JPS60203828A - Remote measuring thermometer - Google Patents

Remote measuring thermometer

Info

Publication number
JPS60203828A
JPS60203828A JP6198084A JP6198084A JPS60203828A JP S60203828 A JPS60203828 A JP S60203828A JP 6198084 A JP6198084 A JP 6198084A JP 6198084 A JP6198084 A JP 6198084A JP S60203828 A JPS60203828 A JP S60203828A
Authority
JP
Japan
Prior art keywords
temperature
signal
frequency
ceramic resonator
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6198084A
Other languages
Japanese (ja)
Inventor
Kenji Iwasaki
岩崎 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6198084A priority Critical patent/JPS60203828A/en
Publication of JPS60203828A publication Critical patent/JPS60203828A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To omit a cable or the like by detecting a resonance frequency from a response signal of a sensor for receiving a carrier including a sweeping signal having the resonance frequency to be changed by the temperature of a ceramic resonator and measuring the temperature of the ceramic resonator. CONSTITUTION:A sensor part 2 is constituted of the ceramic resonator 1 changing its resonance frequency f1 in accordance with temperature, a diode 5, an electromagnetic coupler 6, and an antenna 4 to output a carrier S0 of a microwave band having frequency f0 modulated by a sweeping signal S1 of an intermediate wave band, and a measuring device part 3 is constituted of a transmission/reception part 14 for analyzing a response signal S5 from the sensor part 2 and an antenna 15. The carrier S0 including the signal S1 from the antenna 15 is received by the antenna 4 and applied to the resonator 1 to generate a riging signal corresponding to the frequency f1 and the frequency f0, f1 components are radiated from the antenna 4 and received by the antenna 15 to detect the frequency f1 and detect the temperature of the resonator 1, e.g. an internal temperature.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は人体内部の温度、原子炉等隔離した部分におけ
る温度等を測定する遠隔測定温度計に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a remote measuring thermometer that measures the temperature inside a human body, the temperature in an isolated part such as a nuclear reactor, and the like.

[発明の技術的背景] 本発明の技術的背景を、人体の感熱療法(ハイパーサー
ミャ)の場合について説明する。
[Technical Background of the Invention] The technical background of the present invention will be explained in the case of heat-sensitive therapy (hyperthermia) for the human body.

癌の治療において、癌(腫瘍)部分を約42℃に保ちつ
つ癌細胞を殺す感熱療法が知られている。
In the treatment of cancer, heat-sensitive therapy is known that kills cancer cells while keeping the cancer (tumor) area at about 42°C.

この感熱療法における熱源はマイクロ波、超音波等を用
いている。
The heat source in this heat-sensitive therapy uses microwaves, ultrasound, etc.

この場合の問題は患部の温度を正確に知ることであり、
従来においては熱雷対を体内に埋め込み温度を検出して
いた。
The problem in this case is to know the temperature of the affected area accurately;
In the past, thermal lightning pairs were implanted inside the body to detect temperature.

しかし、このよ′うな手段では、熱電対と測定計器とを
接′続する必要があるため、人体を加熱するたびに体内
に熱電対を埋め込まなければならない。
However, with such means, it is necessary to connect the thermocouple to a measuring instrument, so that the thermocouple must be implanted in the human body each time the body is heated.

このような事情は光ファイバーを使用した温度計の場合
も同様である。
This situation also applies to thermometers using optical fibers.

この光ファイバーを使用した温度計は、光ファイバーの
先端に温度変化に伴って螢光発光スペクトルの変化する
蛍光体を塗布しておき、体内へこの光ファイバーを通し
て体外からその先端部分に刺激光を入射して螢光発光ス
ペクトルの変化を分析することにより体温を検出するよ
うにしたものである。
This thermometer using an optical fiber coats the tip of the optical fiber with a phosphor that changes its fluorescence emission spectrum as the temperature changes, and stimulates light from outside the body by passing this optical fiber into the body. Body temperature is detected by analyzing changes in the fluorescence emission spectrum.

[背景技術の問題点] 上述した従来の温度測定手段では、測定計器と温度のセ
ンサ部分とをケーブル、光ファイバー等で連結する構成
であるため、測温の都度センサ部分及びケーブル若しく
は光ファイバーを体内に埋め込む必要があるばか測定器
の配置にも制約を受けるという問題があった。
[Problems in the Background Art] In the conventional temperature measuring means described above, the measuring instrument and the temperature sensor part are connected by a cable, optical fiber, etc. There was also a problem in that there were restrictions on the placement of the stupid measuring device that needed to be embedded.

このような事情は、感熱療法の場合のみならず原子炉等
の温度の遠隔測定の場合も同様である。
This situation applies not only to thermotherapy but also to remote measurement of the temperature of nuclear reactors and the like.

[発明の目的〕 本発明は上記事情に鑑みてなされたものであり、ケーブ
ル、光ファイバー等による連結が全く不要で必要に応じ
て外部から所望箇所の温度測定が可能な遠隔測定温度計
の提供を目的とするものである。
[Objective of the Invention] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a remote measuring thermometer that does not require any connection using cables, optical fibers, etc. and is capable of measuring the temperature of a desired location from the outside as necessary. This is the purpose.

[発明の概要] 上記目的を達成するだめの本発明の概要は、温度変化に
より共振周波数が変化するセラミック共振子を有し、前
記共振周波数の掃引信号を含む搬送波を外部より受信し
て前記共振周波数に対応するリンギング信号を含む応答
信号を送出Jる゛センサ部と、このセンサ部に前記搬送
波を送信するとともにセンサ部から応答信号を受信して
セラミック共振子の共振周波数を検出する測定部とを備
え、測定部の検出結果からセラミック共振子の温度を測
定するようにしたことを特徴とするものである。
[Summary of the Invention] To achieve the above object, the present invention has a ceramic resonator whose resonant frequency changes with temperature changes, receives a carrier wave containing a sweep signal of the resonant frequency from the outside, and generates the resonant wave. a sensor section that sends out a response signal including a ringing signal corresponding to the frequency; a measurement section that sends the carrier wave to the sensor section and receives the response signal from the sensor section to detect the resonant frequency of the ceramic resonator; The present invention is characterized in that the temperature of the ceramic resonator is measured from the detection result of the measuring section.

[発明の実施例] 以下に本発明の測定原理及び実施例を、感熱療法の場合
の体温の測定に適用した場合について説明する。
[Embodiments of the Invention] Below, a case where the measurement principle and embodiments of the present invention are applied to the measurement of body temperature in the case of thermosensitive therapy will be described.

本発明の温度の測定原理は、体内に埋め込んだ温度によ
り共振周波数が変化するセラミック共振子に外部から所
定周波数の搬送波を送信し、セラミック振動子の共振周
波数で定まる特定周波数の応答信号を対外へ送出させて
この特定周波数を識別することによりセラミック共振子
の温度、即ち、体内の温度を測定するものである。
The temperature measurement principle of the present invention is to transmit a carrier wave of a predetermined frequency from the outside to a ceramic resonator whose resonant frequency changes depending on the temperature that is embedded in the body, and to transmit a response signal of a specific frequency determined by the resonant frequency of the ceramic resonator to the outside. By transmitting and identifying this specific frequency, the temperature of the ceramic resonator, that is, the temperature inside the body is measured.

即ち、第1図に示すセラミック共振子1の共振周波数を
[iとし、このセラミック共振子1に第2図(a )に
示Jように掃引信号S1を印加する。
That is, the resonance frequency of the ceramic resonator 1 shown in FIG. 1 is set to [i, and the sweep signal S1 is applied to the ceramic resonator 1 as shown in FIG. 2(a).

この掃引信号S1を受けたセラミック共振子1は共振を
開始し、第2図(b)に示すようにその共振周波数f1
に対応したリンギング信号S2を発生する。
The ceramic resonator 1 receiving this sweep signal S1 starts to resonate, and as shown in FIG. 2(b), the resonant frequency f1 is
generates a ringing signal S2 corresponding to .

このリンギング信号S2に基づき、第2図(C)に示す
ような共振周波数f1に対応したリンギング応答信号S
s、第2図(d )に示すようなリンギング応答信号S
3に対応するパルス信号S4を1rJ−て、セミツク共
振子1の共振周波数11を検出すれば、共振周波数「1
と温度との関係が′予め知られているためその温度即ち
体内の温度を測定することができる。
Based on this ringing signal S2, a ringing response signal S corresponding to the resonance frequency f1 as shown in FIG.
s, a ringing response signal S as shown in Fig. 2(d)
If the resonant frequency 11 of the Semiconductor resonator 1 is detected by applying the pulse signal S4 corresponding to
Since the relationship between and temperature is known in advance, that temperature, that is, the temperature inside the body, can be measured.

次に、上述した測定原理を実現するための第1の実施例
を第3図を参照して説明する。
Next, a first embodiment for realizing the above-mentioned measurement principle will be described with reference to FIG.

同図に示す遠隔測定温度計は、センサ部2と、測定器部
3とを有して構成されている。
The telemetry thermometer shown in the figure includes a sensor section 2 and a measuring device section 3.

センサ部2は、アンテナ4とダイオード5と電磁結合器
6と温度により共振周波数f1が変化する前記セラミッ
ク共振子1を有しC構成されている。
The sensor section 2 has a C configuration including an antenna 4, a diode 5, an electromagnetic coupler 6, and the ceramic resonator 1 whose resonance frequency f1 changes depending on temperature.

セラミック共振子1の具体的構成例を第4図参照して説
明する。
A specific example of the configuration of the ceramic resonator 1 will be explained with reference to FIG.

同図において、11は例えばPb Ti Os −Pb
 Zr 03−Pb (Co w> t /20s等に
より形成され、かつ、その分極軸を長袖方向どしたセラ
ミック圧電素子であり、通常は温度特性を考慮して精製
したものを用いるが、本実施例においては微量のシリコ
ン(St)などの添加物を加えることにより体内の温度
に対応した温度特性を持たせている。
In the figure, 11 is, for example, Pb Ti Os -Pb
It is a ceramic piezoelectric element formed by Zr 03-Pb (Cow > t /20s, etc.) and whose polarization axis is set in the long direction.Usually, a ceramic piezoelectric element that has been refined in consideration of temperature characteristics is used, but in this example By adding a small amount of additives such as silicon (St), the temperature characteristics correspond to the temperature inside the body.

12a、12Bはこのセラミック電圧素子11の両面に
設けた電極、13aはこの電極12aを外部に接続する
ための端子である。電極12bも同様な端子を有してい
る。
12a and 12B are electrodes provided on both sides of this ceramic voltage element 11, and 13a is a terminal for connecting this electrode 12a to the outside. Electrode 12b also has a similar terminal.

このセラミック共振子1は極めて簡略かつ小型に構成で
き、しかも、電源を必要としないいわゆる受動素子とし
て構成できる。したがって、センサ部2全体も全固体素
子で信頼性、対衝撃性に優れた構成とすることができる
This ceramic resonator 1 can be constructed extremely simply and compactly, and moreover, can be constructed as a so-called passive element that does not require a power source. Therefore, the sensor section 2 as a whole can also be configured as an all-solid-state element with excellent reliability and shock resistance.

前記測定器部3は、中波帯(例えば1.0〜2゜5MH
2)の掃引信号S1で変調されたマイクロ波帯の搬送波
So (周波数fO;例えば2.45GHz )を出力
するとともに前記センサ部2からの応答信号Ss (後
述する)を分析する送受信部14と搬送波So、応答信
号S5の送受信を行なうアンテナ15とを有して構成さ
れている。
The measuring device section 3 is configured to operate in a medium wave band (for example, 1.0~2°5MH).
2) A transmitting/receiving unit 14 that outputs a microwave band carrier wave So (frequency fO; for example, 2.45 GHz) modulated by the sweep signal S1 of 2) and analyzes a response signal Ss (described later) from the sensor unit 2, and a carrier wave. So, and an antenna 15 for transmitting and receiving a response signal S5.

次に、上記構成の遠隔測定温度計の作用をセンサ部2を
体内に埋め込んだ場合について説明する。
Next, the operation of the telemetry thermometer having the above configuration will be explained in the case where the sensor section 2 is implanted in the body.

測定器部3のアンテナ15から送信されたマイクロ波帯
の搬送波Soは体内のセンサ部2のア、ンテナ4により
受信される。
The microwave band carrier wave So transmitted from the antenna 15 of the measuring instrument section 3 is received by the antenna 4 of the sensor section 2 inside the body.

この搬送波Soに含まれる掃引信号S1がダイオード5
により復調され、この掃引信号S1は電磁結合器6を介
してセラミック共振子1に印加される。
The sweep signal S1 included in this carrier wave So is transmitted to the diode 5.
This sweep signal S1 is applied to the ceramic resonator 1 via the electromagnetic coupler 6.

この掃引信号S1に基づき、セラミック共振周波数f1
に対応したリンギング信号S2が発生する。
Based on this sweep signal S1, the ceramic resonance frequency f1
A ringing signal S2 corresponding to this is generated.

このリンギング信号S2は連続してセ:/゛す°部2に
送られてくる搬送波Soで再度変調され、この結果、周
波数fo酸成分共振周波数f1構成とを含む応答信号S
5がアンテナ4から外部へ放射される。
This ringing signal S2 is continuously modulated again by the carrier wave So sent to the center section 2, and as a result, a response signal S including the frequency fo acid component resonance frequency f1 configuration is obtained.
5 is radiated to the outside from the antenna 4.

この応答信号S5は測定器部3のアンテナ15で受信さ
れ送受信部14において前記掃引信号S1とともに同期
検波され、第2図(0)で示すリンギング応答信号S3
に変換される。このリンギング応答信号S3の周波数を
検出することにより共振周波数11を測定することがで
き、したがって、これに対応するセラミック共振子1の
温度、即ち、体内の温度を知ることができる。
This response signal S5 is received by the antenna 15 of the measuring instrument section 3, and synchronously detected together with the sweep signal S1 in the transmitter/receiver section 14, resulting in a ringing response signal S3 shown in FIG. 2(0).
is converted to By detecting the frequency of this ringing response signal S3, the resonance frequency 11 can be measured, and therefore the temperature of the ceramic resonator 1 corresponding to this, that is, the temperature inside the body can be known.

また、リンギング応答信号S3を例えばマツチドフィル
タにより第2図(d ’)に示すようなパルス信号S4
に変換し、このパルス信号S4の前記掃引信号S1に対
する時間軸上の位置を判別してセラミック振動との温度
を知ることもできる。
Further, the ringing response signal S3 is converted into a pulse signal S4 as shown in FIG. 2(d') by, for example, a matched filter.
It is also possible to determine the temperature relative to the ceramic vibration by converting the pulse signal S4 to the sweep signal S1 and determining the position of the pulse signal S4 on the time axis with respect to the sweep signal S1.

尚、上述した搬送波Soの周波数は特に限定するもので
はないが、いわゆる18Mバンド(915MHz 、2
.45GHz等)が電波法の規制の問題等から有利であ
る。
Note that the frequency of the carrier wave So mentioned above is not particularly limited, but may be in the so-called 18M band (915MHz, 2
.. 45 GHz, etc.) is advantageous due to radio law regulations.

次に、前記測定原理を実現するための第2の実施例を第
5図を参照して説明する。
Next, a second embodiment for realizing the measurement principle described above will be described with reference to FIG.

同図に示す遠隔測定温度計は、アンテナコイル21と高
周波結合コンデンサ22とセラミック共振子1とからな
るセンサ部2Aと、送受信部14A及びアンテナコイル
23からなる測定器部3Aとを有して構成されている。
The telemetry thermometer shown in the figure includes a sensor section 2A consisting of an antenna coil 21, a high-frequency coupling capacitor 22, and a ceramic resonator 1, and a measuring instrument section 3A consisting of a transmitting/receiving section 14A and an antenna coil 23. has been done.

送受信部14Aからアンテナコイル23を介して例えば
周波数269〜532KH2の範囲にある掃引信号Ss
’が直接送信される。この掃引信号Ss’ はアンテナ
コイル21により受信され高周波結合コンデンサ22を
介してセラミック共振子1に印加される。この結果、セ
ラミック共振子1おいては共振周波数f1の共振現象が
起こり、この共振周波数f1に対応するリンギング信号
82′がアンテナコイル21からアンテナコイル23へ
送られる。
A sweep signal Ss in a frequency range of 269 to 532 KH2 is transmitted from the transmitting/receiving section 14A via the antenna coil 23.
' will be sent directly. This sweep signal Ss' is received by the antenna coil 21 and applied to the ceramic resonator 1 via the high frequency coupling capacitor 22. As a result, a resonance phenomenon with a resonance frequency f1 occurs in the ceramic resonator 1, and a ringing signal 82' corresponding to this resonance frequency f1 is sent from the antenna coil 21 to the antenna coil 23.

送受信部14Aは、このリンギング信号32’の周波数
を分析してセラミック共振子1の共振周波数f1を測定
する。
The transmitting/receiving section 14A analyzes the frequency of this ringing signal 32' and measures the resonant frequency f1 of the ceramic resonator 1.

この検出した共振周波数f1によりセラミック共振子1
の温度、即ち、体内の温度の知ることができる。
The detected resonance frequency f1 causes the ceramic resonator 1 to
temperature, that is, the temperature inside the body.

尚、上述したように共振周波数11を測定することによ
り体内温度を検知するほか、掃引信号81′の周波数と
セラミック共振子1の共振周波数11が一致した瞬間か
らリンギング信号82’が発生することを利用し、この
リンギング信号S2’の掃引信号81’ に対する時間
軸上の位置を検出することにより体内の温度を知ること
もできる。
In addition to detecting the internal temperature by measuring the resonant frequency 11 as described above, it is also possible to detect that the ringing signal 82' is generated from the moment the frequency of the sweep signal 81' matches the resonant frequency 11 of the ceramic resonator 1. The internal temperature of the body can also be determined by detecting the position of the ringing signal S2' on the time axis relative to the sweep signal 81'.

上述した遠隔測定温度計の用途としては、人体の温度測
定のみならず種々のものがある。
The above-mentioned remote measuring thermometer has various uses in addition to measuring the temperature of the human body.

例えば、トロリ一式の電子管排気・エージング装置にセ
ン9部を取り付けて必要部分の温度を測定することがで
きる。
For example, the temperature of a required part can be measured by attaching a sensor section to a trolley set of electron tube exhaust/aging device.

この場合、多くの電子管排気・エージング装置の一台毎
に取り付けるセンサ部に内蔵された各セラミック共振子
の共振周波数を少しずつ異なるものに設定しておけば、
測定器部からの掃引信号の周波数が同一でもその応答i
=号の周波数が異なるため各電子管排気・エージング装
置を識別することかり能となる。
In this case, if the resonant frequency of each ceramic resonator built in the sensor section installed in each electron tube exhaust/aging device is set to be slightly different,
Even if the frequency of the sweep signal from the measuring instrument is the same, its response i
Since the frequencies of the = signs are different, it becomes possible to identify each electron tube exhaust/aging device.

また、原子炉、放射線治療室内等の作業者が近づけない
部分の温度測定や、ヒー]・ラン中のTVセット等大天
井走行中物体の温度測定も可能となる。
It is also possible to measure the temperature of parts of nuclear reactors, radiation therapy rooms, etc. that are inaccessible to workers, and to measure the temperature of objects while running on large ceilings, such as TV sets during heat runs.

る。Ru.

例えば、上述した実施例ではセンサ部におけるセラミッ
ク共振子が一個の場合について説明したが、複数のセラ
ミック共振子を用いることにより一回の測定で複数の温
度を知るように構成することもできる。
For example, in the above-described embodiment, the case where the sensor unit has one ceramic resonator has been described, but by using a plurality of ceramic resonators, it is also possible to obtain a plurality of temperatures in one measurement.

[発明の効果] 以上詳述した本発明によれば、レンサ部と測定器部とを
ケーブル、光ファイバー等で連結する必要がなく、かつ
セン9部に駆動電源を必要としないで、人体の体内1作
業者が接近できない場所等所望の個所の温度の遠隔測定
が可能な遠隔測定温度計を提供することができる。
[Effects of the Invention] According to the present invention described in detail above, there is no need to connect the sensor section and the measuring instrument section with cables, optical fibers, etc., and there is no need for a driving power source for the sensor section 9, and the sensor section can be connected to the inside of the human body. It is possible to provide a telemetry thermometer that can remotely measure the temperature of a desired location, such as a location that cannot be accessed by one worker.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミック共振子の説明図、第2図(a )は
本発明の測定原理を示す掃引信号の波形図、第2図(b
)は同上のリンギング信号の波形図、第2図(C)は同
上のリンギング応答信号の波形図、第2図(d)は同上
のパルス信号の波形図、第3図は本発明の第1の実施例
の回路図、第4図はセラミック共振子の具体的構成例を
示す斜視図、第5図は本発明の第2の実施例を示す回路
図である。 1・・・・・・セラミック共振子、 2.2A・・・・・・センサ部、 3,3A・・・・・
・測定器部、Sl・・・・・・掃引信号、 S2・・・・・・リンギング信号、 S3・・・・・・リンギング応答信号、S4・・・・・
・パルス信号。 ) 吻 第2図 (b) f+ (C) S4−一」■−一
Figure 1 is an explanatory diagram of a ceramic resonator, Figure 2 (a) is a waveform diagram of a sweep signal showing the measurement principle of the present invention, and Figure 2 (b) is a waveform diagram of a sweep signal showing the measurement principle of the present invention.
) is a waveform diagram of the ringing signal as above, FIG. 2(C) is a waveform diagram of the ringing response signal as above, FIG. 2(d) is a waveform diagram of the pulse signal as above, and FIG. FIG. 4 is a perspective view showing a specific configuration example of a ceramic resonator, and FIG. 5 is a circuit diagram showing a second embodiment of the present invention. 1...Ceramic resonator, 2.2A...Sensor section, 3,3A...
・Measuring instrument section, Sl...Sweep signal, S2...Ringing signal, S3...Ringing response signal, S4...
・Pulse signal. ) Snout 2nd figure (b) f+ (C) S4-1''■-1

Claims (3)

【特許請求の範囲】[Claims] (1) 温度変化により共振周波数が変化するセラミッ
ク共振子を有し、前記共振周波数の掃引信号を含む搬送
波を外部より受信して前記共振周波数に対応するリンギ
ング信号を含む応答信号を送出するセンサ部と、このセ
ンサ部に前記搬送波を送信するとともにセンサ部から応
答信号を受信してセラミック共振子の共振周波数を検出
する測定部とを備え、測定部の検出結果からセラミック
共振子の温度を測定するようにしたことを特徴とする遠
隔測定温度計。
(1) A sensor unit that has a ceramic resonator whose resonant frequency changes with temperature changes, receives a carrier wave containing a sweep signal of the resonant frequency from the outside, and sends out a response signal that includes a ringing signal corresponding to the resonant frequency. and a measurement section that transmits the carrier wave to the sensor section and receives a response signal from the sensor section to detect the resonant frequency of the ceramic resonator, and measures the temperature of the ceramic resonator from the detection result of the measurement section. A remote sensing thermometer characterized by:
(2) 前記測定部は、受信した応答信号中のリンギン
グ信号と前記掃引信号との時間軸上の位置関係からセラ
ミック共振子の温度を測定するように構成されたことを
特徴とする特許請求の範囲第1項記載の遠隔測定温度計
(2) The measurement unit is configured to measure the temperature of the ceramic resonator from the positional relationship on the time axis between the ringing signal in the received response signal and the sweep signal. A remote sensing thermometer according to scope 1.
(3) 前記掃引信号の周波数を中波帯とし、前記搬送
波をマイクロ波としたことを特徴とする特許請求の範囲
第1項記載の遠隔測定温度計。
(3) The telemetry thermometer according to claim 1, wherein the frequency of the sweep signal is a medium wave band, and the carrier wave is a microwave.
JP6198084A 1984-03-28 1984-03-28 Remote measuring thermometer Pending JPS60203828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198084A JPS60203828A (en) 1984-03-28 1984-03-28 Remote measuring thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198084A JPS60203828A (en) 1984-03-28 1984-03-28 Remote measuring thermometer

Publications (1)

Publication Number Publication Date
JPS60203828A true JPS60203828A (en) 1985-10-15

Family

ID=13186833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198084A Pending JPS60203828A (en) 1984-03-28 1984-03-28 Remote measuring thermometer

Country Status (1)

Country Link
JP (1) JPS60203828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003500A1 (en) * 2002-07-01 2004-01-08 University Of Manitoba Measuring strain in a structure (bridge) with a (temperature compensated) electromagnetic resonator (microwave cavity)
EP1923674A1 (en) * 2006-11-14 2008-05-21 Infineon Technologies SensoNor AS Backscatter sensor
US7441463B2 (en) 2005-09-23 2008-10-28 University Of Manitoba Sensing system based on multiple resonant electromagnetic cavities
JP2015206734A (en) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 Temperature calculating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164321A (en) * 1979-06-08 1980-12-22 Toshiba Corp Temperature detecting unit
JPS593331A (en) * 1982-06-30 1984-01-10 Yoshiaki Saito Method for measuring temperature in living body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164321A (en) * 1979-06-08 1980-12-22 Toshiba Corp Temperature detecting unit
JPS593331A (en) * 1982-06-30 1984-01-10 Yoshiaki Saito Method for measuring temperature in living body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003500A1 (en) * 2002-07-01 2004-01-08 University Of Manitoba Measuring strain in a structure (bridge) with a (temperature compensated) electromagnetic resonator (microwave cavity)
US7347101B2 (en) 2002-07-01 2008-03-25 University Of Manitoba Measuring strain in a structure using a sensor having an electromagnetic resonator
US7441463B2 (en) 2005-09-23 2008-10-28 University Of Manitoba Sensing system based on multiple resonant electromagnetic cavities
EP1923674A1 (en) * 2006-11-14 2008-05-21 Infineon Technologies SensoNor AS Backscatter sensor
US7692358B2 (en) 2006-11-14 2010-04-06 Infineon Technologies Sensonor As Backscatter sensor
JP2015206734A (en) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 Temperature calculating device

Similar Documents

Publication Publication Date Title
US7236092B1 (en) Passive sensor technology incorporating energy storage mechanism
CN103134606B (en) Differential type acoustic surface wave temperature sensor
US20070170170A1 (en) Temperature measuring device, thermal processor having temperature measurement function and temperature measurement method
US10145729B2 (en) Intermodulation sensor platform based on mechanical resonator
EP2379988B1 (en) System and method for remote reading of resonant sensors
JPH0544970B2 (en)
JP2000005136A (en) Temperature measuring device and implant
CN110261001A (en) Cable intermediate joint temperature measurement system
US20160223411A1 (en) Thermometer and measuring device for fluids
JPS60203828A (en) Remote measuring thermometer
Zhang et al. Fiber optic temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime
CN203132736U (en) Differential surface-acoustic-wave temperature sensor
Larsen et al. A microwave decoupled brain-temperature transducer
US4177422A (en) Apparatus and process for generating an ionized gas or plasma by microwave energy
JPH10227702A (en) Temperature sensor and method for driving the same
JPS593331A (en) Method for measuring temperature in living body
JPH0569535B2 (en)
JPS63171331A (en) In-vivo temperature measuring instrument
JP2714063B2 (en) Ultrasonic transducer
JPH01119728A (en) Method for measuring temperature in living body
Saitoh et al. Implantable temperature measurement system using the parametron phenomenon
JPH0448176B2 (en)
SU853563A1 (en) Feed-through uhf power pickup
JPH06101384B2 (en) Method for measuring the temperature of the object to be heated in electromagnetic wave heating
CN204807189U (en) Undulant sensor based on optic fibre M -Z interferometer