JPH0426518B2 - - Google Patents

Info

Publication number
JPH0426518B2
JPH0426518B2 JP60028877A JP2887785A JPH0426518B2 JP H0426518 B2 JPH0426518 B2 JP H0426518B2 JP 60028877 A JP60028877 A JP 60028877A JP 2887785 A JP2887785 A JP 2887785A JP H0426518 B2 JPH0426518 B2 JP H0426518B2
Authority
JP
Japan
Prior art keywords
probe
antenna coil
frequency
capacitor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60028877A
Other languages
Japanese (ja)
Other versions
JPS61188698A (en
Inventor
Koichi Hirama
Takeshi Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2887785A priority Critical patent/JPS61188698A/en
Publication of JPS61188698A publication Critical patent/JPS61188698A/en
Publication of JPH0426518B2 publication Critical patent/JPH0426518B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度又は圧力測定用プローブに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a probe for measuring temperature or pressure.

(従来技術) 従来生物学、医学上の研究或は特にガンの治療
等を目的として生体内各部の温度を測定する為長
期間生体内に埋込んだ無電源プローブと生体外の
測定器との間を有線にて接続することなしに測温
する方法が提案されている。
(Prior art) Conventionally, in order to measure the temperature of various parts of a living body for the purpose of biological or medical research or especially cancer treatment, a non-powered probe implanted in a living body for a long period of time and a measuring device outside the living body are used. A method has been proposed for measuring temperature without a wired connection.

上述の如き測温方法としてはアンテナ・コイル
に水晶振動子を接続したプローブを生体内の所望
の位置に外科的に埋込むか或はこれを消化器内に
流すと共に生体外から所要周波数の電磁エネルギ
を照射し前記アンテナ・コイルを介して前記水晶
振動子に与えこれが共振する際のエネルギ吸収を
観測するか或は前記電磁エネルギの照射を中止し
た直後に於ける前記水晶振動子の残響を前記アン
テナ・コイルを介して受信する手法がある。
The above-mentioned temperature measurement method involves surgically implanting a probe with a crystal oscillator connected to an antenna coil at a desired location within the body, or passing it into the digestive tract and injecting electromagnetic waves at the desired frequency from outside the body. Energy is irradiated and applied to the crystal oscillator via the antenna coil, and the energy absorption when it resonates is observed, or the reverberation of the crystal oscillator immediately after the electromagnetic energy irradiation is stopped is measured. There is a method of receiving through an antenna coil.

この際使用する前記プローブの構成としては第
4図に示す如きものが一般的である。
The configuration of the probe used in this case is generally as shown in FIG.

即ち、第4図は従来のプローブを示す回路図で
あつて、水晶振動子Xとアンテナ・コイルLaと
をループ状に接続して共振回路を構成したもので
ある。
That is, FIG. 4 is a circuit diagram showing a conventional probe, in which a crystal resonator X and an antenna coil La are connected in a loop to form a resonant circuit.

このように構成したプローブを用いて上述の如
く温度又は圧力を測定するには第5図に示すよう
に電圧計V,Vを付加した可変周波数発振器
OSCにアンテナ・コイルLbを接続し該アンテ
ナ・コイルLbを介して前記プローブに対し電磁
波を照射すると、前記水晶振動子の直列共振周波
数近傍に於いて発振器OSCの電磁波を吸収し前
記電圧計V,Vの数値が最小を示す如く動作す
る。
To measure temperature or pressure as described above using a probe configured in this way, a variable frequency oscillator with voltmeters V and V added is required as shown in Figure 5.
When an antenna coil Lb is connected to the OSC and an electromagnetic wave is irradiated to the probe via the antenna coil Lb, the electromagnetic wave of the oscillator OSC is absorbed near the series resonance frequency of the crystal resonator, and the voltmeter V, It operates so that the value of V indicates the minimum value.

従つて、前記プローブの温度或は圧力と共振周
波数との関係が既知であれば、その共振点を測定
することによつて生体内の温度或は圧力を検出す
ることができる。
Therefore, if the relationship between the temperature or pressure of the probe and the resonance frequency is known, the temperature or pressure inside the living body can be detected by measuring the resonance point.

しかしながら、上述したような従来のプローブ
の共振特性は第6図に点線で示す前記水晶振動子
Xの共振周波数そのものではなく、前記アンテ
ナ・コイルLaのインダクタンスの影響を受け同
図中に実線にて示す如く若干低い周波数方向にず
れると共にQ(Quality)が低下したものとなる。
この理由を推察すると前記プローブの共振に前記
アンテナ・コイルLaのインダクタンスが関与す
るためであつて、一般に第7図aの如き等価回路
で表わされる水晶振動子Xに更に同図bに示す如
く前記アンテナ・コイルLaのインダクタンスLs
が直列に接続される結果、前記プローブ全体の等
価回路は同図cに示すものとなり前記アンテナ・
コイルLaのインダクタンスLsが関与した新らた
な等価回路定数L′1,C′1,R′1及びC′0によつて表
示され、水晶振動子自身の特性と異つたものとな
るからである。
However, the resonance characteristics of the conventional probe as described above are not affected by the resonant frequency of the crystal oscillator X itself, which is indicated by the dotted line in FIG. As shown, there is a shift toward a slightly lower frequency and a decrease in Q (Quality).
The reason for this is presumed to be that the inductance of the antenna coil La is involved in the resonance of the probe, and generally the crystal resonator X represented by the equivalent circuit as shown in FIG. Inductance Ls of antenna coil La
As a result, the equivalent circuit of the entire probe becomes as shown in the figure c, and the antenna and
This is because the new equivalent circuit constants L′ 1 , C′ 1 , R′ 1 and C′ 0 involving the inductance Ls of the coil La become different from the characteristics of the crystal resonator itself. be.

その結果前記第6図の実線にて示した共振特性
を呈するものであり、一般に極めてQの高い水晶
振動子にこれよりはるかにQの劣るアンテナ・コ
イルを付加すれば全体のQが低下すること容易に
理解できよう。
As a result, it exhibits the resonance characteristics shown by the solid line in Figure 6 above, and generally speaking, if an antenna coil with a much lower Q is added to a crystal resonator with an extremely high Q, the overall Q will decrease. It's easy to understand.

一般に、外部から照射する電磁波を共振回路に
吸収させそのデツプ点をとらえて該共振回路の共
振周波数を検出する所謂デツプメータ法では前記
共振回路のQが高い方が測定精度が向上するうえ
測定も容易であることは周知の通りである。
In general, in the so-called depth meter method, which detects the resonant frequency of the resonant circuit by absorbing electromagnetic waves irradiated from the outside into a resonant circuit and detecting its depth point, the higher the Q of the resonant circuit, the better the measurement accuracy and the easier the measurement. As is well known,

特に上述の如くこのデツプメータ法を用いて温
度又は圧力を測定する場合の前記プローブのQの
高低は測定精度のみならず該プローブと外部測定
装置との離隔しうる距離の大小にも影響を及ぼす
重要なフアクタである。
In particular, as mentioned above, when measuring temperature or pressure using the depth meter method, the height of the Q of the probe is important as it affects not only the measurement accuracy but also the distance that can be separated from the probe and the external measuring device. It is a factor.

(発明の目的) 本発明は上述したような従来のプローブの欠点
を除去するためになされたものであつて、アンテ
ナ・コイルのインダクタンスの悪影響を除去し水
晶振動子自体の高いQとほゞ等しいQを有し応答
特性の優れたプローブを提供することを目的とす
る。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional probes as described above. It is an object of the present invention to provide a probe having a high Q and excellent response characteristics.

(発明の概要) 本発明は上述の目的を達成するために、従来の
プローブのアンテナ・コイルLaに直列にコンデ
ンサを挿入接続すると共に、前記アンテナ・コイ
ルLaのインダクタンスと該コンデンサの値とを
これらの直列回路の共振周波数が前記水晶振動子
X等の圧電振動子の自己共振周波数とほゞ一致す
る如く設定する。
(Summary of the Invention) In order to achieve the above-mentioned object, the present invention inserts and connects a capacitor in series to the antenna coil La of a conventional probe, and sets the inductance of the antenna coil La and the value of the capacitor to these values. The resonant frequency of the series circuit is set to substantially match the self-resonant frequency of the piezoelectric resonator such as the crystal resonator X.

(実施例) 以下、本発明を図示した実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the present invention will be described in detail based on an illustrated example.

第1図は本発明の一実施例を示す回路図であ
る。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.

同図に於いて、C1はコンデンサであつて、水
晶振動子Xとアンテナ・コイルLaとに直列に挿
入接続し、該コンデンサC1とアンテナ・コイル
Laとの直列共振周波数f2が前記水晶振動子Xの直
列共振周波数f0とほゞ一致する如く設定したもの
である。
In the figure, C 1 is a capacitor, which is inserted and connected in series with the crystal oscillator X and the antenna coil La, and the capacitor C 1 and the antenna coil
The series resonance frequency f 2 with La is set to substantially match the series resonance frequency f 0 of the crystal resonator X.

このように構成した本発明に係かるプローブの
共振特性は第2図に示した如くその共振周波数f2
は水晶振動子Xの直列共振周波数f0とほゞ一致し
たものとなり、更にその時のQも水晶振動子自体
のそれとほゞ同程度に高いものとすることができ
る。
The resonance characteristics of the probe according to the present invention constructed in this way are as shown in FIG.
is approximately equal to the series resonant frequency f 0 of the crystal resonator X, and furthermore, the Q at that time can be made approximately as high as that of the crystal resonator itself.

従つて、このプローブをセンサーとして上述の
生体内の温度又は圧力測定を行なえば、該プロー
ブの共振周波数の検出を容易ならしめることがで
きる。
Therefore, by using this probe as a sensor to measure the temperature or pressure inside the living body, the resonant frequency of the probe can be easily detected.

このようにコンデンサを付加するのみで上述の
如き作用を呈する理由は正確には不明であるが、
前記第4図に示した従来のプローブの共振周波数
f1は水晶振動子Xの直列共振周波数f0に前記アン
テナ・コイルLaのインダクタンスが関与しその
両者の合成リアクタンスによつて決定されるのに
対し、本発明に係かるプローブに於いては前記ア
ンテナ・コイルLaのインダクタンスと新らたに
挿入したコンデンサC1のキヤパンタンスとは水
晶振動子Xの直列共振周波数及びその近傍f0に於
いて直列共振を生じその結果アンテナ・コイルの
インダクタンスの影響が除去され該プローブ全体
の共振周波数は前記水晶振動子Xの直列共振周波
数f0と同一となるためであろう。
Although the exact reason why the above-mentioned effect is produced just by adding a capacitor is unknown,
Resonant frequency of the conventional probe shown in Figure 4 above
The inductance of the antenna coil La is involved in the series resonant frequency f 0 of the crystal resonator X, and f 1 is determined by the combined reactance of both, whereas in the probe according to the present invention, The inductance of the antenna coil La and the capacitance of the newly inserted capacitor C1 cause series resonance at the series resonance frequency of the crystal oscillator This is probably because the resonant frequency of the entire probe becomes the same as the series resonant frequency f 0 of the crystal resonator X.

更に、本発明は第3図に示すように変形しても
よい。
Furthermore, the present invention may be modified as shown in FIG.

即ち、第3図は本発明の他の実施例を示す回路
図であつて、前記コンデンサC1に置換して調整
可能なるトリマ・コンデンサC2を接続したもの
であつて、このようにすることによつてアンテ
ナ・コイルの製造誤差によるインダクタンスのば
らつき又は水晶振動子の製造誤差による共振周波
数のバラツキの補正或は測定周波数設定変更の際
その調整が極めて簡便となる利点をもたらす。
That is, FIG. 3 is a circuit diagram showing another embodiment of the present invention, in which an adjustable trimmer capacitor C2 is connected in place of the capacitor C1 . This provides the advantage that it is extremely easy to correct variations in inductance due to manufacturing errors in the antenna coil or variations in resonance frequency due to manufacturing errors in the crystal resonator, or to adjust the measurement frequency setting when changing it.

尚、本発明のプローブに於けるアンテナ・コイ
ルLaとコンデンサC1又はトリマコンデンサC2
からなる直列共振周波数は圧力或は温度によつて
変化する前記水晶発振子Xの直列共振周波f0とは
必らずしも同様に変化しないからこれらの周波数
が互いに異なる場合求めんとする水晶振動子Xの
共振周波数f0の検出を妨げるおそれがあるように
考えられるが、一般にコイルとコンデンサとで構
成する共振回路の特性曲線は水晶等の圧電振動子
等のそれに比べてなだらかであるから、若干の影
響はあるものの圧電振動子の自己共振特性のQを
劣化させるまでには致らない。
Incidentally, in the probe of the present invention, the series resonance frequency consisting of the antenna coil La and the capacitor C1 or the trimmer capacitor C2 is the same as the series resonance frequency f0 of the crystal oscillator X, which changes depending on pressure or temperature. do not necessarily change in the same way, so if these frequencies differ from each other, there is a risk of hindering the detection of the desired resonant frequency f0 of the crystal resonator Since the characteristic curve of the constituting resonant circuit is gentler than that of a piezoelectric vibrator such as a crystal, although there is some influence, it does not deteriorate the Q of the self-resonance characteristic of the piezoelectric vibrator.

このように構成したプローブの共振特性は上述
の通りであるから、これを用いて例えばその共振
周波数を従来のデイツプメータ法によつて測定す
れば水晶振動子等の圧電振動子自身の共振周波数
を求めることになるから、センサとしての感度を
増し測定が極めて容易となるばかりか共振周波数
に他の素子例えばアンテナ・コイルのインダクタ
ンスが関与しないから正確な温度或は圧力の測定
が可能となる。
Since the resonant characteristics of the probe configured in this way are as described above, if the resonant frequency is measured using the probe using the conventional dip meter method, the resonant frequency of the piezoelectric resonator itself, such as a crystal resonator, can be determined. This not only increases the sensitivity of the sensor and makes measurement extremely easy, but also allows accurate temperature or pressure measurement since the inductance of other elements such as antenna coils is not involved in the resonance frequency.

尚、本発明は上述の実施例のみに限定されずそ
の他の構成であつてもよく、例えば圧電振動子に
代えてその他の共振素子にアンテナ・コイルを付
加したものであればどのようなものにも適用可能
なること明らかであろう。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and may have other configurations. For example, any type of configuration in which an antenna coil is added to another resonant element instead of a piezoelectric vibrator can be used. It is clear that this is also applicable.

又、本発明のプローブの利用は上述のデイツプ
メータ法にとどまらず他の方法、例えば自から電
源を有するか、或は外部から電力を供給するよう
にした能動回路に本発明のプローブを接続して、
該プローブのアンテナ・コイルを介して電磁波を
放射せしめその共振周波数を測定するもの、又は
受動回路であつても前記プローブを夫々の素子を
並列に接続して構成し、その共振周波数をこれに
関与せしめた外部直列共振回路によつてそのレベ
ル最大点として測定するもの等種々応用可能なる
こと説明を要しないであろう。
Furthermore, the probe of the present invention can be used not only in the dip meter method described above, but also in other ways, such as by connecting the probe of the present invention to an active circuit that has its own power supply or is supplied with power from an external source. ,
A device that radiates electromagnetic waves through the antenna coil of the probe and measures its resonant frequency, or even if it is a passive circuit, the probe is constructed by connecting each element in parallel, and the resonant frequency is determined by the probe. There is no need to explain that various applications are possible, such as measuring the maximum level using an external series resonant circuit.

(発明の効果) 本発明は以上説明したように構成しかつ機能す
るものであるから、簡単な回路を付加するのみで
温度或は圧力等を測定するためのプローブの感度
を向上せしめるうえで極めて大きな効果を奏す
る。
(Effects of the Invention) Since the present invention is configured and functions as explained above, it is extremely effective in improving the sensitivity of a probe for measuring temperature, pressure, etc. by simply adding a simple circuit. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2
図は前記第1図に示した本発明の実施例の共振特
性と水晶振動子単体のそれとを比較した図、第3
図は本発明の他の実施例を示す回路図、第4図及
び第5図は従来のプローブ及び外部装置を示す概
要図、第6図は従来のプローブと水晶振動子との
共振特性を比較する図、第7図a,b及びcは従
来のプローブの動作を説明するための等価回路で
あつてaは水晶振動子単体の等価回路、b及びc
は夫々従来のプローブの等価回路を示すものであ
る。 X……水晶振動子、La及びLb……アンテナ・
コイル、C1及びC2……コンデンサ、OSC……発
振器、V,V……電圧計。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
Figure 3 is a diagram comparing the resonance characteristics of the embodiment of the present invention shown in Figure 1 with that of a single crystal resonator.
The figure is a circuit diagram showing another embodiment of the present invention, Figures 4 and 5 are schematic diagrams showing a conventional probe and external devices, and Figure 6 is a comparison of resonance characteristics between a conventional probe and a crystal resonator. Figures 7a, b and c are equivalent circuits for explaining the operation of a conventional probe, where a is an equivalent circuit of a single crystal resonator, and b and c are
1 and 2 respectively show equivalent circuits of conventional probes. X...Crystal oscillator, La and Lb...Antenna/
Coil, C 1 and C 2 ... capacitor, OSC ... oscillator, V, V ... voltmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 温度又は圧力依存性をもつた圧電振動子にア
ンテナ・コイルを接続して構成する共振回路に電
磁波を与えこれが共振する周波数を観測或は測定
することによつて前記圧電振動子周囲の温度又は
圧力を測定する際の前記プローブに於いて、前記
アンテナ・コイルと直列にコンデンサを挿入接続
すると共に、該コンデンサと前記アンテナ・コイ
ルとの直列共振周波数を前記圧電振動子の直列共
振周波数にほぼ一致せしめる如く構成したことを
特徴とする温度又は圧力測定用プローブ。
1. By applying electromagnetic waves to a resonant circuit formed by connecting an antenna coil to a piezoelectric vibrator with temperature or pressure dependence and observing or measuring the frequency at which this resonates, the temperature or In the probe used to measure pressure, a capacitor is inserted and connected in series with the antenna coil, and the series resonance frequency between the capacitor and the antenna coil is approximately matched to the series resonance frequency of the piezoelectric vibrator. 1. A probe for measuring temperature or pressure, characterized in that it is configured to
JP2887785A 1985-02-15 1985-02-15 Probe for measuring temperature and pressure Granted JPS61188698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2887785A JPS61188698A (en) 1985-02-15 1985-02-15 Probe for measuring temperature and pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2887785A JPS61188698A (en) 1985-02-15 1985-02-15 Probe for measuring temperature and pressure

Publications (2)

Publication Number Publication Date
JPS61188698A JPS61188698A (en) 1986-08-22
JPH0426518B2 true JPH0426518B2 (en) 1992-05-07

Family

ID=12260611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2887785A Granted JPS61188698A (en) 1985-02-15 1985-02-15 Probe for measuring temperature and pressure

Country Status (1)

Country Link
JP (1) JPS61188698A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806808B1 (en) * 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes
JP2011137737A (en) * 2009-12-28 2011-07-14 Fukuda Crystal Laboratory Wireless measurement device and wireless temperature measurement system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539174A (en) * 1978-09-13 1980-03-18 Sharp Kk Cooking device heating source controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539174A (en) * 1978-09-13 1980-03-18 Sharp Kk Cooking device heating source controller

Also Published As

Publication number Publication date
JPS61188698A (en) 1986-08-22

Similar Documents

Publication Publication Date Title
US8026729B2 (en) System and apparatus for in-vivo assessment of relative position of an implant
EP2268218B1 (en) System and apparatus for in-vivo assessment of relative position of an implant
US7667547B2 (en) Loosely-coupled oscillator
US11864919B1 (en) Calibrating passive LC sensor
Pichorim et al. A novel method to read remotely resonant passive sensors in biotelemetric systems
JPH0426518B2 (en)
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
Van Schuylenbergh et al. Passive telemetry by harmonics detection
JPS62192136A (en) Apparatus for measuring temperature in living body
JPH0587248B2 (en)
JPS618639A (en) Magnetostriction type torque detector
JPH0448176B2 (en)
JPH0569535B2 (en)
WO2002079803A1 (en) Method and apparatus for radiation dosimetry
RU1808338C (en) Physiotherapeutic uhf apparatus
JPH053911B2 (en)
JPS635228A (en) Temperature or pressure sensor
JPS61146230A (en) Living body emedding sensor with engaging jig
Delchar et al. An improved method for detecting passive pills (telemetric measurement of physiological parameters)
JPS6366427A (en) Temperature/pressure sensor utilizing ultrasonic wave
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
SU591780A1 (en) Device for measuring machine rotating component parameters
JPH0334812B2 (en)
CA2610379A1 (en) Method and apparatus for eddy current compensation in a radio frequency probe
RU2136207C1 (en) Method for diagnostics of brain edema and device which implements said method