JPS618639A - Magnetostriction type torque detector - Google Patents

Magnetostriction type torque detector

Info

Publication number
JPS618639A
JPS618639A JP12927884A JP12927884A JPS618639A JP S618639 A JPS618639 A JP S618639A JP 12927884 A JP12927884 A JP 12927884A JP 12927884 A JP12927884 A JP 12927884A JP S618639 A JPS618639 A JP S618639A
Authority
JP
Japan
Prior art keywords
excitation
detection
torque
capacitor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12927884A
Other languages
Japanese (ja)
Inventor
Toru Kita
喜多 徹
Tatsuya Sekido
達哉 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12927884A priority Critical patent/JPS618639A/en
Publication of JPS618639A publication Critical patent/JPS618639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To detect accurately torque without receiving the influence of a gap for an object to be measured in the stage of measuring the torque by connecting a capacitor to a coil for excitation and a coil for detection respectively to constitute a resonance circuit and adjusting the resonance characteristic. CONSTITUTION:The coils 3, 4 are wound to the leg parts 1a, 1b of a magnetic core 1 for excitation made into a U-shape and the coils 5, 6 are wound on the leg parts 2a, 2b of the magnetic core 2 for detection. The core 1 and the core 2 are intersected orthogonally with each other to constitute a magnetostriction type torque detector. The leg parts 1a, 1b, 2a, 2b are brought into contact with the magnetostriction material 7 of the material to be measured. The capacitor 20 is connected in series to the coils 3, 4 and the capacitor 21 is connected in parallel to the coils 5, 6 to constitute both into the resonance circuit. An oscillator 22 for excitation is provided to an excitation circuit and the values of the capacitors 20, 21 are so selected that the resonance circuit tunes to the frequency of an AC power source for excitation. The resonance characteristics of the resonance circuits on the excitation side and detection side are adjusted and therefore the torque to output voltage is detected without receiving influence of the spacing with the material to be measured.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、トルク測定時の被測定物に対する間隔の変動
による出力特性のばらつきを簡潔な回路構成により補正
できるようにした磁歪式トルク検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a magnetostrictive torque detection device that is capable of correcting variations in output characteristics due to variations in distance between objects to be measured during torque measurement using a simple circuit configuration.

(ロ)従来技術 従来、自動車のステアリングシャフトやトランスミッシ
ョンのシャフトに加わるトルクを検出し、/′:ワース
テアリング機構の油圧ポンプを作動させるようにしたり
、クラッチをなめらかにつないで自動車の走行の安定を
保つようにすることが知られている。シャフトに加わる
トルクを検出する方法の1つに、シャフトで生じる逆磁
歪効果を利用したものがあり、第1図にその一例として
特公昭31−942号に提案されている磁歪式トルク検
出装置を被測定物と′なるシャフトに取り付けた状態で
示す。図において、1は一対の脚部1a、1bを有する
U字型の励磁用磁芯、2は励磁用磁芯lと直交して配置
された一対の脚部2a + 2bを有する検出用磁芯で
あり、これらの磁芯1,2はフェライトあるいはパーマ
ロイなどの磁性材料でできている。
(b) Prior art Conventionally, the torque applied to the steering shaft or transmission shaft of an automobile is detected, and the hydraulic pump of the power steering mechanism is operated, or the clutch is connected smoothly to stabilize the running of the automobile. It is known to keep. One method of detecting the torque applied to a shaft is to utilize the inverse magnetostrictive effect generated in the shaft. Figure 1 shows an example of the magnetostrictive torque detection device proposed in Japanese Patent Publication No. 31-942. It is shown attached to a shaft, which is the object to be measured. In the figure, 1 is a U-shaped excitation magnetic core having a pair of legs 1a and 1b, and 2 is a detection core having a pair of legs 2a + 2b arranged orthogonally to the excitation magnetic core l. These magnetic cores 1 and 2 are made of a magnetic material such as ferrite or permalloy.

3.4は脚部1a、1bに配置された励磁用コイル、5
 、6Iri脚部2a 、2bに配置された検出用コイ
ル、7は被測定物となる磁歪材料でできたシャフトであ
る。磁芯1.2のシャフト側端面はシャフトに対して非
接触となるように配置されている。
3.4 is an excitation coil arranged on the legs 1a and 1b; 5
, 6Iri are detection coils disposed on the legs 2a and 2b, and 7 is a shaft made of a magnetostrictive material that serves as an object to be measured. The shaft-side end surface of the magnetic core 1.2 is arranged so as not to contact the shaft.

上記トルク検出装置により、シャフト7に加わるトルク
を検出するには、励磁用コイル3゜4に一定振幅の交流
励磁電圧を印加してシャフト7の表面に磁気的ブリッジ
回路P形成する。
In order to detect the torque applied to the shaft 7 using the torque detection device, an AC excitation voltage of a constant amplitude is applied to the excitation coil 3.4 to form a magnetic bridge circuit P on the surface of the shaft 7.

いまシャフト7にトルクが加わるとシャフト7の逆磁歪
効果により磁気的ブリッジ回路の平衡がくずれ、検出用
コイル5,6にトルクの大きさに対応した不平衡磁束が
発生して検出用コイル5.6に誘導起電力が生じるので
、そのときの不平衡磁束を検出することによりトルクの
大きさを測定することができる。
Now, when torque is applied to the shaft 7, the balance of the magnetic bridge circuit is lost due to the inverse magnetostrictive effect of the shaft 7, and an unbalanced magnetic flux corresponding to the magnitude of the torque is generated in the detection coils 5 and 6. Since an induced electromotive force is generated at 6, the magnitude of the torque can be measured by detecting the unbalanced magnetic flux at that time.

ところで、上記トルク検出装置の取り付は時に励磁用磁
芯と検出用磁芯との取付位置がばらついたり、シャフト
が回転時に偏心やたわみを生じると、シャフトと磁芯と
の間の距離が変化してしまい、その結果検出に帰与する
実質的な磁束が変化してしまうためトルクに対する出力
電圧の特性が常に一定にならず、具体的にはシャフトと
磁芯との間の距離が増加するのに伴なって出力電圧が小
さくなってしまうという問題がある。
By the way, when installing the above-mentioned torque detection device, the distance between the shaft and the magnetic core may change if the mounting positions of the excitation magnetic core and the detection magnetic core vary, or if the shaft becomes eccentric or deflects during rotation. As a result, the actual magnetic flux attributed to detection changes, so the characteristics of the output voltage with respect to torque are not always constant, and specifically, the distance between the shaft and the magnetic core increases. There is a problem in that the output voltage decreases as the output voltage increases.

そこで、この問題を解、決するためにたとえば特開昭5
1−60580号においては、第2図に示すようにトル
ク測定用の磁芯1.2およびコイル3ないし6のほかに
磁束変化検出用の磁芯8.9とコイル10’、11とを
やはりシャフト7に対して非接触となるように配置し、
これらの磁芯8,9とコイル10.11とによりシャフ
ト7と磁芯1.2との間の距離tの変化に伴なう磁束変
化を検出し、この磁束変化分に基づいてトルク対出力電
圧特性の補正を行なうようにしている。
Therefore, in order to solve this problem, for example,
In No. 1-60580, as shown in Fig. 2, in addition to the magnetic core 1.2 and coils 3 to 6 for torque measurement, a magnetic core 8.9 and coils 10' and 11 for detecting magnetic flux changes are also used. Arranged so as not to contact the shaft 7,
These magnetic cores 8 and 9 and the coil 10.11 detect the magnetic flux change due to the change in the distance t between the shaft 7 and the magnetic core 1.2, and based on this magnetic flux change, the torque vs. output is calculated. The voltage characteristics are corrected.

しかしながら、このトルク検出装置においてはトルク対
出力電圧特性を補正するための処理回路が複雑になると
ともに検出装置が磁束検出用の磁芯やコイルの分だけ大
きくなってしまうし、またトルク測定用の磁芯の取付位
置のばらつきによる変動要因のほかに磁束変化検出用と
して配置した磁芯の取付位置のばらつきによる変動要因
が加わり、正確な検出ができないため実用化が困難であ
る。
However, in this torque detection device, the processing circuit for correcting the torque vs. output voltage characteristics becomes complicated, and the detection device becomes large due to the magnetic core and coil for magnetic flux detection. In addition to the fluctuation factor due to the variation in the mounting position of the magnetic core, the fluctuation factor due to the variation in the mounting position of the magnetic core placed for detecting magnetic flux changes is added, making accurate detection impossible, making it difficult to put it into practical use.

(ハ)発明の目的および構成 本発明は上記の点に着目してなされたもので一少なくと
も表面が磁性である被測定物に交流磁束を流すための励
磁用コイル手段と、前記被測定物を流れる交流磁束の変
化を検出する検出用フィル手段と分有し、前記磁束の変
化に基づいて前記被測定物に働くトルクを検出するトル
ク検出装置において、トルク測定時の被測定物に対する
間隔の変動による出力特性のばらつきを簡潔な回路構成
により補正できるようにすること2目的とし、その目的
を達成するために、前記励磁用コイル手段および前記検
出用コイル手段にそれぞれコンデンサを接続し、前記励
磁用コイル手段および検出用コイル手段の前記被測定物
に対する所定間隔において前記励磁用コイルとコンデン
サおよび前記検出用コイルとコンデンサとでそれぞれ構
成される共振回路が励磁用交流電源の周波数に同調する
ように前記各コンデンサの値を選定するように構成した
ものである。
(c) Object and structure of the invention The present invention has been made with attention to the above points, and includes: (1) excitation coil means for flowing an alternating magnetic flux through an object to be measured whose surface is at least magnetic; In a torque detection device that includes a detection fill means for detecting a change in flowing alternating magnetic flux and detects a torque acting on the object to be measured based on a change in the magnetic flux, there is a change in the distance between the object to be measured and the object to be measured during torque measurement. The second purpose is to be able to correct variations in output characteristics caused by The coil means and the detection coil means are arranged at predetermined intervals with respect to the object to be measured so that a resonant circuit constituted by the excitation coil and the capacitor and the detection coil and the capacitor, respectively, is tuned to the frequency of the excitation AC power source. The configuration is such that the value of each capacitor is selected.

に)実施例 以下図面に基づいて本発明を説明する。) Example The present invention will be explained below based on the drawings.

第3図は本発明による磁歪式トルク検出装置の一実施例
を被測定物となるシャフトに取り付けた状態で示してお
り、第1図と同じ参照数字は同じ構成部分を示している
。この実施例では、励磁用コイル3.4に対してコンデ
ンサ20を直列に接続してこれらのコイル3,4とコン
デンサ20とにより直列共振回路を構成し、検出用コイ
ル5.6に対してコンデンサ21を並列に接続してこれ
らのコイル5.6とコンデンサ21とにより直列共振回
路を構成しである。図において、22は励磁用コイル3
,4に励磁用電圧を印加するための発振器、23は電圧
計であり、第3図の等価回路を第4図に示す。
FIG. 3 shows an embodiment of the magnetostrictive torque detection device according to the present invention attached to a shaft as an object to be measured, and the same reference numerals as in FIG. 1 indicate the same components. In this embodiment, a capacitor 20 is connected in series to the excitation coil 3.4, and these coils 3, 4 and the capacitor 20 constitute a series resonant circuit, and a capacitor 20 is connected to the excitation coil 5.6. 21 are connected in parallel, and these coils 5, 6 and capacitor 21 form a series resonant circuit. In the figure, 22 is the excitation coil 3
, 4 is an oscillator for applying excitation voltage, and 23 is a voltmeter, and the equivalent circuit of FIG. 3 is shown in FIG.

第4図の等価回路において、励磁側および検出側ともに
そのインピーダンスは共振周波INに同調するときが最
小となるので、励磁側については一定の励磁電圧におい
て最大の励磁゛電流を励磁用コイル3,4に流すことが
でき、また検出側についてはコンデンサC2に対するチ
ャージ13流が最大となるため、コンデンサC2の両端
に最大の電圧が発生しすなわち最大感度が得られる。励
磁側および検出側の共振回路の各共振周波数は次の式で
求められる。
In the equivalent circuit shown in Fig. 4, the impedance of both the excitation side and the detection side is at its minimum when tuned to the resonance frequency IN, so on the excitation side, the maximum excitation current is applied to the excitation coil 3 at a constant excitation voltage. 4, and on the detection side, since the charge 13 flow to capacitor C2 is maximum, the maximum voltage is generated across capacitor C2, that is, the maximum sensitivity is obtained. The resonant frequencies of the excitation-side and detection-side resonant circuits are determined by the following equations.

ただし、fl:励磁側の共振周波数 f2:検出側の共振周波数 Ls:励磁用コイル3.4のインダクタンスC1:励磁
側コンデンサ20の容量 L2 : 検出用コイル5.6のインダクタンスC2:
検出側コンデンサ21の容量 次に、上記トルク検出装置の磁芯とシャフトとの間隔の
変化に伴なうトルク対出力電圧特性のばらつきに対する
補正について説明する。
However, fl: excitation side resonance frequency f2: detection side resonance frequency Ls: inductance C1 of excitation coil 3.4: capacitance L2 of excitation side capacitor 20: inductance C2 of detection coil 5.6:
Capacity of Detection Side Capacitor 21 Next, a description will be given of correction for variations in the torque vs. output voltage characteristics due to changes in the distance between the magnetic core and the shaft of the torque detection device.

まず、励磁側および検出側の磁芯1.2とシャフト7と
の間隔が増加する場合について考えてみると、この場合
には磁芯1または2とシャフト7とにより形成される閉
磁路における間隔部分のリアクタンスが増加するため、
励磁用コイル3.4および検出用コイル5.6の各イン
ダクタンスLx 、L21”を減少する。従って、上式
によって求められる励磁側および検出側の各共振回路の
共振周波数flおよびf2は高周波側に移行する。ここ
でたとえば、トルク検出装置の取付精度からシャフト7
と検出装置の磁芯l。
First, considering the case where the distance between the magnetic core 1.2 and the shaft 7 on the excitation side and the detection side increases, in this case, the distance in the closed magnetic path formed by the magnetic core 1 or 2 and the shaft 7 Because the reactance of the part increases,
The inductances Lx and L21'' of the excitation coil 3.4 and the detection coil 5.6 are reduced. Therefore, the resonant frequencies fl and f2 of the excitation side and detection side resonance circuits determined by the above equation are shifted to the high frequency side. For example, from the mounting accuracy of the torque detection device, the shaft 7
and the magnetic core of the detection device.

2との間隔の距離が0.5〜1.5簡の範囲においてば
らつくと考えた場合、間隔の変化に対する共振周波数の
変化を周波数とインピーダンスとの関係で表わすと第5
図に示すようになる。図中Aは距離が0.5−のとき、
Bは距離が1.0111111のとき、Cは距離が1.
5霧のときの特性である。
If we consider that the distance between 2 and 2 varies in the range of 0.5 to 1.5, the change in the resonant frequency with respect to the change in the distance can be expressed as the relationship between frequency and impedance.
The result will be as shown in the figure. A in the figure is when the distance is 0.5-,
When B has a distance of 1.0111111, C has a distance of 1.0111111.
5.Characteristics when foggy.

いま、最大間隔1.5簡のときの励磁用コイル3.4の
インダクタンスL1および検出用コイル5.6のインダ
クタンスL2に対して、励磁用周波数foにそれぞれ同
調するようにコンデンサC1およびC2を設定しておく
ことにより、このときに励磁側で最大励磁電流が、また
検出側で最大感度が得られるようにしておく。このよう
にすれば、間隔がi、o WInになったときは励磁側
およヒ検出側ではインダクタンスL、 、 L2が増加
するため励磁用周波数foでは非同調の状態となり、励
磁側ではインピーダンスの増加分だけ励磁電流が減少し
、検出側では感度低下が生じる。さらに間隔が0.5四
になったときはさらにインダクタンスLl + L4が
増加するため間隔が1−Owmのときより励磁を流が減
少するとともに感度が低下する。従って、励磁用コイル
に一定振幅の励磁電圧を印加した状態において、シャフ
ト7と検出装置の磁芯1,2との間隔が大きいときは間
隔部分のりアクタンスの変化分を相殺するように励磁側
の励磁電流が大きくなるとともに検出側の感度が上がり
、これに対して上記間隔が小さいときは間隔部分のりア
クタンスの変化分を相殺するように励磁側の励磁電流が
小さくなるとともに検出側の感度が下がるので、上記間
隔の変化にかかわらず安定な出力特性を得ることができ
る。すなわち、励磁側および検出側の各共振回路の共振
特性(特にQ)を調整する。
Now, capacitors C1 and C2 are set so that the inductance L1 of the excitation coil 3.4 and the inductance L2 of the detection coil 5.6 are tuned to the excitation frequency fo when the maximum interval is 1.5. By doing so, the maximum excitation current can be obtained on the excitation side and the maximum sensitivity can be obtained on the detection side at this time. In this way, when the interval becomes i, o WIn, the inductances L, , L2 increase on the excitation side and the detection side, resulting in an out-of-tuned state at the excitation frequency fo, and the impedance on the excitation side increases. The excitation current decreases by the increased amount, resulting in a decrease in sensitivity on the detection side. Further, when the interval is 0.54, the inductance Ll + L4 further increases, so that the excitation current decreases and the sensitivity decreases compared to when the interval is 1-Owm. Therefore, when an excitation voltage of a constant amplitude is applied to the excitation coil, when the distance between the shaft 7 and the magnetic cores 1 and 2 of the detection device is large, the excitation side is As the excitation current increases, the sensitivity on the detection side increases; on the other hand, when the above-mentioned interval is small, the excitation current on the excitation side decreases and the sensitivity on the detection side decreases so as to cancel out the change in the actance at the interval. Therefore, stable output characteristics can be obtained regardless of the change in the interval. That is, the resonance characteristics (particularly Q) of each resonance circuit on the excitation side and the detection side are adjusted.

ことにより、シャフトと検出装置との間隔の変化に対す
る励磁側の励磁電流の変化の度合および検出側の感度の
変化の度合をそれぞれ最適な値に調整すれば安定な出力
特性が得られる。具体的な調整法としては、たとえばコ
イルの線径や巻数を変えたり、コイルと直列に抵抗を接
続したりする調整法が考えられる。
As a result, stable output characteristics can be obtained by adjusting the degree of change in the excitation current on the excitation side and the degree of change in sensitivity on the detection side to optimal values with respect to changes in the distance between the shaft and the detection device. Specific adjustment methods include, for example, changing the wire diameter or number of turns of the coil, or connecting a resistor in series with the coil.

このように、励磁側および検出側のコイルにコンデンサ
を接続し励磁側、検出側のそれぞれに共振回路を構成し
て、シャフトと検出装置との間隔部分のりアクタンスの
変化分を相殺するように励磁電流と検出感度とを一緒に
調整すれば、第6図(ハ)に示すようなトルク−出力電
圧特性を得ることができる。図において破線はシャフト
と検出装置との間隔が0.5mのとき、実線は間隔が1
.0咽のとき、鎖線は間隔が1.5朔のときの出力特性
を示している。従って、本実施例の場合には同図(イ)
に示すような従来のトルク−出力電圧特性に比べて、シ
ャフトと検出装置との間隔の変化による影響−をほとん
ど受けることはなく、安定したトルク−出力電圧の出力
特性が得られることがわかる。なお、同図(ロ)は励磁
側にのみ共振回路を構成した場合のトルク−出力電圧特
性を示しており、この場合には同図(イ)の場合より出
力特性の変化を1/2に抑えることができる。
In this way, capacitors are connected to the coils on the excitation side and detection side to form resonance circuits on the excitation side and detection side, respectively, and the excitation is performed so as to cancel out the change in actance in the space between the shaft and the detection device. By adjusting the current and detection sensitivity together, it is possible to obtain the torque-output voltage characteristic as shown in FIG. 6(c). In the figure, the broken line indicates the distance between the shaft and the detection device is 0.5m, and the solid line indicates the distance between the shaft and the detection device is 1m.
.. At zero, the chain line shows the output characteristics when the interval is 1.5 mm. Therefore, in the case of this example, the same figure (a)
It can be seen that, compared to the conventional torque-output voltage characteristic shown in FIG. Note that Figure (B) shows the torque-output voltage characteristics when a resonant circuit is configured only on the excitation side, and in this case, the change in output characteristics is reduced to 1/2 compared to the case of Figure (A). It can be suppressed.

このように構成すれば、従来のようにシャフトとトルク
検出装置との間の距離の変化による磁束変化を検出する
ための磁束変化検出部が不要となるので検出装置全体の
大きさを小さくできるとともに出力特性を補正するため
の処理回路が不要となる。
With this configuration, there is no need for a magnetic flux change detection section for detecting changes in magnetic flux due to changes in the distance between the shaft and the torque detection device as in the past, so the overall size of the detection device can be reduced. A processing circuit for correcting output characteristics is not required.

(ホ)発明の詳細 な説明したように、本発明は、少なくとも表面が磁性で
ある被測定物に交流磁束を流すための励磁用コイル手段
と、前記被測定物を流れる交流磁束の変化を検出する検
出用コイル手段とを有し、前記磁束の変化に基づいて前
記被測定物に働くトルクを検出するトルク検出装置にお
いて、前記励磁用コイル手段および前記検出用コイル手
段にそれぞれコンデンサを接続し、前記励磁用コイル手
段および検出用コイル手段の前記被測定物に対する所定
間隔において前記励磁用コイル手段とコンデンサおよび
前記検出用コイル手段とコンデンサとでそれぞれ構成さ
れる共振回路が励磁用交流電源の周波数に同調するよう
に前記各コンデンサの値を選定するようにしたので、ト
ルク測定時の被測定物に対する間隔の変動による影響を
ほとんど受けることはなく、安定したトルク対出力電圧
特性を得ることができ、出力特性を補正するための処理
回路が不要となる。
(E) Detailed Description of the Invention As described above, the present invention includes an excitation coil means for causing an alternating magnetic flux to flow through an object to be measured whose surface is magnetic at least, and detecting changes in the alternating magnetic flux flowing through the object to be measured. a detection coil means for detecting a torque acting on the object to be measured based on a change in the magnetic flux, wherein a capacitor is connected to each of the excitation coil means and the detection coil means; At a predetermined interval between the excitation coil means and the detection coil means with respect to the object to be measured, a resonant circuit composed of the excitation coil means and a capacitor, and the detection coil means and a capacitor, respectively, is connected to the frequency of the excitation AC power supply. Since the values of each of the capacitors are selected so as to be synchronized, stable torque vs. output voltage characteristics can be obtained without being affected by changes in the distance to the object to be measured during torque measurement. A processing circuit for correcting output characteristics is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のそれぞれ異なるトルク検出
装置を被測定物となるシャフトに取り付けた状態で示し
た斜視図、第3図は本発明によるトルク検出装置を被測
定物となるシャフトに取り付けた状態で示した斜視図、
第4図は第3図に示したトルク検出装置の共振回路の等
価回路、第5図はシャフトとトルク検出装置との間隔の
変化に対する共振周波数の変化を周波数とインピーダン
スとの関係で表わした図、第6図はトルク対出力電圧特
性図であり、(イ)は従来の特性図、(ロ)は励磁側に
のみ共振回路を構成した場合の特性図、(ハ)は本実施
例の場合の特性図である。 1・・・励磁用磁芯、2・・・検出用磁芯、3.4・・
・励磁用コイル、5.6・・・検出用コイル、7・・・
シャフト(被測定物)、20.21・・・コンデンサ、
22・・・発振器 特許出願人 日産自動車株式会社 代理人 弁理士 鈴 木 弘 男 第1図 jI2図
FIGS. 1 and 2 are perspective views showing different conventional torque detection devices attached to a shaft as an object to be measured, and FIG. 3 is a perspective view showing a torque detection device according to the present invention attached to a shaft as an object to be measured. A perspective view of the installed state;
Fig. 4 is an equivalent circuit of the resonant circuit of the torque detection device shown in Fig. 3, and Fig. 5 is a diagram showing the relationship between frequency and impedance, showing changes in the resonance frequency with respect to changes in the distance between the shaft and the torque detection device. , Fig. 6 is a torque vs. output voltage characteristic diagram, where (a) is a conventional characteristic diagram, (b) is a characteristic diagram when a resonant circuit is configured only on the excitation side, and (c) is a diagram of the present example. FIG. 1...Magnetic core for excitation, 2...Magnetic core for detection, 3.4...
・Excitation coil, 5.6...Detection coil, 7...
Shaft (object to be measured), 20.21... Capacitor,
22... Oscillator patent applicant Nissan Motor Co., Ltd. agent Patent attorney Hiroshi Suzuki Figure 1JI2

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面が磁性である被測定物に交流磁束を流す
ための励磁用コイル手段と、前記被測定物を流れる交流
磁束の変化を検出する検出用コイル手段とを有し、前記
磁束の変化に基づいて前記被測定物に働くトルクを検出
するトルク検出装置において、前記励磁用コイル手段お
よび前記検出用コイル手段にそれぞれコンデンサを接続
し、励磁用コイル手段および検出用コイル手段の前記被
測定物に対する所定間隔において前記励磁用コイルとコ
ンデンサおよび前記検出用コイルとコンデンサとでそれ
ぞれ構成される共振回路が励磁用交流電源の周波数に同
調するように前記各コンデンサの値を選定したことを特
徴とする磁歪式トルク検出装置。
It has an excitation coil means for causing an alternating current magnetic flux to flow through an object to be measured whose surface is magnetic at least, and a detection coil means for detecting a change in the alternating current magnetic flux flowing through the object to be measured, based on the change in the magnetic flux. In the torque detection device, a capacitor is connected to each of the excitation coil means and the detection coil means, and the excitation coil means and the detection coil means are set at a predetermined level with respect to the measured object. The magnetostrictive type is characterized in that the value of each of the capacitors is selected so that a resonant circuit composed of the excitation coil and the capacitor and the detection coil and the capacitor, respectively, is tuned to the frequency of the excitation AC power supply at intervals. Torque detection device.
JP12927884A 1984-06-25 1984-06-25 Magnetostriction type torque detector Pending JPS618639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12927884A JPS618639A (en) 1984-06-25 1984-06-25 Magnetostriction type torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12927884A JPS618639A (en) 1984-06-25 1984-06-25 Magnetostriction type torque detector

Publications (1)

Publication Number Publication Date
JPS618639A true JPS618639A (en) 1986-01-16

Family

ID=15005625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12927884A Pending JPS618639A (en) 1984-06-25 1984-06-25 Magnetostriction type torque detector

Country Status (1)

Country Link
JP (1) JPS618639A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182126A (en) * 1984-09-29 1986-04-25 Toshiba Corp Torque sensor
EP0259558A2 (en) * 1986-09-10 1988-03-16 Robert Bosch Gmbh Dynamometer for measuring stress in a pin shaped or so member
US4976160A (en) * 1986-07-23 1990-12-11 Robert Bosch Gmbh Process for contactless measurement of mechanical stress and device for carrying out the same
EP0675342A3 (en) * 1990-12-10 1995-10-18 Sensortech, L.P. Magnetostrictive sensor, in particular for measuring torque, and its application in an engine misfire, knock or roughness detection method and apparatus
EP1150041B1 (en) * 2000-04-27 2005-06-15 DaimlerChrysler AG Arrangement for torque-free gear shifting
JP2009240919A (en) * 2008-03-31 2009-10-22 Asahi Organic Chem Ind Co Ltd Method for mixing powder and device used for the same
WO2016198658A1 (en) * 2015-06-10 2016-12-15 Torque And More (Tam) Gmbh Distance compensated active sensing modules
CN113310605A (en) * 2021-05-11 2021-08-27 山东大学 Double-meter-shaped-shaft type force sensor and method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182126A (en) * 1984-09-29 1986-04-25 Toshiba Corp Torque sensor
US4976160A (en) * 1986-07-23 1990-12-11 Robert Bosch Gmbh Process for contactless measurement of mechanical stress and device for carrying out the same
EP0259558A2 (en) * 1986-09-10 1988-03-16 Robert Bosch Gmbh Dynamometer for measuring stress in a pin shaped or so member
EP0675342A3 (en) * 1990-12-10 1995-10-18 Sensortech, L.P. Magnetostrictive sensor, in particular for measuring torque, and its application in an engine misfire, knock or roughness detection method and apparatus
EP1150041B1 (en) * 2000-04-27 2005-06-15 DaimlerChrysler AG Arrangement for torque-free gear shifting
JP2009240919A (en) * 2008-03-31 2009-10-22 Asahi Organic Chem Ind Co Ltd Method for mixing powder and device used for the same
WO2016198658A1 (en) * 2015-06-10 2016-12-15 Torque And More (Tam) Gmbh Distance compensated active sensing modules
US20180180499A1 (en) * 2015-06-10 2018-06-28 Torque And More (Tam) Gmbh Distance Compensation
US10444096B2 (en) 2015-06-10 2019-10-15 Torque And More (Tam) Gmbh Distance compensation
CN113310605A (en) * 2021-05-11 2021-08-27 山东大学 Double-meter-shaped-shaft type force sensor and method thereof
CN113310605B (en) * 2021-05-11 2022-12-27 日照海卓液压有限公司 Double-meter-shaped-shaft type force sensor and method thereof

Similar Documents

Publication Publication Date Title
CN107923765B (en) Device for measuring a measurement variable
EP0661547B1 (en) DC current sensor
US3890564A (en) Apparatus for inducing eddy current in a semiconductor wafer for measuring the electric conductivity or resistivity thereof
JP2954662B2 (en) Method for compensating fluctuation of output signal of resonant circuit and distance detector
JPS618639A (en) Magnetostriction type torque detector
US6541963B2 (en) Differential eddy-current transducer
JPS623881B2 (en)
JP4312438B2 (en) Wire wound type magnetic sensor
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
JPH056641B2 (en)
JP2501429B2 (en) Magnetic detection device
JP2004170273A (en) Displacement sensor
JPH0743105A (en) Position transducer
JP4194821B2 (en) Coin identification sensor
JPS62229038A (en) Stress measuring apparatus
SU785643A1 (en) Apparatus for measuring mechanical stress in ferro-magnetic-material objects
JPH02156113A (en) Linear displacement detector
SU1229648A1 (en) Viscometer
JPS62215863A (en) Magnetic detector
RU2059259C1 (en) Magnetic-sensitive unit
SU1120271A1 (en) Viscosity measuring device
JP2002505487A (en) Inductive sensor
JPH0521025Y2 (en)
SU389391A1 (en) DEVICE FOR MEASURING DISPLACEMENTS
SU1716338A1 (en) Method of determining mechanical stresses with the aid of a magnetoelastic transducer of the transformer type