JPH0569535B2 - - Google Patents

Info

Publication number
JPH0569535B2
JPH0569535B2 JP59122440A JP12244084A JPH0569535B2 JP H0569535 B2 JPH0569535 B2 JP H0569535B2 JP 59122440 A JP59122440 A JP 59122440A JP 12244084 A JP12244084 A JP 12244084A JP H0569535 B2 JPH0569535 B2 JP H0569535B2
Authority
JP
Japan
Prior art keywords
probe
circuit
frequency
resonant circuit
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59122440A
Other languages
Japanese (ja)
Other versions
JPS612839A (en
Inventor
Motoaki Saito
Koichi Hirama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Toyo Tsushinki KK
Original Assignee
Toyo Communication Equipment Co Ltd
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd, Toyo Tsushinki KK filed Critical Toyo Communication Equipment Co Ltd
Priority to JP59122440A priority Critical patent/JPS612839A/en
Publication of JPS612839A publication Critical patent/JPS612839A/en
Publication of JPH0569535B2 publication Critical patent/JPH0569535B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度測定装置、例えば物体内外をケー
ブルにて接続することなく、当該物体内の温度を
遠隔測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature measuring device, for example, a device for remotely measuring the temperature inside an object without connecting the inside and outside of the object with a cable.

(従来技術) 従来から電磁波を透過する物体内の温度を測定
する方法、例えば生物学、医学上の研究或はガン
の温熱療法における測温を行うために為長期間生
体内に埋込んだ無電源プローブと生体外の測定器
との間を有線にて接続することなしに測温する方
法が提案されている。
(Prior Art) Conventionally, there has been a method of measuring the temperature inside an object that transmits electromagnetic waves. A method has been proposed for measuring temperature without wired connection between a power supply probe and an in vitro measuring device.

上述の如き測温方法としてはアンテナ・コイル
に水晶振動子を接続したプローブを生体内の所望
の位置に外科的に埋込むか或はこれを消化器内に
流すと共に生体外から所要周波数の電磁エネルギ
を放射し前記アンテナ・コイルを介して前記水晶
振動子に与えこれが共振する際のエネルギ吸収を
観測するか或は前記電磁エネルギの放射を中止し
た直後に於ける前記水晶振動子の残響を前記アン
テナ・コイルを介して受信する手法がある。
The above-mentioned temperature measurement method involves surgically implanting a probe with a crystal oscillator connected to an antenna coil at a desired location within the body, or passing it into the digestive tract and injecting electromagnetic waves at the desired frequency from outside the body. Either radiate energy and apply it to the crystal oscillator via the antenna coil and observe the energy absorption when it resonates, or measure the reverberation of the crystal oscillator immediately after stopping the emission of electromagnetic energy. There is a method of receiving through an antenna coil.

しかしながら上記いずれの方法に於いても生体
外部から電磁エネルギを放射し前記生体内プロー
ブを構成する共振回路と一致する周波数に於ける
エネルギ吸収現象所謂デイツプ現象を観測するか
或は前記電磁エネルギ放射中止直後の短時間に生
ずる前記生体内プローブ内の共振体の残響を検出
するものであるからいづれも対象とするレベル又
は範囲が極めて小さくその観測或は測定が非常に
むづかしいと云う欠陥があつた。
However, in any of the above methods, electromagnetic energy is emitted from outside the living body and an energy absorption phenomenon, the so-called dip phenomenon, at a frequency that matches the resonant circuit constituting the in-vivo probe is observed, or the electromagnetic energy emission is stopped. Since the reverberation of the resonator within the in-vivo probe that occurs immediately afterward is detected in a short period of time, the target level or range is extremely small, making observation or measurement extremely difficult.

(発明が解決しようとする問題点) 上述の如き従来の生体内温度測定方法に於いて
欠陥が生ずる原因は、生体内プローブが吸収する
エネルギに限界がありかつそのレベルが極めて小
さいためである。
(Problems to be Solved by the Invention) The reason for defects in the conventional in-vivo temperature measuring method as described above is that there is a limit to the amount of energy absorbed by the in-vivo probe, and the level thereof is extremely small.

更に、生体外から照射する電磁エネルギと生体
内プローブから検出する電磁エネルギとが共に同
一周波数であることから両者の庶弊を必要とする
場合外部照射エネルギレベルを大きくできないこ
とも上述の如き欠陥を生ずる一因であつた。
Furthermore, since the electromagnetic energy irradiated from outside the body and the electromagnetic energy detected from the in-vivo probe both have the same frequency, it is not possible to increase the external irradiation energy level when it is necessary to eliminate the effects of both, which also causes the above-mentioned defects. This was one of the reasons why.

(問題点を解決するための手段) 本発明は斯かる従来の生体内温度測定方法の欠
陥を除去するためになされたものであつて、前記
プローブを構成する共振回路に新らたにこれが吸
収する電磁エネルギ波に高調波を生ぜしめる回路
例えば両波整流回路等を付加しこの高調波を生体
外にて検出或は測定することによつて生体内温度
測定を行う如き手段を講ずる。
(Means for Solving the Problems) The present invention has been made in order to eliminate the defects of the conventional in-vivo temperature measurement method, and the present invention has been made in order to eliminate the defects of the conventional in-vivo temperature measurement method. A circuit for generating harmonics, such as a double-wave rectifier circuit, is added to the electromagnetic energy waves generated, and the harmonics are detected or measured outside the living body, thereby measuring the temperature inside the living body.

(作用) 生体内温度測定にあたつて上述の如き方法を用
いれば、先ず、生体外から照射する電磁エネルギ
波と前記プローブから再放射するそれとは周波数
が2倍或は3倍若しくはそれ以上隔つたものとな
るから測定が極めて容易となる。更には後述する
如く生体内プローブにて吸収した照射エネルギを
効率よく高調波として再放射すればこのレベルは
外部から照射するエネルギレベルに比例して大き
くできるから該共振回路の飽和レベルを大きくす
ることにより所望の大きさの再放射エネルギを得
ることができる。
(Function) If the above-mentioned method is used to measure the temperature inside a living body, firstly, the frequency of the electromagnetic energy waves irradiated from outside the living body and that re-radiated from the probe are separated by two or three times or more. This makes measurement extremely easy. Furthermore, as will be described later, if the irradiation energy absorbed by the in-vivo probe is efficiently re-radiated as harmonics, this level can be increased in proportion to the energy level irradiated from the outside, so the saturation level of the resonant circuit can be increased. Thus, it is possible to obtain re-radiation energy of a desired magnitude.

又、上述のプローブ内に設けるエネルギ吸収用
共振回路とその高調波をとり出すための共振回路
との夫々に温度依存性を有した素子を用いれば周
波数対温度特性をより顕著なものにすることがで
きる。
Furthermore, if elements with temperature dependence are used in the resonant circuit for absorbing energy and the resonant circuit for extracting the harmonics provided in the probe, the frequency versus temperature characteristics can be made more pronounced. I can do it.

(実施例) 以下本発明を図示した実施例に基づいて詳細に
説明する。
(Example) The present invention will be described in detail below based on an illustrated example.

第1図は本発明の一実施例を示すブロツク図で
ある。
FIG. 1 is a block diagram showing one embodiment of the present invention.

同図に於いて、1は生体内の所要部に位置せし
めた温度センサとしてのプローブであつて、アン
テナコイルL1とこれに並列に温度に応じてその
特性が変化する水晶振動子X1を容量として動作
する如く接続すると共に該並列回路の両端に整流
用ダイオードD1及びD2を同方向に接続し更に前
記両ダイオードの接続点と前記アンテナコイル
L1の中間タツプとの間に容量C1及びコイルL2
らなる直列共振回路を挿入接続したものであり、
該直列共振回路の共振周波数は前記アンテナコイ
ルL1と水晶振動子X1とからなる並列回路の高調
波、例えば2倍の周波数となる如く回路定数をえ
らぶ。
In the figure, reference numeral 1 denotes a probe as a temperature sensor located at a desired part within the living body, and includes an antenna coil L 1 and a crystal oscillator X 1 in parallel with which the characteristics change depending on the temperature. rectifier diodes D 1 and D 2 are connected in the same direction to both ends of the parallel circuit, and the connecting point between the two diodes and the antenna coil are connected so as to operate as a capacitor.
A series resonant circuit consisting of a capacitor C1 and a coil L2 is inserted and connected between the intermediate tap of L1 ,
Circuit constants are selected so that the resonant frequency of the series resonant circuit is a harmonic, for example twice the frequency, of the parallel circuit consisting of the antenna coil L1 and the crystal resonator X1 .

このように構成したプローブ1を被測定生体の
所要部に納めると共に外部には周波数可変型信号
発生器OSC1を照射用アンテナコイルL3に接続し
たものと前記OSC1の照射する周波数の高調波を
受信する受信機RX1にコイルL4をアンテナとし
て接続した測定器とを備え前記プローブから再放
射する高調波電磁波を検出する。
The probe 1 configured in this way is housed in the desired part of the living body to be measured, and externally there is a variable frequency signal generator OSC 1 connected to the irradiation antenna coil L 3 and a harmonic of the frequency irradiated by the OSC 1 . The probe is equipped with a receiver RX 1 that receives the above-mentioned signals and a measuring device connected to a coil L 4 as an antenna to detect harmonic electromagnetic waves re-radiated from the probe.

このように構成した測定装置は以下の如く動作
する。
The measuring device configured in this manner operates as follows.

第2図は前記第1図に示した測定系の各部の波
形を説明する図であつて、前記OSC1から周波数
の電磁波エネルギがコイルL3を介して生体内
プローブ1のアンテナコイルL1に誘起する。該
コイルL1は容量として作動する水晶振動子X1
並列共振回路を構成しておりこの両端に生ずる波
形は第2図イと同じものとなり、この両端に接続
したダイオードD1及びD2により両波整流が行わ
れその出力Doutは同図ロの如く負の半サイクル
波形を折り返した脈流となる。更にこの出力はコ
イルL2と容量C1との直列回路を介して前記アン
テナコイルL3の中間タツプとの間に流れるが、
該直列回路の共振周波数は前述の通りの高調波
数例えば2としたからこれに流れる高周波電流は
前述の両波整流波形が含む高調波のうち2倍調波
となりコイルL2を介して生体外に2高調波を誘
起する。そこで前述OSC1の発振周波数を変化し
生体外でこの倍調波をコイルL4を付した受信機
RX1にて検出しそのときの最大レベルを呈する点
の周波数を読めば前記同調回路の共振周波数を知
ることができ、この共振回路周波数の温度依存性
があらかじめわかつていれば生体内の所要部に於
ける温度を測定することができる。
FIG . 2 is a diagram explaining the waveforms of each part of the measurement system shown in FIG . induce. The coil L 1 constitutes a parallel resonant circuit with a crystal oscillator X 1 that operates as a capacitor, and the waveform generated at both ends is the same as that shown in Fig. 2 A, and due to the diodes D 1 and D 2 connected to both ends. Double-wave rectification is performed, and the output Dout becomes a pulsating flow with a negative half-cycle waveform folded back as shown in FIG. Furthermore, this output flows between the intermediate tap of the antenna coil L3 via a series circuit of the coil L2 and the capacitor C1 ,
Since the resonance frequency of the series circuit is set to the harmonic number, for example 2, as described above, the high-frequency current flowing therein becomes the second harmonic of the harmonics included in the double-wave rectified waveform described above, and is emitted outside the body via coil L2 . Induces second harmonic. Therefore, we changed the oscillation frequency of the OSC 1 mentioned above and transferred this harmonic wave in vitro to a receiver equipped with coil L 4 .
By reading the frequency at the point detected by RX 1 and exhibiting the maximum level at that time, the resonant frequency of the tuned circuit can be found, and if the temperature dependence of this resonant circuit frequency is known in advance, it is possible to find the required part in the living body. It is possible to measure the temperature at

このように本発明の原理によれば、生体外から
照射する電磁波周波数と外部にて検出する周波数
が異つたものであるからこの識別が容易であるう
え、外部に再放出する2電磁エネルギは外部から
照射する電磁エネルギに比例して増大するからこ
れを所要の値とすれば更に測定が容易となること
は明らかであろう。
As described above, according to the principle of the present invention, since the electromagnetic wave frequency irradiated from outside the living body and the frequency detected externally are different, it is easy to identify them, and the two electromagnetic energy re-emitted to the outside are different. Since the electromagnetic energy increases in proportion to the electromagnetic energy radiated from the source, it is obvious that the measurement will be easier if this value is set to the required value.

尚上述の実施例のプローブに於ける水晶振動子
は何等これに限定する必要はなく温度によつてそ
のインピーダンスが変化し結果的に共振周波数が
変化するに寄与するものであれば何でもよいが周
波数の安定性及び回路のQを考えれば水晶振動子
が最も適したものであろう。
The crystal oscillator used in the probe of the above-mentioned embodiment is not limited to this, and any type of crystal oscillator may be used as long as its impedance changes with temperature and as a result, the resonant frequency changes. Considering the stability of the circuit and the Q of the circuit, a crystal resonator is probably the most suitable.

更にはこの水晶振動子を含む共振回路構成は上
述の例に限らず種々のものが考えられるがその一
部を第3図に示す。
Furthermore, the resonant circuit configuration including this crystal resonator is not limited to the above-mentioned example, and various configurations are possible, some of which are shown in FIG.

即ち同図a及びbは前記水晶振動子をインダク
タンスとして動作させる場合に都合が良く、これ
らは共に基本波の共振回路に温度依存性をもつ
た水晶振動子を挿入したものであるが、本発明は
同図c乃至eに示す如く高調波成分共振回路側に
例えば2に共振するような水晶振動子を接続して
も良い。
That is, Figures a and b are convenient when the crystal resonator is operated as an inductance, and both of these are ones in which a temperature-dependent crystal resonator is inserted into the fundamental wave resonant circuit, but the present invention For example, a crystal resonator that resonates at 2 may be connected to the harmonic component resonant circuit side as shown in c to e of the same figure.

更には同図fに示すように、基本波共振回路と
高調波共振回路との両者に温度依存性を有する水
晶振動子を接続してもよく、斯くすれば両水晶振
動子の平均値を出力として観測できるから測定精
度の向上が考えられる。
Furthermore, as shown in FIG. Since it can be observed as , measurement accuracy can be improved.

尚更に上述の例ではいづれも高調波成分を検出
する場合を示したが、第4図に示す如くアンテナ
コイルL1と水晶振動子X1とで取り出した基本波
信号を可変容量ダイオードD3及びD4を介して
/2の共振周波数をもつ回路に入力すれば、容
量可変型パラメトロン発振器と同様の動作にて
/2の放射信号を取り出し得るから本発明は高
調波に限らず1/2倍調波を用いた測定方法に応用
でき、これに於いても上述の実施例に示した種々
の回路構成が考えられる。
Furthermore , although the above examples all show cases where harmonic components are detected, as shown in FIG. 4, the fundamental wave signal extracted by the antenna coil L 1 and the crystal oscillator If input to a circuit with a resonant frequency of /2 via D 4 , a radiation signal of /2 can be extracted in the same manner as a variable capacitance parametron oscillator. It can be applied to a measurement method using harmonics, and various circuit configurations shown in the above-mentioned embodiments can be considered in this case as well.

又、以上の説明では基本波共振回路用コイルと
高調波或は1/2倍調波共振回路のコイルを個別の
ものとした為複雑であるうえ寸法も大きくなる、
そこでこのコイルを一体にし更にダイオード一個
で半波整流とすれば若干効率は低下するものの前
記プローブの寸法を極めて小さいものとできるか
ら生体内に埋込むことを考えればより適したもの
となる。
Also, in the above explanation, the coil for the fundamental wave resonant circuit and the coil for the harmonic or 1/2 harmonic resonant circuit are made into separate coils, which is complicated and also increases the size.
Therefore, if this coil is integrated and a single diode is used for half-wave rectification, the efficiency will decrease slightly, but the dimensions of the probe can be made extremely small, making it more suitable for implantation in a living body.

これらの実施例を第5図a乃至dに示す。 Examples of these are shown in Figures 5a-d.

即ち同図a及びbは水晶振動子を基本波回路に
挿入しアンテナコイルL1の一部を高調波共振回
路のコイルL2としてこれを共用したものであり、
同図c及びdは水晶振動子を高調波共振回路の方
に用いたものであるがその他にも前述の実施例同
様種々のものが考えられること及び半波整流の場
合にはその高調波に奇数倍調波例えば3倍及び9
倍成分も含まれるからこれを検出してもよいこと
は説明を要しないであろう。
That is, in Figures a and b, a crystal oscillator is inserted into the fundamental wave circuit and a part of the antenna coil L1 is shared as the coil L2 of the harmonic resonance circuit.
Figures c and d use a crystal oscillator for the harmonic resonant circuit; however, similar to the previous embodiment, various other circuits are possible, and in the case of half-wave rectification, the harmonics Odd harmonics e.g. 3x and 9
There is no need to explain that since the double component is also included, it may be detected.

但し、これらの実施例の如くアンテナコイル
L1を高調波共振用コイルL2に共用する場合は、
体外から照射する電磁エネルギ波と前述プローブ
から再放射する高調波或は1/2倍調波とは極めて
近接した位置に於いて入出力操作を行うことにな
ることが多いからこれを測定する外部装置は第6
図に示す如く照射波と受信波2又は/2とを
方向性結合器(例えばサーキユレータ)等により
同一アンテナコイルL3を介して生体内プローブ
と結合する如く構成した方がより便利であろう。
However, as in these examples, the antenna coil
When L 1 is shared with harmonic resonance coil L 2 ,
The electromagnetic energy waves irradiated from outside the body and the harmonics or 1/2 harmonics re-radiated from the aforementioned probe are often input and output in extremely close positions, so it is necessary to measure them externally. The device is the 6th
It would be more convenient to configure the irradiated wave and the received wave 2 or 2 to be coupled to the in-vivo probe via the same antenna coil L3 using a directional coupler (for example, a circulator) as shown in the figure.

本発明では更に、測定感度を向上するために外
部から照射する電磁波に所要信号によつて各種変
調を施すことを考える。
The present invention further considers applying various modulations to the externally irradiated electromagnetic waves using required signals in order to improve measurement sensitivity.

即ち上述の実施例ではいづれもプローブから再
放射する高調波或は1/2倍調波レベルが最大とな
る点の周波数を検出したが、外部から照射する電
磁波に単一低周波信号にてAM変調若しくはPM
変調又はFM変調を施し前記プローブから再放射
する高調波中に含む該変調信号を復調に導出して
この信号レベルを観測すれば、高周波レベルを測
定するよりはるかに測定が容易となるメリツトが
ある。
That is, in each of the above embodiments, the frequency at which the harmonic or 1/2 harmonic re-radiated from the probe is at its maximum level is detected, but when the electromagnetic waves radiated from the outside are radiated using a single low-frequency signal, AM Modulation or PM
If modulation or FM modulation is applied and the modulated signal contained in the harmonics re-radiated from the probe is demodulated and the signal level is observed, the measurement is much easier than measuring the high frequency level. .

尚前記変調方式の種別ごとに復調方式を同一方
式に一致させるのが一般的であるが、実測によれ
ばPM或はFM等の角度変調に対してもAM検波
を用いて復調信号を導出した方が測定の高感度化
が計れることが判明した。
Although it is common practice to match the demodulation method to the same method for each type of modulation method, actual measurements have shown that AM detection was also used to derive the demodulated signal for angle modulation such as PM or FM. It was found that the sensitivity of the measurement could be increased by using the method.

又前記復調信号中には前述のプローブ中の非直
線回路素子により生ずる変調信号Lの2倍高調波
が含まれることとなるからこれを含む中間周波信
号を例えば第7図に示すような構成をとる測定回
路にて取り出し前記変調用低周波信号Lを直接2
逓倍した信号によつて同期検波すると共にこの出
力を観測し外部から照射する電磁波又はその高調
波周波数が前記プローブ中の水晶振動子を含む共
振回路と一致する際に前記同期検波出力がゼロク
ロスする如く他の回路の位相量を調整し該ゼロク
ロス点を検出して前記プローブの共振周波数を知
る如くなせば、これらの測定を自動化する場合極
めて便利となる。
Also, since the demodulated signal includes the double harmonic of the modulated signal L generated by the nonlinear circuit element in the probe, the intermediate frequency signal containing this can be configured as shown in FIG. 7, for example. The low frequency signal L for modulation is directly taken out by the measuring circuit.
Perform synchronous detection using the multiplied signal and observe this output so that when the electromagnetic wave irradiated from the outside or its harmonic frequency matches the resonant circuit including the crystal resonator in the probe, the synchronous detection output crosses zero. If the resonant frequency of the probe can be determined by adjusting the phase amount of other circuits and detecting the zero crossing point, it will be extremely convenient to automate these measurements.

尚本発明は上述した実施例に限定される必然性
はなく共振回路の組合せは直列又は並列或はこれ
らを組合せたものいづれであつてもよいことは明
白であろう。
It should be noted that the present invention is not necessarily limited to the embodiments described above, and it is clear that the resonant circuits may be combined in series, in parallel, or in any combination thereof.

(発明の効果) 以上説明した如く本発明は、従来生体内のプロ
ーブに照射する電磁波周波数と再放射する信号の
周波数とが同一であつたものと異り、その周波数
を2倍或はそれ以上相異せしめた測定手段を提供
するものであつて、照射する電磁波エネルギに応
じた測定出力を得ることができるばかりでなく、
これによつて種々の測定方法が可能となるから生
体内の温度等を測定する装置の精度を向上するう
えで極めて有効である。
(Effects of the Invention) As explained above, the present invention differs from conventional systems in which the electromagnetic wave frequency irradiated to the probe inside the living body and the frequency of the re-radiated signal are the same. It provides different measurement means, and not only can it obtain measurement output according to the irradiated electromagnetic wave energy, but also
This makes it possible to use a variety of measurement methods, which is extremely effective in improving the accuracy of devices that measure internal temperatures, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の動作原理を説明する回路図、
第2図イ乃至ハは前記第1図の回路の各部の波形
を示す図、第3図a乃至fは本発明のプローブの
変形例を示す回路図であつてa及びbは水晶振動
子を基本波共振回路に、又c乃至eはこれを高調
波共振回路に、更にfはこれをこの両方に挿入し
た場合の一例を示す回路図、第4図は1/2倍調波
を再放射信号として取り出す場合のプローブの一
実施例を示す回路図、第5図a乃至dはプローブ
のアンテナコイルと高調波共振回路のコイルとを
共用する場合を示す回路図、第6図は外部測定回
路の一実施例を示すブロツク図、第7図は自動測
定を行うのに適した外部測定回路の一実施例を示
すブロツク図である。 1……生体内プローブ、2……サーキユレー
タ、OSC1及びOSC2……発振器、L1及びL3……ア
ンテナコイル、L2……共振コイル、D1及びD2
…整流用ダイオード、C1及びC2……容量、X1
びX……水晶振動子、D3及びD4……可変容量ダ
イオード、RX……受信機、DET……検波器。
FIG. 1 is a circuit diagram explaining the operating principle of the present invention,
2A to 2C are diagrams showing waveforms of various parts of the circuit shown in FIG. A circuit diagram showing an example of inserting this into the fundamental wave resonant circuit, c to e into the harmonic resonant circuit, and further f into both of these, Figure 4 re-radiates the 1/2 harmonic. A circuit diagram showing an embodiment of the probe when extracting it as a signal, Figures 5a to 5d are circuit diagrams showing a case where the antenna coil of the probe and the coil of the harmonic resonance circuit are shared, and Figure 6 is an external measurement circuit. FIG. 7 is a block diagram showing an embodiment of an external measuring circuit suitable for performing automatic measurements. 1... In-vivo probe, 2... Circulator, OSC 1 and OSC 2 ... Oscillator, L 1 and L 3 ... Antenna coil, L 2 ... Resonance coil, D 1 and D 2 ...
... Rectifier diode, C 1 and C 2 ... Capacitance, X 1 and X ... Crystal resonator, D 3 and D 4 ... Variable capacitance diode, RX ... Receiver, DET ... Detector.

Claims (1)

【特許請求の範囲】 1 温度依存性を有する共振回路より構成するプ
ローブと、これに電磁波を照射する手段と、この
電磁波に前記プローブが共振する際のその共振周
波数を検出する共振周波数検出手段とを具えるこ
とによつて前記プローブが位置する環境の温度を
測定する装置において、前記共振回路に高調波歪
または低調波歪を発生する手段を設けると共に、
前記共振周波数検出手段によつて前記共振回路か
ら放出される高調波または低調波を検出するよう
に構成したことを特徴とする温度測定装置。 2 前記プローブの共振回路に水晶振動子を組み
込んだことを特徴とする特許請求の範囲1記載の
温度測定装置。
[Scope of Claims] 1. A probe constituted by a temperature-dependent resonant circuit, means for irradiating the probe with electromagnetic waves, and resonant frequency detection means for detecting the resonant frequency when the probe resonates with the electromagnetic waves. In the apparatus for measuring the temperature of an environment in which the probe is located, the resonant circuit is provided with means for generating harmonic distortion or subharmonic distortion, and
A temperature measuring device characterized in that the resonant frequency detection means is configured to detect harmonics or subharmonics emitted from the resonant circuit. 2. The temperature measuring device according to claim 1, wherein a crystal resonator is incorporated in the resonant circuit of the probe.
JP59122440A 1984-06-14 1984-06-14 Measurement of temperature of living body Granted JPS612839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122440A JPS612839A (en) 1984-06-14 1984-06-14 Measurement of temperature of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122440A JPS612839A (en) 1984-06-14 1984-06-14 Measurement of temperature of living body

Publications (2)

Publication Number Publication Date
JPS612839A JPS612839A (en) 1986-01-08
JPH0569535B2 true JPH0569535B2 (en) 1993-10-01

Family

ID=14835894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122440A Granted JPS612839A (en) 1984-06-14 1984-06-14 Measurement of temperature of living body

Country Status (1)

Country Link
JP (1) JPS612839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814313A (en) * 2012-08-21 2012-12-12 六安市宏伟科教设备有限公司 Electronic control ventilation cabinet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102119A (en) * 2006-06-30 2008-05-01 Univ Of Maine System Monolithic antenna excited acoustic transduction device
US20200000364A1 (en) * 2017-03-09 2020-01-02 Koninklijke Philips N.V. Measuring a property in a body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593331A (en) * 1982-06-30 1984-01-10 Yoshiaki Saito Method for measuring temperature in living body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593331A (en) * 1982-06-30 1984-01-10 Yoshiaki Saito Method for measuring temperature in living body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814313A (en) * 2012-08-21 2012-12-12 六安市宏伟科教设备有限公司 Electronic control ventilation cabinet

Also Published As

Publication number Publication date
JPS612839A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US4160971A (en) Transponders
US5343147A (en) Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements
JP2008509418A (en) Detection apparatus and detection method
CN105866716A (en) Novel all-optical type laser light pump magnetometer and realization method thereof
CN112698344B (en) Stepping frequency continuous wave distance measuring device and method based on rydberg atoms
JPH0569535B2 (en)
JPS5910510B2 (en) Superconducting quantum interference magnetometer
US3983475A (en) Frequency selective detecting system for detecting alternating magnetic fields
JPH0587248B2 (en)
JPS593331A (en) Method for measuring temperature in living body
US5027070A (en) MR imaging system and method
JP4593876B2 (en) Device for accurate measurement of high-frequency magnetic fields with constant amplitude and frequency
JP2632190B2 (en) Non-contact temperature measurement device
SU834623A1 (en) Mangetometer
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
SU363940A1 (en) ALL-UNION
RU1808338C (en) Physiotherapeutic uhf apparatus
SU1265501A1 (en) Device for measuring pressure
RU2087920C1 (en) Magnetometer
JPH0426518B2 (en)
SU659946A1 (en) Device for continuous registering of propagation time of ultrasonic oscillations
SU741133A1 (en) Method of detecting signal in electron paramagnetic resonance spectrometer
SU1151836A1 (en) Remote temperature measuring method
SU1539698A1 (en) Method of local measurement of saturation magnetization of ferrite film
JPS593696B2 (en) Thermometer using resonance absorption phenomenon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees