JP2001083223A - Magnetometer - Google Patents

Magnetometer

Info

Publication number
JP2001083223A
JP2001083223A JP29573199A JP29573199A JP2001083223A JP 2001083223 A JP2001083223 A JP 2001083223A JP 29573199 A JP29573199 A JP 29573199A JP 29573199 A JP29573199 A JP 29573199A JP 2001083223 A JP2001083223 A JP 2001083223A
Authority
JP
Japan
Prior art keywords
circuit
magnetometer
phase difference
magnetic field
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29573199A
Other languages
Japanese (ja)
Inventor
Hironori Matsuba
博則 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGBANG KK
Original Assignee
MAGBANG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGBANG KK filed Critical MAGBANG KK
Priority to JP29573199A priority Critical patent/JP2001083223A/en
Publication of JP2001083223A publication Critical patent/JP2001083223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high sensitivity magnetometer through a simple arrangement by detecting the phase difference between the oscillation waveform of an oscillator for exciting a resonance circuit and an waveform resonant to the resonance circuit. SOLUTION: The magnetometer has a resonance circuit 1 comprising a coil wound around a ferromagnetic, and a capacitor connected in series therewith. An AC high frequency power supply 3 (oscillator) having a frequency close to a resonance frequency for exciting the resonance circuit 1, a phase difference detection circuit 4 and a bias current source 2 for applying a bias field to the ferromagnetic are also provided. The AC high frequency power supply 3 excites the resonance circuit 1 and the phase difference detection circuit 4 detects the phase difference between the oscillation voltage waveform and the AC current waveform of the high frequency power supply 3 thus detecting variation of external field sensitively as the variation of inductance of the coil. Noise due to amplitude variation of the high frequency power supply 3 does not exist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は空間に存在する磁
界、または線に流れる電流を測定する磁力計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetometer for measuring a magnetic field existing in a space or a current flowing through a wire.

【0002】[0002]

【従来の技術】従来より磁界を検出する磁気センサ回路
として、フラックスゲート磁力計が知られている。この
磁力計では、これに強磁性体に巻回されたコイルに、直
流成分を有しない強磁性体の透磁率が非線形になる領域
の大きな振幅の交流周波数電流を流して励振し、強磁性
体の非線形性により、外部磁界とこの周波数との干渉に
より生ずる2倍の周波数成分の大きさを測定する。
2. Description of the Related Art A fluxgate magnetometer has been known as a magnetic sensor circuit for detecting a magnetic field. In this magnetometer, a large-amplitude AC frequency current in a region where the magnetic permeability of a ferromagnetic material having no DC component becomes non-linear flows through a coil wound around the ferromagnetic material, thereby exciting the ferromagnetic material. , The magnitude of a double frequency component caused by the interference between the external magnetic field and this frequency is measured.

【0003】もう一つの方式として、比較的小さな振幅
の交流周波数電流と、これに重畳した直流電流を強磁性
体に巻回されたコイルに流すことにより、動作点を磁性
体の非線形領域に置き、コイルに誘起する交流電圧を測
定する方式がある。この方式は外部磁界により強磁性体
の透磁率の変化をコイルのインダクタンスの変化として
検出する事を基本としている。
Another method is to place an operating point in a non-linear region of a magnetic material by flowing an AC frequency current having a relatively small amplitude and a DC current superimposed on the AC frequency current through a coil wound around a ferromagnetic material. There is a method of measuring an AC voltage induced in a coil. This method is based on detecting a change in the magnetic permeability of a ferromagnetic material by an external magnetic field as a change in the inductance of a coil.

【0004】フラックスゲート磁力計では励振交流周波
数電流の振幅は、強磁性体が飽和に近くなる程度に大き
い必要があるため、その損失は大きくこのため雑音が大
きくなる。また、この交流周波数は30kHz程度より
高くすると非線形の程度が減少するため感度が低くな
る。また、強磁性体の損失による発熱などの問題があ
る。このため測定可能な磁界周波数は通常1kHz程度
に限定され、かつ測定感度も雑音のため高くできなかっ
た。
In a fluxgate magnetometer, the amplitude of the exciting AC frequency current needs to be large enough to bring the ferromagnetic material close to saturation, so that the loss is large and the noise becomes large. If the AC frequency is higher than about 30 kHz, the degree of non-linearity is reduced, and the sensitivity is lowered. There is also a problem such as heat generation due to loss of the ferromagnetic material. Therefore, the measurable magnetic field frequency is usually limited to about 1 kHz, and the measurement sensitivity cannot be increased due to noise.

【0005】コイルのインダクタンスの変化として検出
する方式では、交流周波数電流の振幅が変化すると、電
圧もこれに応じて変化するため、小さな外部磁界を測定
しようとすると、非常に安定な振幅を持つ交流周波数電
流を必要とする。高い周波数で安定な振幅を持つ交流電
源の実現は技術的に非常に難しく、かつ交流電圧を制度
良く検出するのも技術的困難さがあり、このため測定感
度は高くすることは困難であった。また、回路も複雑と
なる。
In the method of detecting as a change in the inductance of the coil, when the amplitude of the AC frequency current changes, the voltage also changes in accordance with the change. Requires frequency current. It is technically very difficult to realize an AC power supply with high frequency and stable amplitude, and it is also technically difficult to detect an AC voltage with high accuracy, which makes it difficult to increase the measurement sensitivity. . Also, the circuit becomes complicated.

【0006】[0006]

【発明が解決しようとする課題】 本発明は上記問題点
に着目してなされたものであって、簡単な構成でありな
がら高感度の磁力計を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a highly sensitive magnetometer with a simple configuration.

【0007】[0007]

【課題を解決するための手段】この発明の磁力計は、強
磁性体に巻回されたコイルと、このコイルに並列または
直列につながれたコンデンサで構成される共振回路と、
共振回路を励振するための共振周波数に近い周波数の発
振器、発振器の発振波形と共振回路に共振する波形との
位相差を検出する回路、強磁性体にバイアス磁界を与え
る装置とを備えている。
According to the present invention, there is provided a magnetometer comprising: a coil wound around a ferromagnetic material; a resonance circuit comprising a capacitor connected in parallel or series to the coil;
An oscillator having a frequency close to the resonance frequency for exciting the resonance circuit, a circuit for detecting a phase difference between an oscillation waveform of the oscillator and a waveform resonating with the resonance circuit, and a device for applying a bias magnetic field to the ferromagnetic material are provided.

【0008】[0008]

【作用】この発明においては、例えば、図1において共
振回路1を構成するコイルの持つインダクタンスを
、コンデンサの静電容量をCとしたとき決まる共振
周波数
In the present invention, for example, the resonance frequency determined when the inductance of the coil constituting the resonance circuit 1 is L 0 and the capacitance of the capacitor is C in FIG.

【数1】 を有する高周波交流電流源3により共振回路1を励振す
ると、共振電圧と高周波交流電流源3との位相差δはこ
の共振回路のQ値をQとしたとき
(Equation 1) When the resonance circuit 1 is excited by the high-frequency AC current source 3 having the following equation, the phase difference δ between the resonance voltage and the high-frequency AC current source 3 is obtained when the Q value of the resonance circuit is Q.

【数2】 となる。ここでΔLはコイルのインダクタンスのL
らのずれの大きさである。Qは共振回路の損失を小さく
すれば数十以上の値を持たせることが容易だから、位相
差を検出することにより、外部磁界の変化をコイルのイ
ンダクタンスの変化として鋭敏に検出する事ができる。
(Equation 2) Becomes Where ΔL is the magnitude of the deviation from the L 0 of the inductance of the coil. Since Q can easily have a value of several tens or more if the loss of the resonance circuit is reduced, a change in the external magnetic field can be detected sharply as a change in the inductance of the coil by detecting the phase difference.

【0009】また、高周波交流電流源3の振幅によって
位相差は変化しないから、この振幅変動による雑音は存
在しない。さらに外部磁界によらない位相差の変動要因
は、コンデンサの容量変化、周波数の変動であるから、
いずれの変動も小さくすることは、水晶振動子の利用な
ど技術的に容易で、かつ安価であるため低コストで高感
度の磁束計が可能となる。
Further, since the phase difference does not change with the amplitude of the high-frequency AC current source 3, there is no noise due to the amplitude fluctuation. Furthermore, the factors of the phase difference variation not depending on the external magnetic field are the change in the capacitance of the capacitor and the change in the frequency.
It is technically easy to reduce any fluctuations, such as the use of a quartz oscillator, and it is inexpensive, so that a low-cost, high-sensitivity magnetometer can be realized.

【00010】以下に実施例を示し、さらに詳しくこの
発明について説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【実施例】(実施例1)図2で強磁性体として25mm
×1mmで厚さ0.025mmのコバルト系アモルファ
ス磁性体箔の周囲に0.1mm径エナメル線を200回
巻回しコイルとした。
(Embodiment 1) FIG.
A 0.1 mm diameter enameled wire was wound 200 times around a cobalt-based amorphous magnetic foil having a thickness of × 1 mm and a thickness of 0.025 mm to form a coil.

【00011】コンデンサCrを200pFとし、コイ
ルに15mAの直流バイアス電流を流したとき、コイル
とコンデンサで構成される共振周波数は500kHzで
あった。
When the capacitor Cr was set to 200 pF and a DC bias current of 15 mA was applied to the coil, the resonance frequency formed by the coil and the capacitor was 500 kHz.

【00012】矩形波発振器の発振周波数を500kH
zとし、オペアンプQ2とコンデンサCi、抵抗Riで
構成される積分回路より矩形波を三角波に変換し、これ
をQ1とRbで構成される直流バイアスを有する高周波
交流電流源に与えて共振回路1を励振し、かつバイアス
磁界を強磁性体に与えた。この共振電圧をコンデンサC
c、抵抗RpおよびインバータQ3による増幅、矩形波
変換回路にて矩形波に変換した。この出力と矩形波発振
器の出力をエクスクルーシブオアロジック回路Q4に入
力し、この出力を抵抗Rf、コンデンサCfで積分する
ことにより位相差検出回路4を構成し、これを出力とし
た。
The oscillation frequency of the rectangular wave oscillator is 500 kHz.
z, a rectangular wave is converted into a triangular wave by an integrating circuit composed of an operational amplifier Q2, a capacitor Ci, and a resistor Ri, and this is given to a high-frequency AC current source having a DC bias composed of Q1 and Rb. The ferromagnetic material was excited and a bias magnetic field was applied. This resonance voltage is applied to the capacitor C
c, amplification by the resistor Rp and the inverter Q3, and conversion into a rectangular wave by a rectangular wave conversion circuit. This output and the output of the square wave oscillator are input to an exclusive OR logic circuit Q4, and this output is integrated by a resistor Rf and a capacitor Cf to form a phase difference detection circuit 4, which is used as an output.

【00013】強磁性体に外部磁界を与え出力の変動を
調べたところ、外部磁界変化1AT/mに対して1Vの
変化が得られた。この時の内部雑音は10μVであっ
た。従って10μAT/mの磁界感度が得られた。
When an external magnetic field was applied to the ferromagnetic material to examine the fluctuation of the output, a change of 1 V was obtained for the external magnetic field change of 1 AT / m. The internal noise at this time was 10 μV. Therefore, a magnetic field sensitivity of 10 μAT / m was obtained.

【00014】なお、共振回路のコイルとは別のコイル
を強磁性体に巻回し、これに電流を流してバイアス磁界
を与えて動作を調べたところ上記と同じ磁界感度10μ
AT/mが得られた。
A coil different from the coil of the resonance circuit was wound around a ferromagnetic material, and a current was applied to the coil to apply a bias magnetic field.
AT / m was obtained.

【00015】また、永久磁石を磁性体近傍に配置する
ことによりバイアス磁界を与えたところ、上記と同じ磁
界感度10μAT/mが得られた。
When a bias magnetic field was applied by disposing a permanent magnet near the magnetic material, the same magnetic field sensitivity of 10 μAT / m as described above was obtained.

【00016】(実施例2)図3に示すように、実施例
1と同一の共振回路1、矩形波発振器、位相差検出回路
4を用い、位相差検出回路4の出力をオペアンプQ5、
抵抗Rf、抵抗Raで構成される増幅器で増幅した後、
抵抗Rdcによって、高周波交流電流源の直流バイアス
に加えあわせ、フィードバック回路を構成した。
(Embodiment 2) As shown in FIG. 3, the same resonance circuit 1, rectangular wave oscillator, and phase difference detection circuit 4 as in Embodiment 1 are used, and the output of the phase difference detection circuit 4 is output by an operational amplifier Q5.
After amplification by an amplifier composed of a resistor Rf and a resistor Ra,
A feedback circuit is configured by adding the DC bias of the high-frequency AC current source by the resistor Rdc.

【00017】これにより、フィードバック回路の作用
により、外部磁界に応じてバイアス磁界が、矩形波発振
器の出力波形と共振電圧波形とがほぼ一定の位相差を有
するように制御された。
Thus, by the action of the feedback circuit, the bias magnetic field is controlled in accordance with the external magnetic field so that the output waveform of the rectangular wave oscillator and the resonance voltage waveform have a substantially constant phase difference.

【00018】この場合、バイアス磁界と外部磁界と
は、互いにその変化を打ち消すように変化するので、バ
イアス磁界を測定することにより外部磁界を知ることが
出来た。また、この方式では外部磁界の大きな変化に対
しても、それに応じてバイアス磁界を変えることにより
一定の位相差を保つことができた。このことから、より
広い範囲の磁界測定が可能となることが分かった。
In this case, since the bias magnetic field and the external magnetic field change so as to cancel each other, the external magnetic field could be known by measuring the bias magnetic field. Also, in this method, a constant phase difference could be maintained by changing the bias magnetic field in response to a large change in the external magnetic field. From this, it was found that a wider range of magnetic field measurement was possible.

【00019】なお、共振回路のコイルとは別のコイル
を強磁性体に巻回し、これに位相差検出回路4の出力を
増幅して得られた電流を流してバイアス磁界を与えて
も、上記と同じ結果が得られた。
Note that, even if a coil different from the coil of the resonance circuit is wound around a ferromagnetic material and a current obtained by amplifying the output of the phase difference detection circuit 4 is applied to the coil to apply a bias magnetic field, The same result as was obtained.

【00020】(実施例3)図4に示すように、実施例
1と同一の共振回路1、位相差検出回路4を備えている
が、位相差検出回路4の出力が電圧制御矩形波発振器V
COに与えられ、この出力に応じて周波数が変化され、
矩形波発振器VCOの出力波形と共振電圧波形とがほぼ
一定の位相差を有するように制御された。
(Embodiment 3) As shown in FIG. 4, the same resonance circuit 1 and phase difference detection circuit 4 as in Embodiment 1 are provided, but the output of the phase difference detection circuit 4 is a voltage-controlled rectangular wave oscillator V
CO, the frequency is changed according to this output,
The output waveform of the rectangular wave oscillator VCO and the resonance voltage waveform were controlled so as to have a substantially constant phase difference.

【00021】外部磁界は電圧制御矩形波発振器VCO
の出力周波数によって知ることが出来た。
[0002] The external magnetic field is a voltage controlled rectangular wave oscillator VCO.
Output frequency.

【00022】(実施例4)図5に示すように、実施例
2の強磁性体をループ状とした。これによりこのループ
を貫通する電流線5の電流を測定できた。
(Embodiment 4) As shown in FIG. 5, the ferromagnetic material of Embodiment 2 was formed into a loop shape. Thereby, the current of the current line 5 passing through this loop could be measured.

【00023】(実施例5)実施例4と同一の構成にお
いて、図6に示すように強磁性体ループと、これに巻回
したコイルの外側に厚さ0.1mmの金属箔でできた導
電性遮蔽体を設けた。これにより電流線に共振回路から
の高周波電圧が誘起されず、電流線につながれた機器に
対する高周波電圧による影響をなくすることができた。
(Embodiment 5) In the same configuration as that of Embodiment 4, as shown in FIG. 6, a ferromagnetic loop and a conductive film made of a metal foil having a thickness of 0.1 mm outside a coil wound therearound. A sex shield was provided. As a result, the high frequency voltage from the resonance circuit was not induced in the current line, and the influence of the high frequency voltage on the equipment connected to the current line could be eliminated.

【00024】(実施例6)図7に示すように、外部磁
界を測定する直線状強磁性体に巻回したコイルの外側
に、厚さ0.1mmの金属箔でできた導電性遮蔽体を設
けた。これにより共振回路に結合された高周波電流によ
る磁界が外部に漏れないようにし、これに近接して置か
れた金属物体があっても、これに対する誘起電流のため
に磁界測定が影響されなくなる作用を与えることができ
た。
(Embodiment 6) As shown in FIG. 7, a conductive shield made of a metal foil having a thickness of 0.1 mm is provided outside a coil wound around a linear ferromagnetic material for measuring an external magnetic field. Provided. This prevents the magnetic field due to the high-frequency current coupled to the resonance circuit from leaking to the outside, so that even if there is a metal object placed close to this, the magnetic field measurement will not be affected by the induced current to this. I could give it.

【00025】[00025]

【発明の効果】以上詳しく説明した通り、この発明によ
り安定な振幅を有する高周波発振器を必要としない高感
度の磁束計が簡単な構成によって提供される。さらに、
高周波での励振が可能であるため、広帯域の磁束計が提
供される。
As described above in detail, according to the present invention, a highly sensitive magnetometer which does not require a high-frequency oscillator having a stable amplitude is provided by a simple structure. further,
The ability to excite at high frequencies provides a wide band magnetometer.

【00026】[00026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の基本構成を説明するためのブロック
図である。
FIG. 1 is a block diagram for explaining a basic configuration of the present invention.

【図2】この発明の実施例1の磁束計の構成を説明する
ための回路図である。
FIG. 2 is a circuit diagram for explaining a configuration of a magnetometer according to Embodiment 1 of the present invention.

【図3】この発明の実施例2の磁束計の構成を説明する
ための回路図である。
FIG. 3 is a circuit diagram illustrating a configuration of a magnetometer according to a second embodiment of the present invention.

【図4】この発明の実施例3の磁束計の構成を説明する
ための回路図である。
FIG. 4 is a circuit diagram illustrating a configuration of a magnetometer according to a third embodiment of the present invention.

【図5】この発明の実施例4の電流を測定するための磁
束計の構成を説明するための回路図である。
FIG. 5 is a circuit diagram illustrating a configuration of a magnetometer for measuring a current according to a fourth embodiment of the present invention.

【図6】この発明の実施例5のコイルの外側の遮蔽体の
構成を説明するための図である。
FIG. 6 is a diagram for explaining a configuration of a shield outside a coil according to a fifth embodiment of the present invention.

【図7】この発明の実施例6のコイルの外側の遮蔽体の
構成を説明するための図である。
FIG. 7 is a diagram for explaining a configuration of a shield outside a coil according to a sixth embodiment of the present invention.

【符号の説明】 1 共振回路 2 バイアス電流源 3 高周波交流電流源 4 位相差検出回路[Description of Signs] 1 Resonant circuit 2 Bias current source 3 High frequency AC current source 4 Phase difference detection circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体に巻回されたコイルと、前記コ
イルに並列または直列につながれたコンデンサで構成さ
れる共振回路と、前記共振回路に共振を起こすことので
きる周波数を出力する前記共振回路を励振する発振器
と、前記発振器の発振波形と前記共振回路に共振する波
形との位相差を検出する回路と、前記強磁性体にバイア
ス磁界を与える装置と、を備えたことを特徴とする磁力
計。
1. A resonance circuit comprising a coil wound around a ferromagnetic material, a capacitor connected in parallel or series to the coil, and the resonance outputting a frequency capable of causing resonance in the resonance circuit. An oscillator for exciting a circuit; a circuit for detecting a phase difference between an oscillation waveform of the oscillator and a waveform resonating with the resonance circuit; and a device for applying a bias magnetic field to the ferromagnetic material. Magnetometer.
【請求項2】 請求項1の強磁性体にバイアス磁界を与
える装置が、外部入力によってバイアス磁界を変えられ
る装置であり、前記装置の外部入力が位相差を検出する
回路の出力により与えられている磁力計。
2. A device for applying a bias magnetic field to a ferromagnetic material according to claim 1, wherein the bias magnetic field can be changed by an external input, and the external input of the device is provided by an output of a circuit for detecting a phase difference. Magnetometer.
【請求項3】 請求項1の発振器が、外部入力によって
周波数を変える発振器であり、前記発振器の外部入力が
位相差を検出する回路の出力により与えられている磁力
計。
3. The magnetometer according to claim 1, wherein the oscillator changes the frequency by an external input, and the external input of the oscillator is provided by an output of a circuit for detecting a phase difference.
【請求項4】 請求項1のバイアス磁界を与える装置
が、永久磁石で少なくとも一部が構成されている装置で
ある磁力計。
4. A magnetometer according to claim 1, wherein the device for applying a bias magnetic field is a device at least partially constituted by a permanent magnet.
【請求項5】 請求項1の強磁性体が、ループ形状であ
り、このループを貫通する電流線の作る磁力を検出する
磁力計。
5. A magnetometer for detecting a magnetic force generated by a current line passing through the loop, wherein the ferromagnetic material according to claim 1 has a loop shape.
【請求項6】 請求項1の強磁性体に巻回されたコイル
の外周を導電性物質で覆ったことを特徴とする磁力計。
6. A magnetometer according to claim 1, wherein the outer periphery of the coil wound around the ferromagnetic material is covered with a conductive material.
JP29573199A 1999-09-09 1999-09-09 Magnetometer Pending JP2001083223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29573199A JP2001083223A (en) 1999-09-09 1999-09-09 Magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29573199A JP2001083223A (en) 1999-09-09 1999-09-09 Magnetometer

Publications (1)

Publication Number Publication Date
JP2001083223A true JP2001083223A (en) 2001-03-30

Family

ID=17824451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29573199A Pending JP2001083223A (en) 1999-09-09 1999-09-09 Magnetometer

Country Status (1)

Country Link
JP (1) JP2001083223A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014370B1 (en) 2008-12-22 2011-02-15 한국지질자원연구원 Proton precession magnetometer sensor measurable in all direction
JP2012233718A (en) * 2011-04-28 2012-11-29 Fuji Electric Fa Components & Systems Co Ltd Current detection device
CN111610473A (en) * 2020-05-29 2020-09-01 江苏多维科技有限公司 Magneto-resistor relaxation oscillator type magnetometer
JP2020197479A (en) * 2019-06-04 2020-12-10 国立研究開発法人物質・材料研究機構 Compact ultrasensitive magnetic impedance sensor and nondestructive inspection device using the same
KR20240001783A (en) * 2022-06-27 2024-01-04 (주)나우시스템즈 Magnetic-field detecting apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014370B1 (en) 2008-12-22 2011-02-15 한국지질자원연구원 Proton precession magnetometer sensor measurable in all direction
JP2012233718A (en) * 2011-04-28 2012-11-29 Fuji Electric Fa Components & Systems Co Ltd Current detection device
JP2020197479A (en) * 2019-06-04 2020-12-10 国立研究開発法人物質・材料研究機構 Compact ultrasensitive magnetic impedance sensor and nondestructive inspection device using the same
CN111610473A (en) * 2020-05-29 2020-09-01 江苏多维科技有限公司 Magneto-resistor relaxation oscillator type magnetometer
WO2021239031A1 (en) * 2020-05-29 2021-12-02 江苏多维科技有限公司 Magnetoresistance relaxation oscillator type magnetometer
CN111610473B (en) * 2020-05-29 2022-11-18 江苏多维科技有限公司 Magneto-resistor relaxation oscillator type magnetometer
KR20240001783A (en) * 2022-06-27 2024-01-04 (주)나우시스템즈 Magnetic-field detecting apparatus
KR102656037B1 (en) * 2022-06-27 2024-04-12 (주)나우시스템즈 Magnetic-field detecting apparatus

Similar Documents

Publication Publication Date Title
Durdaut et al. Modeling and analysis of noise sources for thin-film magnetoelectric sensors based on the delta-E effect
WO2003038371A1 (en) Displacement sensor
CN104854469A (en) Magnetism detection device
Sasada Symmetric response obtained with an orthogonal fluxgate operating in fundamental mode
JP4353465B2 (en) Railway vehicle magnetic field measuring method and magnetic field measuring apparatus
JP2816175B2 (en) DC current measuring device
Babitskii et al. Low noise wideband thin-film magnetometer
GB2054867A (en) Eddy-current distance measuring apparatus
JP2001083223A (en) Magnetometer
JP2007163424A (en) Flux gate type magnetic sensor
Inada et al. Quick response large current sensor using amorphous MI element resonant multivibrator
JPS5910510B2 (en) Superconducting quantum interference magnetometer
JP3651268B2 (en) Magnetic measurement method and apparatus
Prieto et al. Reducing hysteresis in magnetostrictive-piezoelectric magnetic sensors
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
Sokol-Kutylovskii Magnetomodulation sensors based on amorphous ferromagnetic alloys
KR100601818B1 (en) Magnetometer with flux gate magnetic sensor for measuring pole low magnetic field and signal processing method for measuring pole low magnetic field
JP2000352536A (en) Load-measuring apparatus
JPH0424574A (en) Detecting device of magnetism
JP4938740B2 (en) Magnetic field detector
KR102656037B1 (en) Magnetic-field detecting apparatus
US5831424A (en) Isolated current sensor
RU2680165C1 (en) Device for measuring weak magnetic fields based on effect of giant magnetic impedance
US20070001671A1 (en) Magnetostrictive MEMS based magnetometer
RU218324U1 (en) Magnetoelectric current sensor