JPH0743105A - Position transducer - Google Patents

Position transducer

Info

Publication number
JPH0743105A
JPH0743105A JP19046193A JP19046193A JPH0743105A JP H0743105 A JPH0743105 A JP H0743105A JP 19046193 A JP19046193 A JP 19046193A JP 19046193 A JP19046193 A JP 19046193A JP H0743105 A JPH0743105 A JP H0743105A
Authority
JP
Japan
Prior art keywords
coil
coils
output voltage
core
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19046193A
Other languages
Japanese (ja)
Inventor
Kiyoto Kobayashi
清人 小林
Koji Inoue
光二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19046193A priority Critical patent/JPH0743105A/en
Publication of JPH0743105A publication Critical patent/JPH0743105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To eliminate an influence on a detector due to a change in temperature by connecting a plurality of coils in series for keeping the sum of coil impedance constant even upon the motion of a magnetic substance, and measuring an impedance change on the basis of the output voltage of the coils. CONSTITUTION:When a core 3 is positioned at the center of a plurality of coils S1 and S2, the impedance values Z1 and Z2 thereof are equal to each other, and coil output voltage becomes a half of exciting voltage. When the core 3 or a spool 8 moves in a negative X (left) direction, the impedance value Z1 becomes larger than the value Z2, and voltage applied to the coil S1 becomes larger than voltage applied to the coil S2, thereby reducing the coil output voltage. Thus, the coil output voltage proportional to the travel distance of the core 3 can be provided. Also, both coils have the same temperature characteristics, and even when temperature changes, the coil output voltage does not change, regardless of the change of the impedance values Z1 and Z2 by the same ratio. Thus, the output of a detector where the coil output voltage is entered, becomes independent of ambient temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置検出装置、例えば
油圧機器等のスプールを動かして油圧を制御するバルブ
におけるスプールの位置検出を行う位置検出装置や、精
密な位置検出を要する精密機器の位置検出装置等に利用
できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device, for example, a position detecting device for detecting the position of a spool in a valve which controls a hydraulic pressure by moving a spool of a hydraulic device, and a precision device which requires precise position detection. It can be used for a position detection device and the like.

【0002】[0002]

【従来の技術】一般に、位置検出装置には差動トランス
式の位置センサがある。差動トランス式の位置センサは
電磁誘導を利用したものであり、図4、図5に示すよう
に1次コイルPと2次コイルS1、S2からなってい
る。図4はこの差動トランス式の位置検出装置のセンサ
部であり、コイルボビン9には入力コイルPと出力コイ
ルS1、S2とが巻かれ、コイルボビン9の中心には測
定対象物に接続されたコア3が、X方向に移動可能に設
置されている。この差動トランス式の位置検出装置の回
路図を図5に示し、以下に、その動作を説明する。図5
の位置検出装置は、1次コイルPに一定交流電圧入力E
pを加え、2次コイルS1、S2に生じた誘導起電力E
s1、Es2の差電圧Esを2次電圧出力として取り出
す構成である。そして、具体的には磁性体のコア3が+
X方向に移動すると誘導起電力Es1が誘導起電力Es
2より大きくなるので出力電圧Esは増大する。一方、
磁性体のコア3が−X方向に移動すると、誘導起電力E
s1が誘導起電力Es2より小さくなるので出力電圧E
sは小さくなる。このように出力電圧Esはコア3の移
動方向とコイルとコアの相対的位置関係に比例するもの
である。尚、印加する交流電圧は感度や応答性を得るた
めに200〜5000Hz程度の励磁周波数が用いられ
る構成となっていた。
2. Description of the Related Art Generally, there is a differential transformer type position sensor in a position detecting device. The differential transformer type position sensor uses electromagnetic induction, and is composed of a primary coil P and secondary coils S1 and S2 as shown in FIGS. FIG. 4 shows a sensor portion of this differential transformer type position detecting device, in which a coil bobbin 9 is wound with an input coil P and output coils S1 and S2, and at the center of the coil bobbin 9, a core connected to an object to be measured. 3 is installed so as to be movable in the X direction. A circuit diagram of this differential transformer type position detecting device is shown in FIG. 5, and its operation will be described below. Figure 5
Of the position detecting device is a constant AC voltage input E to the primary coil P.
induced electromotive force E generated in the secondary coils S1 and S2 by adding p
The configuration is such that the difference voltage Es between s1 and Es2 is taken out as a secondary voltage output. And specifically, the core 3 of the magnetic material is +
When it moves in the X direction, the induced electromotive force Es1 becomes the induced electromotive force Es.
Since it becomes larger than 2, the output voltage Es increases. on the other hand,
When the magnetic core 3 moves in the −X direction, the induced electromotive force E
Since s1 is smaller than the induced electromotive force Es2, the output voltage E
s becomes small. Thus, the output voltage Es is proportional to the moving direction of the core 3 and the relative positional relationship between the coil and the core. The applied AC voltage has an excitation frequency of about 200 to 5000 Hz in order to obtain sensitivity and responsiveness.

【0003】[0003]

【発明が解決しようとする課題】以上の従来の差動トラ
ンスの位置検出装置では、たとえ1次側の電圧が一定で
あっても温度差によって生じる誤差に関しては補償が難
しく、温度補償回路が複雑な回路となり、コストアップ
になるという問題点があった。また、電磁誘導の効率を
上げる必要があり、磁気回路の効率を上げるために磁気
の漏れない構造が要求されるので、コイルの形状が任意
に選べない問題点や、電磁誘導の効率を上げるために、
コイルの巻数を多くすることが必要であり、コイルの重
量が大きくなったり、製作に時間がかかるという問題点
があり、これらの問題点もコストアップにつながり、量
産には適していないという問題をかかえていた。
In the above conventional position detecting device for a differential transformer, it is difficult to compensate for an error caused by a temperature difference even if the voltage on the primary side is constant, and the temperature compensating circuit is complicated. However, there is a problem that the circuit becomes expensive and the cost increases. In addition, it is necessary to increase the efficiency of electromagnetic induction, and in order to increase the efficiency of the magnetic circuit, a structure that does not leak magnetic is required, so there is a problem that the shape of the coil cannot be arbitrarily selected, and in order to increase the efficiency of electromagnetic induction. To
There is a problem that it is necessary to increase the number of turns of the coil, the weight of the coil becomes large, and it takes time to manufacture, and these problems also lead to cost increase and are not suitable for mass production. I had it.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本願発明では電磁誘導による出力を計測するので
はなく、コイルのインピーダンスの比を、コイルにかか
っている電圧を計測することで検出する。この構成でコ
イルの設計や構成が簡略化でき、コストを抑えることが
できた。例えば2つのコイルを直列に接続し、磁性体を
その中心に配置し、磁性体が動いても2つのコイルのイ
ンピーダンスの和が一定に保たれる構造にする。また、
コイルの方が動く構造にしてもよい。そして、直列に接
続したコイルを交流電圧で励磁し、コイルの出力電圧を
計測してそのインピーダンスを間接的に測定する。その
コイルの出力電圧を検出回路に通して出力を得る。
In order to solve the above problems, the present invention does not measure the output by electromagnetic induction but measures the impedance ratio of the coil and the voltage applied to the coil. To detect. With this configuration, the design and configuration of the coil can be simplified and the cost can be suppressed. For example, two coils are connected in series, a magnetic body is arranged at the center thereof, and the structure is such that the sum of the impedances of the two coils is kept constant even if the magnetic body moves. Also,
The coil may be moved. Then, the coils connected in series are excited with an AC voltage, the output voltage of the coil is measured, and the impedance thereof is indirectly measured. The output voltage of the coil is passed through a detection circuit to obtain an output.

【0005】[0005]

【作用】交流電圧によって励磁したコイルは、コイルの
巻線に応じた抵抗の他にコイルのインダクタンスを持
つ。コアが移動しても2つのコイルのトータルインピー
ダンスが一定に保たれるように2つのコイルが設置され
ているとき、これらのコイルのインダクタンスは、コア
の位置変化により透磁率が変化することによって変わ
る。従って、コイルのインピーダンスはコアの位置変化
によって変わる。即ち、高い透磁率を持つ磁性体のコア
の位置がコイル中で変化するので、コイル全体に交流電
圧をかけると、2つのコイルの接続点での電位はコアの
位置変化から生じるコイルのインピーダンスの変化に応
じて変化する。この電位を計測することで測定対象物の
位置変化が読み取れる。
The coil excited by the AC voltage has a coil inductance in addition to the resistance corresponding to the coil winding. When the two coils are installed so that the total impedance of the two coils is kept constant even if the core moves, the inductance of these coils changes due to the change of the magnetic permeability due to the change of the position of the core. . Therefore, the impedance of the coil changes depending on the position change of the core. That is, the position of the core of a magnetic material having a high magnetic permeability changes in the coil. Therefore, when an AC voltage is applied to the entire coil, the potential at the connection point of the two coils is equal to the impedance of the coil caused by the position change of the core. It changes according to changes. By measuring this potential, the position change of the measurement object can be read.

【0006】また、2つのコイルのインピーダンスをZ
1、Z2とし、コイル全体にかかる電圧をEとすると、
2つのコイルの接続点の出力電圧V(以下コイルの出力
電圧と呼ぶ)は、 V=E・Z1/(Z1+Z2) (1) となる。従って、コイルの出力電圧Vは2つのコイルの
インピーダンスの比になる。ところで、これらの2つの
コイルは同じ温度特性を持つので、2つのコイルのイン
ピーダンスZ1、Z2が同じ比率だけ変化しても、コイ
ルの出力電圧Vは一定となる。このことから、温度が変
化してもコイルの出力電圧は一定となる。このコイルの
出力電圧は検出回路に入力する。従って、検出回路の出
力は、温度の変化に対して影響しないようになる。
The impedance of the two coils is Z
1, Z2 and the voltage across the coil is E,
The output voltage V at the connection point of the two coils (hereinafter referred to as the output voltage of the coil) is V = E · Z1 / (Z1 + Z2) (1) Therefore, the output voltage V of the coil is the ratio of the impedances of the two coils. By the way, since these two coils have the same temperature characteristics, the output voltage V of the coils is constant even if the impedances Z1 and Z2 of the two coils change by the same ratio. Therefore, the output voltage of the coil remains constant even if the temperature changes. The output voltage of this coil is input to the detection circuit. Therefore, the output of the detection circuit does not affect the change in temperature.

【0007】[0007]

【実施例】図1、図2を用いて本願発明の位置検出装置
の一実施例を説明する。本実施例は2つのコイルを用い
た例である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the position detecting device of the present invention will be described with reference to FIGS. The present embodiment is an example using two coils.

【0008】図1は本発明の位置検出装置のセンサ部の
一実施例の断面図であり、油圧機器のスプールの位置を
検出するストロークセンサである。1は位置検出装置の
センサ部即ち、ストロークセンサであり、2はコイルボ
ビン9に巻かれたコイル、3は磁性体で構成されたコア
で、シャフト4を介してスプール8に接続され、スプー
ル8の動きを検出するようになっている。また、コイル
を励磁する発振回路と検出回路は、内蔵回路5としてケ
ース6内部に設置されている。ところで本実施例では、
磁性体で構成されたコアはコイルの中心部に配置した構
成としたが、磁性体はコイルの外部に配置してもよい。
FIG. 1 is a sectional view of an embodiment of the sensor portion of the position detecting device of the present invention, which is a stroke sensor for detecting the position of the spool of a hydraulic device. Reference numeral 1 is a sensor unit of the position detecting device, that is, a stroke sensor, 2 is a coil wound around a coil bobbin 9, and 3 is a core made of a magnetic material, which is connected to a spool 8 via a shaft 4 and It is designed to detect movement. Further, the oscillation circuit and the detection circuit for exciting the coil are installed inside the case 6 as the built-in circuit 5. By the way, in this embodiment,
Although the core made of a magnetic material is arranged in the center of the coil, the magnetic material may be arranged outside the coil.

【0009】図2は本発明の位置検出装置のブロック図
である。発信回路10で発信された出力はコイル2の端
子1に入力され端子2には上記コイルの出力電圧Vが生
じている。この電圧は検出回路11に入力され、検出回
路11では検出回路の出力が所望の出力特性となるよう
に、出力電圧Vの振幅と平均値、即ちゲインとオフセッ
トを調節している。これらの発信回路10と検出回路1
1とで内蔵回路5を構成していて、検出回路11の出力
は、例えば図示しない位置表示装置ないしは位置制御回
路に接続されている。
FIG. 2 is a block diagram of the position detecting device of the present invention. The output transmitted by the transmission circuit 10 is input to the terminal 1 of the coil 2, and the output voltage V of the coil is generated at the terminal 2. This voltage is input to the detection circuit 11, and the detection circuit 11 adjusts the amplitude and average value of the output voltage V, that is, the gain and offset so that the output of the detection circuit has a desired output characteristic. These transmission circuit 10 and detection circuit 1
1 and the built-in circuit 5 are configured, and the output of the detection circuit 11 is connected to, for example, a position display device or a position control circuit (not shown).

【0010】ここで、図3によって本願発明の位置検出
装置の動作を説明する。励磁電圧をかけた状態で、図3
bのようにコア3が2つのコイルS1、S2の中心に位
置するとき、2つのコイルのインピーダンスはZ1=Z
2となり、コイルの出力電圧は、励磁電圧の丁度1/2
になる。図3aのようにコア3が−X方向に移動したと
き、2つのコイルS1、S2のインピーダンスZ1、Z
2は、Z1>Z2となり、S1にかかる電圧がS2にか
かる電圧より大きくなるのでコイルの出力電圧は図3b
のときよりも小さくなる。逆に、コア3が+X方向に移
動したとき、2つのコイルのインピーダンスZ1、Z2
は、Z1<Z2となり、S2にかかる電圧がS1にかか
る電圧より大きくなるので、コイルの出力電圧は図3b
のときよりも大きくなる。このように、コアが移動した
場合、移動量に比例したコイルの出力電圧を得ることが
できる。更に、温度が変化しても、2つのコイルが同じ
温度特性を持つので式(1)よりZ1、Z2が同じ比率
だけ変化してもコイルの出力電圧は変化せず、このコイ
ルの出力電圧を入力する検出回路の出力も周囲温度に無
関係な安定した出力となる。
The operation of the position detecting device of the present invention will be described with reference to FIG. With the excitation voltage applied,
When the core 3 is located at the center of the two coils S1 and S2 as shown in b, the impedance of the two coils is Z1 = Z
2, the output voltage of the coil is exactly 1/2 of the excitation voltage.
become. When the core 3 moves in the −X direction as shown in FIG. 3a, the impedances Z1 and Z of the two coils S1 and S2 are
2 becomes Z1> Z2, and the voltage applied to S1 becomes larger than the voltage applied to S2.
It will be smaller than when. Conversely, when the core 3 moves in the + X direction, the impedances Z1 and Z2 of the two coils are
Becomes Z1 <Z2 and the voltage applied to S2 becomes larger than the voltage applied to S1. Therefore, the output voltage of the coil is as shown in FIG.
It will be bigger than when. In this way, when the core moves, it is possible to obtain an output voltage of the coil that is proportional to the moving amount. Furthermore, since the two coils have the same temperature characteristics even if the temperature changes, the output voltage of the coil does not change even if Z1 and Z2 change by the same ratio according to the equation (1). The output of the input detection circuit also becomes a stable output regardless of the ambient temperature.

【0011】なお、図6はコイルの巻方の変形実施例で
ある。図6aはコイル1の巻き数をコイル2の巻き数よ
りも多くした例であり、図6bは2つのコイル1、2を
はすかいに重ねて巻いた例である。このようにコイルの
巻方は実施例に限られたものではなく、コイルの巻方は
設計的事項であり、各種の巻方が考えられる。図6aの
巻き方ではコイル1の巻き数に対してコイル2の巻き数
の方が少ないので、X軸方向の+X方向のコアの移動に
対する感度より、−X方向のコアの移動に対する感度の
方が高くなる。また、図6bの巻き方ではコイルがコン
パクトになるという特徴がある。
FIG. 6 shows a modification of the coil winding method. FIG. 6a is an example in which the number of turns of the coil 1 is larger than that of the coil 2, and FIG. 6b is an example in which the two coils 1 and 2 are wound in a superposed manner. As described above, the winding method of the coil is not limited to the embodiment, and the winding method of the coil is a design matter, and various winding methods can be considered. In the winding method of FIG. 6a, since the number of windings of the coil 2 is smaller than the number of windings of the coil 1, the sensitivity to the movement of the core in the −X direction is higher than the sensitivity to the movement of the core in the + X direction in the X-axis direction. Becomes higher. Further, the winding method shown in FIG. 6B has a feature that the coil is compact.

【0012】[0012]

【発明の効果】本発明による位置検出装置では、インピ
ーダンスの変化を検出することによって位置検出を行っ
ているので、従来の差動トランス式のものに比べて、コ
イルの巻数を格段に少なく作成でき、コストを抑えるこ
とが可能となり、磁気回路をコンパクトに作成すること
ができる。
Since the position detecting device according to the present invention detects a position by detecting a change in impedance, the number of turns of the coil can be remarkably reduced as compared with the conventional differential transformer type. The cost can be reduced, and the magnetic circuit can be made compact.

【0013】また、出力電圧が複数のコイルのインピー
ダンスの比に比例しているので、温度によるインピーダ
ンスの変動があっても、出力電圧は一定となり、安定し
た出力が得られるという顕著な効果を有する。
Further, since the output voltage is proportional to the ratio of the impedances of the plurality of coils, the output voltage becomes constant even if the impedance changes due to temperature, which has a remarkable effect that a stable output can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の位置検出装置のセンサ部FIG. 1 is a sensor section of a position detecting device according to the present invention.

【図2】本発明の位置検出装置のブロック図FIG. 2 is a block diagram of a position detecting device according to the present invention.

【図3】本発明の位置検出装置のセンサ部の動作説明図FIG. 3 is an operation explanatory diagram of a sensor unit of the position detection device of the present invention.

【図4】従来例の位置検出装置のセンサ部FIG. 4 is a sensor section of a conventional position detection device.

【図5】従来例の位置検出装置の回路図FIG. 5 is a circuit diagram of a conventional position detection device.

【図6】本発明の位置検出装置のセンサコイルの変形実
施例
FIG. 6 is a modified embodiment of the sensor coil of the position detecting device of the present invention.

【符号の説明】[Explanation of symbols]

1…ストロークセンサ、2…コイル、3…コア、4…シ
ャフト、5…内蔵回路、6…ケース、7…モールド樹
脂、8…スプール、9…コイルボビン、10…発振回
路、11…検出回路、P…入力コイル、S1,S2…出
力コイル。
1 ... Stroke sensor, 2 ... Coil, 3 ... Core, 4 ... Shaft, 5 ... Built-in circuit, 6 ... Case, 7 ... Mold resin, 8 ... Spool, 9 ... Coil bobbin, 10 ... Oscillation circuit, 11 ... Detection circuit, P ... input coil, S1, S2 ... output coil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流励磁されている直列接続の複数のコイ
ルと、このコイルに移動可能に挿入されている磁性体よ
りなるコアとを有し、この両者間の相対的位置関係か
ら、コイルあるいはコアに連結する測定対象物の位置を
検出する位置検出装置において、コアが移動してもコイ
ルのトータルインピーダンスが一定となるように複数の
コイルとコアを配置し、コイルとコアの相対的位置変化
に伴うインピーダンス変化をコイルの出力電圧から検出
することによって、測定対象物の位置を検出することを
特徴とする位置検出装置。
1. A plurality of coils connected in series that are excited by an alternating current, and a core made of a magnetic material that is movably inserted in the coils. In a position detection device that detects the position of a measurement object connected to a core, arrange multiple coils and cores so that the total impedance of the coils is constant even if the core moves, and change the relative position of the coils. A position detecting device for detecting the position of a measuring object by detecting the impedance change due to the output voltage of the coil.
JP19046193A 1993-07-30 1993-07-30 Position transducer Pending JPH0743105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19046193A JPH0743105A (en) 1993-07-30 1993-07-30 Position transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19046193A JPH0743105A (en) 1993-07-30 1993-07-30 Position transducer

Publications (1)

Publication Number Publication Date
JPH0743105A true JPH0743105A (en) 1995-02-10

Family

ID=16258507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19046193A Pending JPH0743105A (en) 1993-07-30 1993-07-30 Position transducer

Country Status (1)

Country Link
JP (1) JPH0743105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069682A (en) * 2002-06-10 2004-03-04 Amitec:Kk Position-detecting device with detecting circuit incorporated therein
JP2007192592A (en) * 2006-01-17 2007-08-02 Keyence Corp Contact-type displacement gauge
WO2009017196A1 (en) * 2007-07-31 2009-02-05 Atsutoshi Goto Flow rate control valve and flow rate control valve spool position detection device
JP2015215069A (en) * 2014-05-12 2015-12-03 日本電産トーソク株式会社 Control valve device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069682A (en) * 2002-06-10 2004-03-04 Amitec:Kk Position-detecting device with detecting circuit incorporated therein
JP2007192592A (en) * 2006-01-17 2007-08-02 Keyence Corp Contact-type displacement gauge
JP4695514B2 (en) * 2006-01-17 2011-06-08 株式会社キーエンス Contact displacement meter
WO2009017196A1 (en) * 2007-07-31 2009-02-05 Atsutoshi Goto Flow rate control valve and flow rate control valve spool position detection device
US8555918B2 (en) 2007-07-31 2013-10-15 Amiteq Co., Ltd. Flow rate control valve and spool position detection device for the flow rate control valve
JP2015215069A (en) * 2014-05-12 2015-12-03 日本電産トーソク株式会社 Control valve device

Similar Documents

Publication Publication Date Title
EP1067391B1 (en) Current sensor
US5831431A (en) Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
JPH0861906A (en) Magnetic type position sensor
JPH07146315A (en) Ac current sensor
JP2001264360A (en) Dc current detector
US7145321B2 (en) Current sensor with magnetic toroid
US6191575B1 (en) Device for measuring linear displacements
JPH0743105A (en) Position transducer
JP2008107119A (en) Current sensor
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
Kano et al. New linear variable differential transformer with square coils
JPS6395363A (en) Current sensor and method of detecting current in conductor to be evaluated
JP4385340B2 (en) Displacement sensor using Helmholtz coil
JPS618639A (en) Magnetostriction type torque detector
JP4248324B2 (en) Actuator
JP2001336906A (en) Electromagnetic induction type displacement detecting device
US2469005A (en) Magnetostrictive conditionresponsive apparatus
GB1576994A (en) Apparatus for measuring the thickness of a sheet of non-magnetic material
JPH0624732Y2 (en) Differential transformer
SU1605137A1 (en) Differential transformer transducer of linear displacements
JP2570836B2 (en) Non-contact current detector
JPH11166802A (en) Magnetic displacement detecting device
JPH0670659B2 (en) Liquid conductivity measuring device
JPH0232567B2 (en) JIKISHIKIORYOKUSOKUTEISOCHI
SU1122907A1 (en) Magnetoelastic pickup of force