
・・・・・・・電圧制御発振回路(vco)、   s
・・・・・・・・・AM検波回路。 9・・・・・−・・・増幅器、  10・・・−・・・
・・同期検波回路11・・・・・・・・・デユーティ比
検出回路。 特許出願人  東洋通信機株式会社 第 Iff 塔2c 葛3 図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are waveform diagrams for explaining the operation of each part of the block diagram shown in FIG. 1. 4 and 5 are both principle diagrams showing a conventional resonance frequency measuring method. l...Voltmeter, 2...-...
・Oscillator. 3...Antenna coil, 4...
...Circuit under test, 5...Probe, 6...River...Low frequency oscillator, 7...
・・・・・・Voltage controlled oscillation circuit (VCO), s
......AM detection circuit. 9...-...Amplifier, 10...-...
...Synchronous detection circuit 11...Duty ratio detection circuit. Patent applicant: Toyo Tsushinki Co., Ltd. Iff Tower 2c Kuzu 3 Figure

Claims (1)

【特許請求の範囲】[Claims] 周波数変化に対応して電圧、電流或はインピーダンス等
物理量の変化が停留点を有する素子或は回路等の該停留
点に於ける周波数を検出する際所要の信号によって周波
数変調を施した搬送波信号を前記素子或は回路に関与せ
しめつつ前記搬送波信号の中心周波数を変化したとき前
記停留点に於ける前記搬送波復調波形の特徴を抽出する
ことによって前記停留点の周波数を検出するようにした
ことを特徴とする共振周波数の検出方法。
When detecting the frequency at a stopping point of an element or circuit, etc., where a change in physical quantity such as voltage, current or impedance has a stopping point in response to a change in frequency, a carrier wave signal that has been frequency-modulated by the required signal is used. When the center frequency of the carrier wave signal is changed while involving the element or circuit, the frequency at the stationary point is detected by extracting the characteristics of the carrier demodulated waveform at the stationary point. Detection method of resonant frequency.
JP24309784A 1984-11-16 1984-11-16 Detection of resonance frequency Granted JPS61120974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24309784A JPS61120974A (en) 1984-11-16 1984-11-16 Detection of resonance frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24309784A JPS61120974A (en) 1984-11-16 1984-11-16 Detection of resonance frequency

Publications (2)

Publication Number Publication Date
JPS61120974A true JPS61120974A (en) 1986-06-09
JPH053911B2 JPH053911B2 (en) 1993-01-18

Family

ID=17098742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24309784A Granted JPS61120974A (en) 1984-11-16 1984-11-16 Detection of resonance frequency

Country Status (1)

Country Link
JP (1) JPS61120974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242234A (en) * 1994-03-07 1995-09-19 Tanikei Seisakusho:Kk Easily openable container lid
WO2011081102A1 (en) * 2009-12-28 2011-07-07 株式会社 フルヤ金属 Wireless measurement device and wireless temperature measurement system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017872A (en) * 1973-06-15 1975-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017872A (en) * 1973-06-15 1975-02-25

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242234A (en) * 1994-03-07 1995-09-19 Tanikei Seisakusho:Kk Easily openable container lid
WO2011081102A1 (en) * 2009-12-28 2011-07-07 株式会社 フルヤ金属 Wireless measurement device and wireless temperature measurement system
JP2011137737A (en) * 2009-12-28 2011-07-14 Fukuda Crystal Laboratory Wireless measurement device and wireless temperature measurement system

Also Published As

Publication number Publication date
JPH053911B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US4160971A (en) Transponders
EP1552250B1 (en) Sensing apparatus and method
US7298137B2 (en) Position sensing apparatus and method
JP4177460B2 (en) Resonance frequency tracking device
CN101706526A (en) Measuring method and device of pulse width detection type magnetic modulation direct current
Roy et al. Low-cost portable readout system design for inductively coupled resonant sensors
JPS61120974A (en) Detection of resonance frequency
JPS61122845A (en) Measurement of temperature or pressure in living body
Akay et al. A new weak field double resonance NMR spectrometer
JP2007078696A (en) Resonator, and magnetic resonance measuring apparatus
CA1061865A (en) Nuclear resonance-absorption thermometer
RU2680165C1 (en) Device for measuring weak magnetic fields based on effect of giant magnetic impedance
Ahmad Power system frequency deviation measurement using an electronic bridge
RU2126173C1 (en) Device with capacitance gauge
JPS612839A (en) Measurement of temperature of living body
JP2001083223A (en) Magnetometer
JP3892977B2 (en) Magnetic resonance measuring apparatus and measuring method
SU1001241A1 (en) Method of measuring critical magnetic fields in superconductors
SU1264110A1 (en) Device for determining the detuning of resonance transducer circuit
CN115421083A (en) Magnetic field testing device and method based on high-frequency magnetic sensor
JPH0219712A (en) Displacement measuring instrument
SU432377A1 (en) DEVICE FOR DETERMINING THE CONCENTRATION OF PARAMAGNETIC PARTICLES
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
van der Pol et al. On second order effects in a galvanic cell: Part I. Polarization by a sine wave modulated high frequency current
SU1149185A1 (en) Reactivity measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees