JPH0587248B2 - - Google Patents
Info
- Publication number
- JPH0587248B2 JPH0587248B2 JP59243098A JP24309884A JPH0587248B2 JP H0587248 B2 JPH0587248 B2 JP H0587248B2 JP 59243098 A JP59243098 A JP 59243098A JP 24309884 A JP24309884 A JP 24309884A JP H0587248 B2 JPH0587248 B2 JP H0587248B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- frequency
- temperature
- voltage
- resonant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000523 sample Substances 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 12
- 230000010355 oscillation Effects 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 2
- 238000001727 in vivo Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は生体内の温度又は圧力等の測定方法、
特にこれらの自動測定方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for measuring temperature or pressure in a living body,
In particular, it relates to these automatic measurement methods.
(従来技術)
従来生物学、医学上の研究或は特にガンの治療
等を目的として生体内各部の温度を測定する為長
期間生体内に埋込んだ無電源プローブと生体外の
測定器との間を有線にて接続することなしに測温
する方法が提案されている。(Prior art) Conventionally, in order to measure the temperature of various parts of a living body for the purpose of biological or medical research or especially cancer treatment, a non-powered probe implanted in a living body for a long period of time and a measuring device outside the living body are used. A method has been proposed for measuring temperature without a wired connection.
上述の如き測温方法としてはアンテナ・コイル
に水晶振動子を接続したプローブを生体内の所望
の位置に外科的に埋込むか或はこれを消化器内に
流すと共に生体外から所要周波数の電磁エネルギ
を照射し前記アンテナ・コイルを介して前記水晶
振動子に与えこれが共振する際のエネルギ吸収を
観測するか或は前記電磁エネルギの照射を中止し
た直後に於ける前記水晶振動子の残響を前記アン
テナ・コイルを介して受信する手法がある。 The above-mentioned temperature measurement method involves surgically implanting a probe with a crystal oscillator connected to an antenna coil at a desired location within the body, or passing it into the digestive tract and injecting electromagnetic waves at the desired frequency from outside the body. Energy is irradiated and applied to the crystal oscillator via the antenna coil, and the energy absorption when it resonates is observed, or the reverberation of the crystal oscillator immediately after the electromagnetic energy irradiation is stopped is measured. There is a method of receiving through an antenna coil.
しかしながら上記いずれの方法に於いても生体
外部から電磁エネルギを照射し前記生体内プロー
ブを構成する共振回路と一致する周波数に於ける
エネルギ吸収現象所謂デイツプ現象を観測するか
或は前記電磁エネルギ照射中止直後の短時間に生
ずる前記生体内プローブ内の共振体の残響を検出
するものであるからいづれも対象とするレベル又
は範囲が極めて小さくその観測或は測定が非常に
むずかしいと云う欠陥があつた。 However, in any of the above methods, electromagnetic energy is irradiated from outside the body and an energy absorption phenomenon, the so-called dip phenomenon, is observed at a frequency that matches the resonant circuit constituting the in-vivo probe, or the electromagnetic energy irradiation is stopped. Since they detect the reverberation of the resonator within the in-vivo probe that occurs in a short period of time immediately after, the target level or range is extremely small, making observation or measurement extremely difficult.
更に、この測定を自動化し前述のデイツプ点或
は前記共振点を自動追尾する場合、前記照射電磁
波の周波数と被測定回路たる前記プローブの共振
特性との相関関係を有する情報を抽出し、該情報
によつて前記電磁波の発振周波数を制御する必要
があるが、一般にこのようなプローブと外部測定
回路との結合は極めて微弱なため上述の従来の測
定方法ではいづれもこの情報を得ることが困難で
あつて自動測定に適しないものであつた。 Furthermore, when automating this measurement and automatically tracking the dip point or the resonance point, extract information having a correlation between the frequency of the irradiated electromagnetic wave and the resonance characteristics of the probe, which is the circuit under test, and extract the information. Although it is necessary to control the oscillation frequency of the electromagnetic waves by using Therefore, it was not suitable for automatic measurement.
(発明の目的)
本発明はこのような従来の生体内温度又は圧力
等の測定方法の問題点に鑑みてなされたものであ
つて、生体内プローブとの結合が微弱であつても
正確にその共振周波数検出が可能であつて、更に
は共振点を自動追尾するうえで極めて便利な測定
方法を提供することを目的とする。(Object of the Invention) The present invention has been made in view of the problems of the conventional methods for measuring in-vivo temperature, pressure, etc., and is capable of accurately measuring even if the bond with an in-vivo probe is weak. It is an object of the present invention to provide a measurement method that is capable of detecting a resonance frequency and is also extremely convenient for automatically tracking a resonance point.
(発明の概要)
本発明ではこの目的のため以下の如き手段をと
る。即ち、前述の如く生体外からプローブに照射
する電磁波に低周波信号によつてFM或はPM変
調を施すと共に、前記プローブの共振周波数近傍
に於いて前記被変調電磁波に生ずるAM変調歪成
分を抽出し、該成分信号によつて前記電磁波発振
器の中心周波数を制御するよう構成する。(Summary of the Invention) The present invention takes the following measures for this purpose. That is, as mentioned above, FM or PM modulation is applied to the electromagnetic waves irradiated to the probe from outside the body using a low frequency signal, and the AM modulation distortion component that occurs in the modulated electromagnetic waves near the resonant frequency of the probe is extracted. The center frequency of the electromagnetic wave oscillator is controlled by the component signal.
(実施例)
以下本発明を図示した実施例に基づいて詳細に
説明する。(Example) The present invention will be described in detail below based on an illustrated example.
第1図は本発明に係かる生体内温度測定装置の
一実施例を示すブロツク図である。 FIG. 1 is a block diagram showing an embodiment of the in-vivo temperature measuring device according to the present invention.
同図に於いて1は水晶振動子Xとアンテナ・コ
イルL1とで構成した生体内プローブであつて、
生体外に於いて前記プローブと対向せしめたアン
テナ・コイルL2に低周波発振器2の出力により
FM又はPM変調を施した電圧制御発振器
(VCC)3の出力を印加すると共に、前記アンテ
ナ・コイルにAM検波回路4を付加しその出力を
増幅器5を介して前記低周波発振器2の出力を同
期信号とする同期検波回路6に入力せしめかつそ
の出力でもつて前記VCOの発振周波数を制御す
る如く構成したものである。 In the figure, 1 is an in-vivo probe composed of a crystal oscillator X and an antenna coil L1 ,
The output of the low frequency oscillator 2 is applied to the antenna coil L 2 facing the probe in vitro.
In addition to applying the output of a voltage controlled oscillator (VCC) 3 subjected to FM or PM modulation, an AM detection circuit 4 is added to the antenna coil, and its output is synchronized with the output of the low frequency oscillator 2 via an amplifier 5. The signal is inputted to a synchronous detection circuit 6 which generates a signal, and the output thereof controls the oscillation frequency of the VCO.
このように構成した生体内温度測定装置は以下
の如く動作する。 The in-vivo temperature measuring device configured as described above operates as follows.
即ち、第2図は前記プローブの共振周波数0近
傍に於ける照射電磁波が受けるAM変調歪の状態
を示す波形図である。 That is, FIG. 2 is a waveform diagram showing the state of AM modulation distortion experienced by the irradiated electromagnetic wave in the vicinity of the resonant frequency 0 of the probe.
今、前記低周波信号を80Hz、周波数偏位を±
2KHz電磁波周波数を19MHzから21MHzまで可変
とし前記プローブの共振周波数を0=20MHzとす
ると、前記周波数変調を受けた電磁波はその中心
周波数から±2KHzにわたつて80Hzの周期で振動
する。 Now, the low frequency signal is 80Hz, and the frequency deviation is ±
If the 2KHz electromagnetic wave frequency is variable from 19MHz to 21MHz and the resonant frequency of the probe is 0 = 20MHz, the frequency-modulated electromagnetic wave oscillates at a period of 80Hz over ±2KHz from its center frequency.
従つてその中心周波数がプローブの共振特性曲
線上をその共振点0よりΔ低い点(イ)、0(ロ)及び
Δ高い点(ハ)の三つの点に位置する場合のAM変
調歪は夫々同図中矢印にて示したような波形を呈
する。 Therefore, when the center frequency is located at three points on the resonance characteristic curve of the probe: a point Δ lower than the resonance point 0 (A), 0 (B), and a point Δ higher (C), the AM modulation distortion will be respectively It exhibits a waveform as shown by the arrow in the figure.
これは前記プローブの共振回路に電磁エネルギ
ーが吸収されるためで、このときプローブに対向
した外部装置のコイルL2の両端には第3図c,
d,eに示すようなAM変調をうけた波形が現れ
る。 This is because the electromagnetic energy is absorbed by the resonant circuit of the probe, and at this time, both ends of the coil L2 of the external device facing the probe are
AM modulated waveforms as shown in d and e appear.
即ち、第3図は前記第1図に示したブロツク図
の各部の信号波形を示したものであつてaは低周
波発振器2の波形、bは該低周波信号によつて
FM変調をうけた電磁波でコイルL2に印加される
信号波形、c,d及びeは夫々前記第2図のプロ
ーブ共振特性曲線イ,ロ及びハに於ける前記コイ
ルL2両端に生ずる波形である。 That is, FIG. 3 shows the signal waveforms of each part of the block diagram shown in FIG.
The signal waveforms c, d, and e applied to the coil L2 by electromagnetic waves subjected to FM modulation are the waveforms generated at both ends of the coil L2 in the probe resonance characteristic curves A, B, and C of FIG. 2 , respectively. be.
更にこれらc,d,eの波形をAM検波すると
夫々同図f,g,hに示す如く、前記プローブに
エネルギ吸収された結果生じた前述のAM変調成
分が抽出される。 Furthermore, when these waveforms c, d, and e are subjected to AM detection, the aforementioned AM modulation components generated as a result of energy absorption by the probe are extracted, as shown in f, g, and h of the figure, respectively.
同図から明らかな如く、前記電磁波の中心周波
数がプローブの共振特性曲線のどの位置にあるか
によつて夫々のAM変調波形が異なり例えば、プ
ローブ共振点0を含んでこれよりΔ低い点イに
於いては周波数偏位が±側にてレベルが小となり
前記共振点を越えると2倍歪を生じ、一側にてレ
ベルは増大し、しかも一側のレベル増加分が大き
い、次に0の点ロに於いては偏位零即ち0にて最
小レベルとなり±△のいづれに偏位してもレベ
ルが増大するからAM歪周波数は2倍即ち2fa=
160Hzとなる。 As is clear from the figure, each AM modulation waveform differs depending on where the center frequency of the electromagnetic wave is located on the resonance characteristic curve of the probe. In this case, the level becomes small when the frequency deviation is on the ± side, double distortion occurs when the frequency deviation exceeds the resonance point, the level increases on one side, and the increase in level on one side is large, and then on the zero side. At point B, the level is minimum when the deviation is zero, that is, 0 , and the level increases even if the deviation is within ±△, so the AM distortion frequency is doubled, that is, 2fa=
It becomes 160Hz.
一方0を周波数偏位中に含みこれを越えて△
高い点ハ前記イと全く逆となる。 On the other hand, 0 is included in the frequency deviation and beyond this △
High point C is completely opposite to point B above.
従つてこの変化を何等かの手段によつて検出す
れば、そのときの電磁波の中心周波数が前記プロ
ーブの共振特性曲線上のどの点に位置するかが識
別できる。 Therefore, by detecting this change by some means, it is possible to identify at which point on the resonance characteristic curve of the probe the center frequency of the electromagnetic wave at that time is located.
本実施例では、このようにして復調した波形を
同期検波回路6に於いて、前記低周波信号を基準
として同期検波したのち波形成形して第3図i,
j,kの示す如く夫々のAM変調歪に対応した矩
形波を得、該矩形波のデユーテイ比を検出する如
く構成し、前記プローブの共振点0に於ける該デ
ユーテイ比が1:1となることを利用してそのと
きの周波数を検出しもつて生体内の温度を測定す
るものである。 In this embodiment, the waveform demodulated in this manner is subjected to synchronous detection using the low frequency signal as a reference in the synchronous detection circuit 6, and the waveform is shaped as shown in FIG.
As shown by j and k, a rectangular wave corresponding to each AM modulation distortion is obtained, and the configuration is configured to detect the duty ratio of the rectangular wave, so that the duty ratio at the resonance point 0 of the probe is 1:1. This is used to detect the frequency at that time and measure the temperature inside the living body.
更に、前記矩形波を積分したのち直流電圧に変
換すれば前述のデユーテイ比に対応した直流電圧
を得しかもこれは前記プローブの共振特性曲線上
の各点に一対一に対応した値となる。 Further, if the rectangular wave is integrated and then converted into a DC voltage, a DC voltage corresponding to the above-mentioned duty ratio is obtained, and this value corresponds one-to-one to each point on the resonance characteristic curve of the probe.
即ち、0に於いて相対値が0.5Vとなり0より低
い方で0.5V以下にかつ高い方で0.5V以上となる。 That is, at 0 , the relative value is 0.5V, lower than 0 is 0.5V or less, and higher is 0.5V or more.
従つて、上述の直流電圧を用いてVCOの周波
数制御電圧を制御するよう構成すればこれら各ブ
ロツクは閉ループを形成し前記電磁波の中心周波
数をプローブの共振点0に自動的に調整すること
が可能となる。 Therefore, if configured to control the frequency control voltage of the VCO using the above-mentioned DC voltage, each of these blocks will form a closed loop and the center frequency of the electromagnetic wave can be automatically adjusted to the resonance point 0 of the probe. becomes.
つまり前述の直流電圧が0.5Vになるように又
は、この直流電圧出力を0.5Vを基準電圧とした
比較器に入力しその差出力が0となる如く前記閉
ループを作動せしめればサーボ制御ループ系を構
成することができ、これを利用して前記プローブ
の共振点0が温度に従つて移動する際のその周波
数の自動測定を行なうことができる。 In other words, if the closed loop is operated so that the aforementioned DC voltage becomes 0.5V, or this DC voltage output is input to a comparator with 0.5V as the reference voltage, and the difference output becomes 0, the servo control loop system This can be used to automatically measure the frequency of the resonance point 0 of the probe as it moves in accordance with the temperature.
このように本発明を用いたサーボ系を構成すれ
ば、従来のフエーズロツクループ(PLL)を用
いたものと比較して次のような特徴をもつ。 A servo system using the present invention as described above has the following features compared to a system using a conventional phase lock loop (PLL).
即ち、従来のPLLが閉ループ中で信号の位相
を検出しその差を直流信号に変換してサーボ系を
構成するものであつて、一般に位相情報を抽出す
るには大きいレベルの信号を要するのに対し、本
発明はFM波に生ずるAM歪を抽出するものであ
るから比較的低レベル信号であつてもこれが可能
である。 In other words, a conventional PLL detects the phase of a signal in a closed loop and converts the difference into a DC signal to construct a servo system, and generally a large level signal is required to extract phase information. On the other hand, since the present invention extracts AM distortion occurring in FM waves, this is possible even with relatively low level signals.
更に、両者のループ感度及びロツクレンジを比
較すれば、PLLに於いては周波数可変範囲全域
例えば2MHzをフルスケールとしてその中の極め
て狭い位相範囲例えば数KHzにロツクインせしめ
るからロツクレンジとフルスケールの相対比は非
常に大きく、系を構成する回路素子等の安定性が
系の安定性を大きく左右するのに対し、本発明で
は上述の周波数偏位例えば±2KHzがフルスケー
ルであつてその中の変調信号周波数の2倍例えば
160Hzを抽出するか或は波形のデユーテイ比1:
1を検出すれば足り前述のロツクレンジとフルス
ケール比は小さくなり従来のPLLに比して系の
制御が極めて容易であることが理解できよう。 Furthermore, if we compare the loop sensitivity and lock range of the two, the relative ratio of the lock range and full scale is However, in the present invention, the above-mentioned frequency deviation, for example ±2KHz, is the full scale, and the modulation signal frequency For example, twice
Extract 160Hz or waveform duty ratio 1:
It is sufficient to detect 1, and the aforementioned lock range and full scale ratio become small, and it can be understood that the control of the system is extremely easy compared to the conventional PLL.
尚上記実施例は本発明の一具体例であつてこれ
に限定されることはなく他に様々な実施方法があ
ること明らかである。例えば前記低周波信号は三
角波形の如く左右対象波であればよいし、又前記
同期検波回路も同期をとつた位相検波回路として
もよい。 It should be noted that the above embodiment is one specific example of the present invention, and the present invention is not limited thereto, and it is clear that there are various other implementation methods. For example, the low frequency signal may be a left-right symmetrical wave such as a triangular waveform, and the synchronous detection circuit may also be a synchronized phase detection circuit.
更に、本発明は被測定回路の共振周波数の検出
にとどまらずその特性が極大極小値の停留点(ス
テーシヨン・ポイント)をもつて変化するとき該
変化を周波数の変化に置換せしめればどのような
もの例えばインピーダンスの停留点或は電流、電
圧の変化又はその他の物理変化のあらゆる停留点
検出に応用可能なること明らかであろう。 Furthermore, the present invention is not limited to detecting the resonant frequency of a circuit under test, but also detects what happens when the characteristic changes with a stationary point of maximum or minimum value and that change is replaced with a change in frequency. It will be obvious that the present invention can be applied to detecting any stopping point of an impedance or a change in current, voltage or other physical changes.
本発明の他の応用例としては、例えば圧力によ
つて共振周波数が変化する素子或は回路を前記プ
ローブとなし前記実施例に示したブロツク図と同
様に構成した装置を用いてその共振周波数を検出
すれば上述の説明と同一の方法によつて圧力の検
出が可能であり、このようにすれば前記生体内の
温度測定と同様に生体内各部の圧力例えば脳内圧
力の測定或は容器内圧力の測定等に極めて有効で
ある。 As another application example of the present invention, for example, an element or a circuit whose resonant frequency changes depending on pressure is used as the probe, and the resonant frequency is adjusted using a device configured similarly to the block diagram shown in the above embodiment. If detected, the pressure can be detected by the same method as explained above, and in this way, in the same way as the temperature measurement in the living body, the pressure in various parts of the living body, such as the pressure in the brain, or the pressure inside the container can be measured. Extremely effective for measuring pressure, etc.
又、上述の例では共振回路のデイツプ点を検出
する場合を示したが、本発明はこれに限らず物理
量の変化の極大点を検出することも可能である。
このときは前記外部回路のアンテナ・コイルと
AM検波回路とを直列共振せしめそのインピーダ
ンスを低くすれば被測定回路が呈する物理量変化
の極大点を検出することができる。 Further, although the above example shows a case where a dip point of a resonant circuit is detected, the present invention is not limited to this, and it is also possible to detect a maximum point of a change in a physical quantity.
At this time, the antenna coil of the external circuit
By making the AM detection circuit resonate in series and lowering its impedance, it is possible to detect the maximum point of the physical quantity change exhibited by the circuit under test.
(発明の効果)
本発明は以上説明した如く構成し機能するもの
であるから、ある物理量が停留点をもつて変化す
る際の該停留点の検出を行う手段として便利であ
つて、更にこの検出の自動化をはかるうえで極め
て都合がよい。(Effects of the Invention) Since the present invention is configured and functions as explained above, it is convenient as a means for detecting a stopping point when a certain physical quantity changes with a stopping point, This is extremely convenient for automating the process.
特に、生体内の温度を測定するときの体内プロ
ーブから情報を抽出する如く、物理変化情報が非
常に小さい場合であつても正確にこれを検出する
うえで極めて大きな効果がある。 In particular, it is extremely effective in accurately detecting physical change information even when the information is very small, such as when extracting information from an in-vivo probe when measuring the temperature inside a living body.
第1図は本発明の一実施例を示すブロツク図、
第2図及び第3図は前記第1図に示したブロツク
図の各部の動作を説明するための波形図である。
1……水晶振動子、2……低周波発振器、3…
…電圧制御発振器(VCO)、4……AM検波回
路、5……増幅器、6……同期検波回路、L1及
びL2……コイル。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIGS. 2 and 3 are waveform diagrams for explaining the operation of each part of the block diagram shown in FIG. 1. 1...Crystal resonator, 2...Low frequency oscillator, 3...
...voltage controlled oscillator (VCO), 4...AM detection circuit, 5...amplifier, 6...synchronous detection circuit, L1 and L2 ...coil.
Claims (1)
共振回路より構成するプローブと、該プローブ所
定周波数の電磁波を照射する手段と、前記プロー
ブが前記電磁はに共振する際の周波数を検出する
手段とを具えることによつて前記プローブが位置
する環境の温度又は圧力を測定する装置におい
て、更に、前記電磁波を低周波信号によつて周波
数変調又は位相変調する手段と、該電磁波の中心
周波数が前記プローブの共振周波数とほゞ一致す
る際に発生する前記電磁波のAM歪成分を抽出す
ることによつて当該プローブの共振周波数を検出
する手段とを具えたことを特徴とする温度又は圧
力の測定装置。 2 前記プローブに電磁波を照射する手段と前記
電磁波のAM歪を検出する手段が、AM検波回路
を付加したアンテナコイルと、このアンテナコイ
ルに接続した電圧制御発振回路と、該電圧制御発
振回路出力に低周波信号によつて周波数変調又は
位相変調を施す手段とを具え、前記AM検波出力
を前記低周波によつて同期検波して得た信号に基
づいて前記電圧制御発振器の周波数を制御する閉
ループにより、前記プローブの共振周波数を自動
追尾するように構成したことを特徴とする特許請
求の範囲1項記載の温度又は圧力の測定装置。[Claims] 1. A probe comprising a resonant circuit whose resonant frequency changes depending on temperature or pressure, means for irradiating the probe with electromagnetic waves at a predetermined frequency, and a frequency at which the probe resonates with the electromagnetic wave. A device for measuring the temperature or pressure of an environment in which the probe is located, further comprising: means for frequency modulating or phase modulating the electromagnetic wave with a low frequency signal; and means for detecting the resonant frequency of the probe by extracting an AM distortion component of the electromagnetic wave that occurs when the center frequency of the probe substantially coincides with the resonant frequency of the probe. or pressure measuring device. 2. The means for irradiating the probe with electromagnetic waves and the means for detecting AM distortion of the electromagnetic waves include an antenna coil to which an AM detection circuit is added, a voltage-controlled oscillation circuit connected to this antenna coil, and an output of the voltage-controlled oscillation circuit. means for performing frequency modulation or phase modulation using a low frequency signal, and a closed loop for controlling the frequency of the voltage controlled oscillator based on a signal obtained by synchronously detecting the AM detection output using the low frequency signal. 2. The temperature or pressure measuring device according to claim 1, wherein the temperature or pressure measuring device is configured to automatically track the resonant frequency of the probe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59243098A JPS61122845A (en) | 1984-11-16 | 1984-11-16 | Measurement of temperature or pressure in living body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59243098A JPS61122845A (en) | 1984-11-16 | 1984-11-16 | Measurement of temperature or pressure in living body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61122845A JPS61122845A (en) | 1986-06-10 |
JPH0587248B2 true JPH0587248B2 (en) | 1993-12-16 |
Family
ID=17098757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59243098A Granted JPS61122845A (en) | 1984-11-16 | 1984-11-16 | Measurement of temperature or pressure in living body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61122845A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160053779A (en) * | 2014-11-01 | 2016-05-13 | 삼성에스디아이 주식회사 | Adhesive composition, adhesive film prepared by the same and display member comprising the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02122336U (en) * | 1989-03-17 | 1990-10-05 | ||
US7001329B2 (en) | 2002-07-23 | 2006-02-21 | Pentax Corporation | Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope |
JP2005074031A (en) | 2003-09-01 | 2005-03-24 | Pentax Corp | Capsule endoscope |
JP2005245937A (en) | 2004-03-08 | 2005-09-15 | Pentax Corp | Clothing with communication function and endoscope system |
JP2011137737A (en) * | 2009-12-28 | 2011-07-14 | Fukuda Crystal Laboratory | Wireless measurement device and wireless temperature measurement system |
JP2020513955A (en) * | 2017-03-09 | 2020-05-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Measurement of body properties |
-
1984
- 1984-11-16 JP JP59243098A patent/JPS61122845A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160053779A (en) * | 2014-11-01 | 2016-05-13 | 삼성에스디아이 주식회사 | Adhesive composition, adhesive film prepared by the same and display member comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JPS61122845A (en) | 1986-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5548217A (en) | Microwave spectrometers | |
US4160971A (en) | Transponders | |
JP4177460B2 (en) | Resonance frequency tracking device | |
JPH06504615A (en) | Nuclear magnetic resonance (NMR) frequency holding circuit | |
JPH0587248B2 (en) | ||
CA1234869A (en) | Nuclear magnetic resonance blood flowmeter | |
JPH053911B2 (en) | ||
JPWO2008114421A1 (en) | Physical property state detection apparatus and physical property state detection method | |
JP2632193B2 (en) | Sampling hold circuit in non-contact temperature measurement device | |
JP2632190B2 (en) | Non-contact temperature measurement device | |
JPH0569535B2 (en) | ||
JPS593331A (en) | Method for measuring temperature in living body | |
JPS576346A (en) | Nmr lock circuit | |
JPH0448176B2 (en) | ||
JPS63260225A (en) | Frequency control system for cavity resonator | |
JPH0527832B2 (en) | ||
JPH0426518B2 (en) | ||
SU1539698A1 (en) | Method of local measurement of saturation magnetization of ferrite film | |
RU2099726C1 (en) | Process measuring gain factor of object on frequency of electromagnetic radiation | |
GB2273986A (en) | Microwave spectrometer. | |
JP2000065910A5 (en) | ||
SU894508A1 (en) | Method of stabilizing resonance conditions in epr spectrometer | |
JPS62192136A (en) | Apparatus for measuring temperature in living body | |
JPS62254729A (en) | Apparatus for measuring temperature in body | |
Parks | Automatic Measurement of Ultrasonic Velocity Changes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |