JPS593331A - Method for measuring temperature in living body - Google Patents

Method for measuring temperature in living body

Info

Publication number
JPS593331A
JPS593331A JP57112702A JP11270282A JPS593331A JP S593331 A JPS593331 A JP S593331A JP 57112702 A JP57112702 A JP 57112702A JP 11270282 A JP11270282 A JP 11270282A JP S593331 A JPS593331 A JP S593331A
Authority
JP
Japan
Prior art keywords
frequency
oscillator
energy
temperature
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112702A
Other languages
Japanese (ja)
Inventor
Yoshiaki Saito
義明 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTER NOBA KK
Original Assignee
INTER NOBA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTER NOBA KK filed Critical INTER NOBA KK
Priority to JP57112702A priority Critical patent/JPS593331A/en
Publication of JPS593331A publication Critical patent/JPS593331A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Abstract

PURPOSE:To measure temperature in a living body in safety over a long period, by impressing energy which is emitted by a variable-frequency oscillator at the outside of the living body, to a crystal oscillator which is implanted into the living body, and recognizing a frequency at which said energy is absorbed, and thus detecting the temperature in the living body. CONSTITUTION:High-frequency energy from a variable-frequency oscillator 5 is radiated by a coil 3, and is transferred to a coil 2, and oscillates a crystal oscillator 1. When the frequency of the oscillator 5 and the resonance frequency of the crystal oscillator 1 coincide with each other, the oscillation of the crystal oscillator 1 becomes large, and absorbs energy. Then, the frequency at which the absorption of energy is caused is read with a frequency counter 6, by varying the frequency of the oscillator 5, under monitoring an energy detector 4. The value which is read by the frequency counter 6, reflects a temperature which the crystal oscillator 1 implanted in a living body receives from the surrounding living body.

Description

【発明の詳細な説明】 本発明は、生体内に植込んだ温度によって共振周波数の
変化する水晶振動子を利用した温度センサーによって生
体内体温を検出し、水晶振動子が外部電磁波を吸収する
性質を利用して体外に温度情報を与え、これを温度表示
装置で測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects body temperature within a living body using a temperature sensor that uses a crystal oscillator that is implanted into a living body and whose resonance frequency changes depending on the temperature. The present invention relates to a method of providing temperature information outside the body using the temperature information and measuring this information with a temperature display device.

本来水晶振動子の振動周波数は安定なのであるが、カッ
トの仕方を工夫する事によって、温度変化に従って振動
周波数が変化する様に作る事ができる。例えばプラス側
に5度ずらしたカットがその例である。この様にした水
晶振動子を用いて、発振回路を構成すれば、発振周波数
を検出表示することによって温度を知る事ができる。と
ころで、体内の温度を測定しようとする場合には、水晶
振動子を体内に植込み、そこから導線を体外に引き出し
て来る必要が生じる。しかし、導線が皮膚を通過すると
、その場所から細菌が体内に侵入する可能性が非常に高
く、長期間の使用には不適当である。このため、水晶振
動子が体内温度測定のセンサーとして使われた装置が実
用化される事はなかった。
Originally, the vibration frequency of a crystal resonator is stable, but by carefully cutting the crystal, it is possible to make it so that the vibration frequency changes according to temperature changes. For example, a cut shifted 5 degrees to the plus side is an example. If an oscillation circuit is constructed using such a crystal resonator, the temperature can be determined by detecting and displaying the oscillation frequency. By the way, when trying to measure the temperature inside the body, it is necessary to implant a crystal oscillator into the body and lead a conductive wire from there to the outside of the body. However, if the conductor passes through the skin, there is a very high possibility that bacteria will enter the body from that point, making it unsuitable for long-term use. For this reason, a device in which a crystal oscillator was used as a sensor for measuring internal body temperature was never put into practical use.

医療技術が進歩して来た今日はど、体内温度を安全に正
確に知る必要性を感じる時代はない。
Despite advances in medical technology, there has never been a time when we felt the need to know our internal body temperature safely and accurately.

本発明は正にこの問題を解決したもので、水晶振動子が
その振動周波数のエネルギを外部から吸収する事を利用
し、体外から可変周波数発振器によりエネルギを体内の
水晶振動子に印加し、そのエイ・ルギが吸収される周波
数を知ることによって体内温度を検出する方法であり、
この方法では導線を体内から経皮的に体外に引き出す必
要のない事は自明であり、細菌の体内への侵入がなく、
安全に長期間生体内温度の測定が可能となる。この事に
よって、例・lえば温熱治療の繰返し療法が可能となり
、医療技術の進歩に与える影響は非常に大きい。
The present invention solves exactly this problem by utilizing the fact that a crystal oscillator absorbs energy at its vibration frequency from outside, and applying energy to the crystal oscillator inside the body using a variable frequency oscillator from outside the body. This is a method of detecting internal body temperature by knowing the frequency at which E. lugi is absorbed.
It is obvious that this method does not require the conductor to be pulled out from the body percutaneously, and there is no invasion of bacteria into the body.
It becomes possible to safely measure the temperature inside the body over a long period of time. This makes it possible to perform repeated thermal treatments, for example, and has a great impact on the progress of medical technology.

次に本発明生体内体温測定法を、それを実施する装置の
実施例と共に説明する。Aは生体内部、Bは生体外空間
であり、生体内部Aに温度センサーCを植込んである。
Next, the in-vivo body temperature measurement method of the present invention will be explained together with an example of an apparatus for carrying out the method. A is the inside of the living body, B is the space outside the living body, and a temperature sensor C is implanted inside the living body A.

この温度センサーCは、水晶振動子1と その両端にコ
イル2を接続してなり、水晶振動子1は温度変化により
共振周波数が変化するようにカットしである。一方、生
体外空間Bには温度表示装置りを設置する。この装置り
は、可変周波数発振器6と、これに接続されたエネルギ
検出器4及びこれに接続されたコイル3よりなり、この
コイル3を前記コイル2と相対して配置する。6は可変
周波数発振器5に接続した周波数カウンターである。
This temperature sensor C consists of a crystal oscillator 1 and a coil 2 connected to both ends of the crystal oscillator 1. The crystal oscillator 1 is cut so that its resonant frequency changes with temperature changes. On the other hand, a temperature display device is installed in the in vitro space B. This device consists of a variable frequency oscillator 6, an energy detector 4 connected to it, and a coil 3 connected thereto, and this coil 3 is placed opposite to the coil 2. 6 is a frequency counter connected to the variable frequency oscillator 5.

この装置による生体内体温の測定は次のようにして行な
われる。可変周波数発振器5よりの高周波エイ・ルギは
コイル3より放射されてコイル2に伝わり、水晶振動子
1を振動させる。可変周波数発振器6の発振周波数が、
水晶振動子1の共振周波数と異なっていれば、水晶振動
子1の振動は小さく、エネルギをほとんど吸収しないが
、もし、可変周波数発振器5の発振周波数と水晶振動子
1の共振周波数が一致すれば、水晶振動子1の振動は大
きくなり、エネルギな吸収する。従ってエネルギ検出器
4を監視しながら可変周波数発振器5の発振周波数を変
化していき、エネルギ吸収が起った周波数を周波数カウ
ンタ6で読み取れば、水晶振動子1の共振周波数を知る
ことができる。水晶振動子1の共振周波数は、温度によ
って変化するようにカットされたものであるから、体外
に設置された周波数カウンタ6で読み取った値は、体内
に植込まれた水晶振動子1が周囲の生体より受ける温度
を反響しており、従って生体内の温度を知る事ができる
事になる。水晶振動子1の共振周波数と温度の関係は前
もって較正しておく事は容易な事であり、表を用いたり
、或は後記するようにマイクロコンピュータ等によって
真の温度を表示させる事もできる。
Measurement of body temperature using this device is performed as follows. The high frequency wave from the variable frequency oscillator 5 is radiated from the coil 3 and transmitted to the coil 2, causing the crystal resonator 1 to vibrate. The oscillation frequency of the variable frequency oscillator 6 is
If the resonant frequency of the crystal resonator 1 is different from that of the crystal resonator 1, the vibration of the crystal resonator 1 is small and absorbs almost no energy, but if the oscillation frequency of the variable frequency oscillator 5 and the resonant frequency of the crystal resonator 1 match, then , the vibration of the crystal resonator 1 increases and absorbs more energy. Therefore, by changing the oscillation frequency of the variable frequency oscillator 5 while monitoring the energy detector 4, and reading the frequency at which energy absorption occurs with the frequency counter 6, the resonant frequency of the crystal resonator 1 can be determined. The resonant frequency of the crystal oscillator 1 is cut so that it changes depending on the temperature, so the value read by the frequency counter 6 installed outside the body is based on the frequency of the crystal oscillator 1 implanted in the body. It reflects the temperature received from the living body, so it is possible to know the temperature inside the living body. It is easy to calibrate the relationship between the resonant frequency of the crystal resonator 1 and the temperature in advance, and the true temperature can also be displayed using a table or by a microcomputer, etc. as described later.

第2図A、B、Cはエネルギ検出方法の実施例を示した
もので、第2図Aは可変周波数発振器6とコイル3を接
続する電気回路内に、エネルギ検出器4をコイル3と並
列にして接続し、コイル30両端の電圧を検出する方法
である。
FIGS. 2A, B, and C show examples of the energy detection method. In FIG. In this method, the voltage across the coil 30 is detected.

第2図Bは前記電気回路内に、エネルギ検出器4′をコ
イル3と直列にして接続し、コイル3に流れる電流を検
出する方法を示したものである。第2図Cは可変周波数
発振器6内のトランジスタ。
FIG. 2B shows a method of connecting an energy detector 4' in series with the coil 3 in the electric circuit to detect the current flowing through the coil 3. FIG. 2C shows a transistor in the variable frequency oscillator 6.

真空管等のアクティブ素子の電流又は電圧を検出する事
によってエネルギ変化を知る事ができるようにしたもの
で、その具体的な例としては真空管発振器のグリッド電
流、トランジスタ発振器のベース電流やコレクタ電流を
1あげられる。
It is possible to know energy changes by detecting the current or voltage of active elements such as vacuum tubes.Specific examples include the grid current of a vacuum tube oscillator, and the base current and collector current of a transistor oscillator. can give.

第3図は、第1図におけるコイル2とコイル3との距離
が離れるような場合における温度表示装置りの実施例を
示したものである。コイル2及びコイル3が近接してい
る場合には検出器4の出力をそのままメータ等で表示し
ても充分判定が行な才るのであるが、生体深部の温度測
定を行なう場合にはコイル2が体表面より離れるため、
コイル2及びコイル3の間の結合が弱くなり、エネルギ
吸収の判定が困難となる場合が多い。
FIG. 3 shows an embodiment of the temperature display device in the case where the distance between the coil 2 and the coil 3 in FIG. 1 is large. If the coils 2 and 3 are close to each other, it is sufficient to display the output of the detector 4 directly on a meter, etc., but when measuring the temperature deep inside the living body, coil 2 moves away from the body surface,
In many cases, the coupling between coil 2 and coil 3 becomes weak, making it difficult to determine energy absorption.

これを解決するため、可変周波数発振器6に別の発振器
7を接続し、この発振器7の出力によって周波数変調又
は振幅変調をかけるようにしたものである。この事によ
って検出器4の出力には別の発振器子の発振周波数又は
その高調波を含有する出力が得られているので、例えば
、第3図に示したように、検出器4に、安定で高利得の
交流増幅器8及び基本波又は高調波に共振したフィルタ
11を用いる事ができる様になり、検出感度を飛躍的に
向上させる事が可能となる。
To solve this problem, another oscillator 7 is connected to the variable frequency oscillator 6, and the output of this oscillator 7 is used to perform frequency modulation or amplitude modulation. As a result, the output of the detector 4 contains the oscillation frequency of another oscillator element or its harmonics, so for example, as shown in FIG. It becomes possible to use a high-gain AC amplifier 8 and a filter 11 that resonates with the fundamental wave or harmonics, and it becomes possible to dramatically improve detection sensitivity.

第4図は、エネルギ検出器の出力をフィルタを通して検
波し、可変周波数発振器にフィードバックして、発振周
波数を制御し、自動的に水晶振動子の共振周波数に一致
させる方法の実施例を示したもので、第3図に示した電
気回路のフィルタ11と可変周波数発振器5との間に二
重平衡変調器9を直列に接続したものである。
Figure 4 shows an example of a method of detecting the output of the energy detector through a filter, feeding it back to the variable frequency oscillator, controlling the oscillation frequency, and automatically matching it to the resonant frequency of the crystal resonator. A double balanced modulator 9 is connected in series between the filter 11 and the variable frequency oscillator 5 of the electric circuit shown in FIG.

この実施例では、交流増幅器8の出カケ、2倍高調波に
共振したフィルタ11を通して二重平衡変調器9に加え
て直流化し、その出力を可変周波数発振器6の発振周波
数を決定する素子の一部(例えば可変容量ダイオード)
に加えることにより、可変周波数発振器6の発振周波数
が制御されて、直流出力の最も大きい周波数に自動的に
設定される。この時の周波数は水晶振動子1の共振周波
数に一致する事は自明である。この第4図に示した実施
例のように温度表示装置を構成する事により全く人手を
介さずに生体内に植込まれた水晶振動子1の共振周波数
を知る事ができる様になり、従って生体内温度が測定で
きる事になる。
In this embodiment, the output of the AC amplifier 8 is passed through a filter 11 that resonates with the double harmonic, and then converted to a DC signal in addition to the double-balanced modulator 9. part (e.g. variable capacitance diode)
, the oscillation frequency of the variable frequency oscillator 6 is controlled and automatically set to the frequency with the highest DC output. It is obvious that the frequency at this time coincides with the resonant frequency of the crystal resonator 1. By configuring the temperature display device as in the embodiment shown in FIG. 4, it becomes possible to know the resonant frequency of the crystal oscillator 1 implanted in the living body without any human intervention. The temperature inside the body can be measured.

尚、水晶振動子の共振周波数が生体温度と同じ数値でな
い場、、合には、予めその誤差を較正しておき、第4図
に示したように周波数測定器6にマイクロコンピュータ
1oを接続し、このマイクロコンピュータ1oを用いて
時々刻々に換算を行なうことにより生体内体温の正確な
温度を測定することができる。
If the resonant frequency of the crystal oscillator is not the same value as the biological temperature, calibrate the error in advance and connect the microcomputer 1o to the frequency measuring device 6 as shown in Fig. 4. By performing the conversion from time to time using this microcomputer 1o, it is possible to accurately measure the internal body temperature.

上記のように、本発明生体内体温測定法は、水晶振動子
が自己の共振周波数のエイ・ルギを外界から吸収する性
質を利用し、生体内には水晶振動子とコイルのみを植込
み、外に電池等の消耗品を生体内に植込むとか、導線を
体外へ引き出すことがなくなり、衛生的であり、半永久
的に使用でき、しかも正確に生体内体温の温度情報を生
体外へ知らせることができる。そして、この情報は、生
体外に設置した可変周波数発振器等の周波数変調或は振
幅変調をするための発振器、コイル、エネルギ検出器9
周波数測定器を電気回路で接続してなる温度表示装置に
よって、温度センサーと温度表示装置との生体内外の両
コイルを対向させて、発振器の発振周波数を変化させる
ことにより、水晶振動子の共振周波数と一致する周波数
をエネルギ検出器で検出し、これを測定器に表示するこ
とで知ることができる。
As mentioned above, the in-vivo body temperature measurement method of the present invention takes advantage of the property of a crystal oscillator to absorb energy at its own resonance frequency from the outside world, and implants only the crystal oscillator and coil inside the living body. It eliminates the need to implant consumables such as batteries into the body or pull out conductors outside the body, which is sanitary, can be used semi-permanently, and allows accurate information on internal body temperature to be communicated outside the body. can. This information is transmitted to an oscillator, coil, and energy detector 9 for frequency modulation or amplitude modulation such as a variable frequency oscillator installed outside the living body.
The resonant frequency of the crystal oscillator is determined by changing the oscillation frequency of the oscillator by arranging both the internal and external coils of the temperature sensor and the temperature display device to face each other, using a temperature display device consisting of a frequency measuring device connected through an electric circuit. This can be determined by detecting the frequency that matches with the energy detector with an energy detector and displaying this on the measuring instrument.

また、温度表示装置に、水晶振動子の共振周波数と一致
する周波数を検出した時には、発振器の発振周波数を自
動的に、その周波数に制御するように構成することによ
って、煩られしい操作を全く要しないで、自動的に全体
内体温を測定することができる。
In addition, by configuring the temperature display device to automatically control the oscillation frequency of the oscillator to that frequency when it detects a frequency that matches the resonant frequency of the crystal oscillator, no troublesome operations are required. It can automatically measure the whole body temperature without having to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明生体内体温測定法を実施するための装置の
実施例を示したもので、第1図は手動による測定法の実
施の1例を示した概略図、第2図A、B、Cはエネルギ
を検出するためのエネルギ検出器の結線の実施例を示し
たもので、第2図Aはコイルの両端の電圧を検出するよ
うにコイルと並列にエネルギ検出器を結線した概略図、
第2図Bはコイルに流れる電流を検出するようにコイル
と直列にエネルギ検出器を結線した概略図、第2図Cは
可変周波数発振器のアクティブ素子の電流又は電圧を検
出するようにエネルギ検出器を設けた状態の概略図、第
3図は第1図に示した温度表示装置の、発振器の出力を
高めるようにした状態の概略図、第4図は自動的に測定
する温度表示装置の実施例を示した概略図。 A・・・生体内部、 B・・・生体外空間、C・・・温
度センサー、 D・・・温度表示装置、1・・・水晶振
動子、 2・・・コイル、 3・・・コイル、4.4′
、4′・・・エネルギ検出器、 6・・・可変周波数発
振器、 6・・・周波数測定器、 7・・・発振器、8
・・・交流増幅機、 9・・・二重平衡変調器、10・
・・マイクロコンピュータ、 11・・・フィルタ特許
出願人  斉 藤 義 明 インター・ツバ株式会社 代理人 弁理士     大 野 克 躬〃     
       大  野  令  子〃       
大 野 柳之輔 第2図 (A)               (B)(C) 第3図 ? 第4図
The drawings show an embodiment of an apparatus for implementing the in-vivo body temperature measurement method of the present invention, and FIG. 1 is a schematic diagram showing an example of implementing the manual measurement method, and FIG. 2 A, B, Figure 2C shows an example of the wiring of an energy detector for detecting energy, and Figure 2A is a schematic diagram in which the energy detector is connected in parallel with the coil so as to detect the voltage at both ends of the coil.
Figure 2B is a schematic diagram of an energy detector connected in series with the coil to detect the current flowing through the coil, and Figure 2C is a schematic diagram of an energy detector connected to the coil to detect the current or voltage of the active element of the variable frequency oscillator. Fig. 3 is a schematic diagram of the temperature display device shown in Fig. 1 in a state where the output of the oscillator is increased, and Fig. 4 is a schematic diagram of the temperature display device shown in Fig. 1 in a state where the output of the oscillator is increased. Schematic diagram showing an example. A...Inside the living body, B...External space, C...Temperature sensor, D...Temperature display device, 1...Crystal oscillator, 2...Coil, 3...Coil, 4.4'
, 4'... Energy detector, 6... Variable frequency oscillator, 6... Frequency measuring device, 7... Oscillator, 8
...AC amplifier, 9...Double balanced modulator, 10.
...Microcomputer, 11...Filter patent applicant Yoshiaki Saito Inter-Tsuba Co., Ltd. agent Patent attorney Katsu Ohno
Reiko Ohno
Ryunosuke Ohno Figure 2 (A) (B) (C) Figure 3? Figure 4

Claims (1)

【特許請求の範囲】 1、温度によって共振周波数の変化する水晶振動子と、
この水晶振動子と接続するコイルよりなる温度センサー
を、生体内に植込み、一方、生体外に可変周波数発振器
等の周波数変調或は振幅変調をするための発振器、コイ
ル、エネルギー検出器。 周波数測定器を電気回路で接続してなる温度表示装置を
設置し、生体内外に設けた前記両コイルを対向させて、
前記温度センサーと前記温度表示装置との間にエネルギ
ーの受は渡しを行なうようにし、前記水晶振動子が自己
共振周波数のエネルギを外界より吸収する性質を、利用
し、発振器の発振周波数を変化させ、発振器の周波数と
水晶振動子の共振周波数とが一致し、水晶振動子が大き
く振動してエネルギを吸収する際の、そのエネルギの吸
収をエネルギ検出器で検知し、これを測定表示すること
により生体内体温の温度を測定する生体内体温測定法。 2、温度によって共振周波数の変化する水晶振動子と、
この水晶振動子と電気回路で接続するコイルよりなる温
度センサーを生体内に植込み、一方、生体外に、可変周
波数発振器、コイル、エネルギ検出器9周波数測定器を
電気回路で接続すると共に、該可変周波数発振器に他の
発振器を別の電気回路で接続し、この第2の発振器の出
力によって可変周波数発振器に周波数変調又は振幅変調
をかけるようにし、更に、前記エネルギ検出器に1交流
増幅器及び基本波又は所定の高調波を通すフィルタを第
3の電気回路で接続し、このフィルタと二重平衡変調器
、また、該二重平衡変調器と前記可変周波数発振器を第
4の電気回路で接続してなる温度表示装置を設置し、生
体内外に設けた前記両コイルを対向させて、前記温度セ
ンサーと前記温度表示装置との間にエネルギの受は渡し
を行なうようにし、前記水晶振動子が自己共振周波数の
エネルギを外界より吸収する性質を利用し、発振器の発
振周波数を変化させ、発振器の周波数と水晶振動子の共
振周波数とが一致した時の周波数をエネルギ検出器が検
知し、該検出器の出力を第3の電気回路の交流増幅器と
フィルタにより検波し、二重平衡変調器によって直流化
した出方を可変周波数発振器へ与えることにより、可変
周波数発振器の発振周波数を制御し、自動的に水晶振動
子の共振周波数に一致させ、これによって生体内体温の
温度を測定する生体内体温測定法。
[Claims] 1. A crystal resonator whose resonant frequency changes depending on temperature;
A temperature sensor consisting of a coil connected to this crystal oscillator is implanted in the living body, while an oscillator, coil, and energy detector for frequency modulation or amplitude modulation such as a variable frequency oscillator is placed outside the living body. A temperature display device formed by connecting a frequency measuring device with an electric circuit is installed, and the above-mentioned coils provided inside and outside the living body are opposed to each other.
Energy is received and transferred between the temperature sensor and the temperature display device, and the oscillation frequency of the oscillator is changed by utilizing the property of the crystal resonator to absorb energy at a self-resonant frequency from the outside world. , when the frequency of the oscillator and the resonant frequency of the crystal oscillator match, and the crystal oscillator vibrates greatly and absorbs energy, an energy detector detects the absorption of energy, and this is measured and displayed. In-vivo body temperature measurement method that measures the body temperature inside the body. 2. A crystal resonator whose resonant frequency changes depending on the temperature,
A temperature sensor consisting of a coil connected to this crystal oscillator through an electric circuit is implanted in the living body, while a variable frequency oscillator, a coil, an energy detector, and a frequency measuring device are connected outside the body through an electric circuit. Another oscillator is connected to the frequency oscillator through another electric circuit, and the output of the second oscillator applies frequency modulation or amplitude modulation to the variable frequency oscillator. Alternatively, a filter that passes a predetermined harmonic is connected by a third electric circuit, and this filter and a double-balanced modulator are connected, and the double-balanced modulator and the variable frequency oscillator are connected by a fourth electric circuit. A temperature display device is installed, and both the coils provided inside and outside the living body are made to face each other so that energy is received and transferred between the temperature sensor and the temperature display device, and the crystal oscillator generates self-resonance. Utilizing the property of absorbing frequency energy from the outside world, the oscillation frequency of the oscillator is changed, and an energy detector detects the frequency when the oscillator frequency and the resonant frequency of the crystal oscillator match. The output is detected by the AC amplifier and filter in the third electric circuit, and the output converted to DC by the double-balanced modulator is applied to the variable frequency oscillator, thereby controlling the oscillation frequency of the variable frequency oscillator and automatically converting it to the crystal. An in-vivo body temperature measurement method that matches the resonant frequency of a vibrator to measure the body temperature within the body.
JP57112702A 1982-06-30 1982-06-30 Method for measuring temperature in living body Pending JPS593331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112702A JPS593331A (en) 1982-06-30 1982-06-30 Method for measuring temperature in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112702A JPS593331A (en) 1982-06-30 1982-06-30 Method for measuring temperature in living body

Publications (1)

Publication Number Publication Date
JPS593331A true JPS593331A (en) 1984-01-10

Family

ID=14593357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112702A Pending JPS593331A (en) 1982-06-30 1982-06-30 Method for measuring temperature in living body

Country Status (1)

Country Link
JP (1) JPS593331A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203828A (en) * 1984-03-28 1985-10-15 Toshiba Corp Remote measuring thermometer
JPS612839A (en) * 1984-06-14 1986-01-08 東洋通信機株式会社 Measurement of temperature of living body
JPS61105306A (en) * 1984-10-30 1986-05-23 Ishikawajima Harima Heavy Ind Co Ltd Bearing temperature monitoring device
JPS62263429A (en) * 1986-05-12 1987-11-16 Sumitomo Bakelite Co Ltd Temperature sensor
JPS62263430A (en) * 1986-05-12 1987-11-16 Sumitomo Bakelite Co Ltd Temperature sensor
JPH04109130A (en) * 1990-08-29 1992-04-10 Sekisui Chem Co Ltd Outside air thermometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164321A (en) * 1979-06-08 1980-12-22 Toshiba Corp Temperature detecting unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164321A (en) * 1979-06-08 1980-12-22 Toshiba Corp Temperature detecting unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203828A (en) * 1984-03-28 1985-10-15 Toshiba Corp Remote measuring thermometer
JPS612839A (en) * 1984-06-14 1986-01-08 東洋通信機株式会社 Measurement of temperature of living body
JPH0569535B2 (en) * 1984-06-14 1993-10-01 Toyo Communication Equip
JPS61105306A (en) * 1984-10-30 1986-05-23 Ishikawajima Harima Heavy Ind Co Ltd Bearing temperature monitoring device
JPH0542568B2 (en) * 1984-10-30 1993-06-29 Ishikawajima Harima Heavy Ind
JPS62263429A (en) * 1986-05-12 1987-11-16 Sumitomo Bakelite Co Ltd Temperature sensor
JPS62263430A (en) * 1986-05-12 1987-11-16 Sumitomo Bakelite Co Ltd Temperature sensor
JPH04109130A (en) * 1990-08-29 1992-04-10 Sekisui Chem Co Ltd Outside air thermometer

Similar Documents

Publication Publication Date Title
CN101506645B (en) Cavity-enhanced photo acoustic trace gas detector with improved feedback loop
US4235243A (en) Method and apparatus for facilitating the non-invasive, non-contacting study of piezoelectric members
Garrett Resonant acoustic determination of elastic moduli
JPS593331A (en) Method for measuring temperature in living body
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
CN112698254A (en) Same-frequency resonance polarization synchronous magnetic field measuring device
CN107422287A (en) A kind of virtualization biscuit porcelain resonance signal synchronization motivationtheory and detection method and device
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JPS61181923A (en) Non-contact type measurement of temperature or the like
JPH0569535B2 (en)
RU2003121084A (en) DEVICE FOR NON-INVASIVE DETERMINATION OF THE CONTENT OF SUGAR IN HUMAN BLOOD
CN1116013C (en) Infrared and electronic non-contact oral thermometer
JPS59186542A (en) Clinical temperature measuring method of living body interior
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
JPH0426518B2 (en)
RU2000122210A (en) METHOD FOR MONITORING THE PSYCHOPHYSICAL REACTION OF A HUMAN AND DEVICE FOR ITS IMPLEMENTATION
SU1530172A1 (en) Sensor for recording low-frequency electric field of biological objects
SU1583893A1 (en) Pickup for measuring permanent magnetic field
JPS6015017B2 (en) Infrared absorption gas alarm
SU659946A1 (en) Device for continuous registering of propagation time of ultrasonic oscillations
JPH0216426A (en) Non-contact temperature measuring device
RU30980U1 (en) Device for measuring pressure in a vessel
SU591780A1 (en) Device for measuring machine rotating component parameters
SU1411686A1 (en) Device for measuring dielectric characteristics of solids
JPS62192136A (en) Apparatus for measuring temperature in living body