JPS61181923A - Non-contact type measurement of temperature or the like - Google Patents

Non-contact type measurement of temperature or the like

Info

Publication number
JPS61181923A
JPS61181923A JP60021542A JP2154285A JPS61181923A JP S61181923 A JPS61181923 A JP S61181923A JP 60021542 A JP60021542 A JP 60021542A JP 2154285 A JP2154285 A JP 2154285A JP S61181923 A JPS61181923 A JP S61181923A
Authority
JP
Japan
Prior art keywords
frequency
temperature
probe
level
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60021542A
Other languages
Japanese (ja)
Other versions
JPH0448176B2 (en
Inventor
Koichi Hirama
宏一 平間
Takeshi Oshima
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP60021542A priority Critical patent/JPS61181923A/en
Publication of JPS61181923A publication Critical patent/JPS61181923A/en
Publication of JPH0448176B2 publication Critical patent/JPH0448176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enable the measurement of temperature or pressure at the depth in vivo while facilitating the measurement, by utilizing an ultrasonic wave which is relatively less in the attenuation in vivo along with limited noise component level. CONSTITUTION:An electromagnetic wave is made to irradiate a probe through an transmitting antenna coil L2 connected to a variable frequency oscillator 1 with a frequency counter 2 and an ultrasonic wave oscillated by the probe is received with a microphone 3. A measuring system is so arranged that after an electrical signal thereof is amplified to a required level with a high frequency amplifier 4, the electrical signal with the frequency the same as that of the ultrasonic wave is extracted with a filter 5 and the level thereof is observed with a level meter 6. Here, the oscillation frequency of the variable frequency oscillator 1 is varied and the frequency is detected with a frequency counter 2 at the point where the reading of the level meter is the maximum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非接触型温度等の測定方法、殊に生体内の温度
測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-contact method for measuring temperature, etc., and particularly to a method for measuring temperature within a living body.

(従来技術) 近年ガンの治療のため温熱療法が注目されているが、そ
の際ガン細胞とその周辺の正常細胞を含め九局部の正確
な温度測定技術が不可欠である。
(Prior Art) Hyperthermia therapy has been attracting attention for the treatment of cancer in recent years, but in this case, accurate temperature measurement technology for nine local areas, including cancer cells and surrounding normal cells, is essential.

従来、このような生体内の温度測定にあたってはアンテ
ナ・コイルに水晶振動子等の如く共振周波数が温度依存
性をもって変化する圧電振動子を接続したプローブを生
体内の所望部分に外科的に埋込むが或はこれを消化器内
に流すと共に生体外から所要周波数の電磁波エネルギを
照射し前記アンテナ−コイルを介して前記圧電振動子に
与えこれが共振する際のエネルギ吸収現象を観測するか
或は前記電磁波エネルギ照射を中止した直後に於ける前
記圧電振動子の残響を前記アンテナ・コイルを介して受
信する等して前記圧電振動子の共振周波数を検出しもっ
て温度全測定する方法が提案されている。
Conventionally, in order to measure the temperature inside a living body, a probe with a piezoelectric vibrator, such as a crystal oscillator, whose resonant frequency changes depending on the temperature, connected to an antenna coil is surgically implanted into the desired part of the living body. Alternatively, while flowing this into the digestive organ, irradiating electromagnetic wave energy of a required frequency from outside the body and applying it to the piezoelectric vibrator via the antenna coil and observing the energy absorption phenomenon when it resonates, or A method has been proposed in which the resonance frequency of the piezoelectric vibrator is detected by receiving the reverberation of the piezoelectric vibrator immediately after the electromagnetic energy irradiation is stopped via the antenna coil, and the total temperature is measured. .

このように電磁波を用いしかも温度センサに水晶振動子
等圧電振動子を用いる方法は生体内プローブと体外装置
間のケーブルを不要としかつ正確な温度測定を行ううえ
で極めて有効であって更に上述の如く温度センサを受動
型回路で構成し無電源とすることは長期間にわたりて生
体内に埋込む際極めて有効である。
This method of using electromagnetic waves and using a piezoelectric oscillator such as a crystal oscillator as a temperature sensor is extremely effective in eliminating the need for cables between the in-vivo probe and the external device and in performing accurate temperature measurements. Configuring a temperature sensor with a passive circuit without power supply is extremely effective when implanted in a living body for a long period of time.

しかしながら、上述の如く受動回路による温度セ/すを
用いその電磁波吸収現象或は残響現象を利用する方法で
はこれから得る電磁波レベルが極めて微弱であるため測
定が非常に困難であってしかも前記センサのアンテナ・
コイルと生体外装置のピックアップコイルとの離隔距離
を大きくとれないと云う欠点があった。
However, as mentioned above, in the method of using temperature control using a passive circuit and utilizing the electromagnetic wave absorption phenomenon or reverberation phenomenon, the electromagnetic wave level obtained from this is extremely weak, making it very difficult to measure.・
There was a drawback in that it was not possible to maintain a large separation distance between the coil and the pickup coil of the in vitro device.

更に、上述の如く前記プローブから電磁波を導出する方
法では、被測定体が生体である場合電磁波が生体外に至
るまでに大きな減衰を受けるため生体外に於いて抽出し
うるエネルギが極めて微弱であるうえ、商用電源周波数
をはじめ雑多な電磁的雑音が充満する条件下での測定は
一層困難なものであった。
Furthermore, in the method of deriving electromagnetic waves from the probe as described above, when the object to be measured is a living body, the electromagnetic waves undergo large attenuation before reaching outside the living body, so the energy that can be extracted outside the living body is extremely weak. Moreover, measurements were even more difficult under conditions filled with miscellaneous electromagnetic noise, including commercial power supply frequencies.

このような電磁的雑音はガン等の温熱療法に一般に使用
される高周波加熱装置に於いては非常に大きなものであ
って上述した従来の測温方法ではこれからの雑音除去に
多大の労力を費していた。
Such electromagnetic noise is extremely loud in high-frequency heating devices commonly used for hyperthermia therapy for cancer, etc., and the conventional temperature measurement method described above requires a great deal of effort to eliminate the noise in the future. was.

実験によれば、上述した従来の方法では生体内センサの
アンテナ・コイルと体外装置のビック・アップ・コイル
の離隔距離はせいぜい5cst糧度であって9例えば生
体内深部の温度測定にあたっては前記センサの圧電振動
子とアンテナ拳コイルとを所要間隔離した細長い形状と
するか或はこれら両者をケーブルで延長する等して前記
アンテナ・コイルを体表近くに位置せしめなければ測定
ができず啄めて不便であった。
According to experiments, in the conventional method described above, the separation distance between the antenna coil of the in-vivo sensor and the big-up coil of the extracorporeal device is at most 5 cst9. Measurements cannot be made unless the piezoelectric vibrator and the antenna coil are placed close to the body surface, either by separating them by a required length or by extending them both with a cable. It was inconvenient.

又、同様の方法によって圧力の測定が可能でありて、こ
の場合はセンナの構造が若干具なるのみである。
It is also possible to measure pressure by a similar method, in which case the structure of the senna is only slightly modified.

(発明の目的) 本発明は上述の如き温度又は圧力の測定方法の問題点に
鑑みてなされ九ものであって、生体内に於ける減衰が比
較的少なく、かつ雑音成分レベルが小さい超音波を利用
することによって測定を容易にすると共に生体内深部に
於ける温度又は圧力の測定を可能とした非接触型温度等
の測定方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the problems of the temperature or pressure measuring method as described above, and it uses ultrasonic waves that have relatively little attenuation in the living body and have a low noise component level. It is an object of the present invention to provide a non-contact temperature measurement method that facilitates measurement and enables measurement of temperature or pressure deep within a living body.

(発明の概要) 上述の目的を達成する九めに本発明では以下の如き手段
を講する。
(Summary of the Invention) To achieve the above-mentioned object, the present invention takes the following measures.

即ち、アンテナ・コイルに共振周波数が温度又は圧力依
存性を有する圧電振動子と該圧電振動子の共振周波数と
はソ同一の共振周波数を有する超音波トランスデエーサ
とをループを形成する如く接続したものをセンサ用プロ
ーブとなし被測定体表面又は内部に装着すると共に、外
部から前記圧電振動子の共振周波数近傍の電磁波を前記
アンテナ・コイルを介して前記プローブに与えこれに共
振して前記圧電振動子に流れる電流によって前記超音波
トランスデユーサを発振動せしめこれが発する超音波を
外部から観測することによって前記被測定体の温度又は
圧力を測定するよう構成する。
That is, a piezoelectric vibrator whose resonant frequency is temperature- or pressure-dependent is connected to an antenna coil, and an ultrasonic transducer whose resonant frequency is the same as that of the piezoelectric vibrator, so as to form a loop. is used as a sensor probe and is attached to the surface or inside of the object to be measured, and an electromagnetic wave near the resonant frequency of the piezoelectric vibrator is applied from the outside to the probe via the antenna coil, causing the piezoelectric vibrator to resonate. The temperature or pressure of the object to be measured is measured by causing the ultrasonic transducer to oscillate with a current flowing through the transducer and observing the ultrasonic waves emitted from the outside.

(実施例) 以下本発明を図示した実施例に基づいて、詳細に説明す
る。
(Example) The present invention will be described in detail below based on illustrated examples.

第1因は本発明に於いて使用するセンサとしてのプロー
ブの一実施例を示す回路図である。
The first factor is a circuit diagram showing one embodiment of a probe as a sensor used in the present invention.

同図に於いてLlはアンテナ嗜コイルであって、これに
水晶振動子Xと超音波トランスデユーサSWとを直列に
接続しこれら王者が閉ループを成す如く構成したもので
ある。
In the figure, Ll is an antenna coil, to which a crystal oscillator X and an ultrasonic transducer SW are connected in series so that these coils form a closed loop.

伺前記超音波トランスデユーサSWとしては例えばチタ
ン酸バリウム振動子或は水晶振動子等の圧電振動子を厚
み縦振動モードで用い、その共振周波数を前記セ/す用
水晶振動子Xとはソ同一2例えば13.56 MHzと
する。
As the ultrasonic transducer SW, a piezoelectric vibrator such as a barium titanate vibrator or a quartz crystal vibrator is used in a thickness longitudinal vibration mode, and its resonant frequency is different from that of the center crystal vibrator X. For example, the frequency is 13.56 MHz.

このように構成したプローブに、前記アンテナ・コイf
i/L1t−介して前記水晶振動子Xの共振周波数近傍
の電磁波を与えると、該電磁波が前記水晶振動子の共振
周波数と一致するとき最も大きい高周波電流が前記閉ル
ープに流れ、これによって前記超音波トランスデユーサ
が作動し該共振周波数と同一の超音波を発生する。
The antenna coil f is attached to the probe configured in this way.
When an electromagnetic wave near the resonant frequency of the crystal oscillator The transducer is activated and generates ultrasound at the same resonant frequency.

従って外部から該超音波を導出しその周波数を測定すれ
ば前記水晶振動子の共振周波数を知ることができ、あら
かじめ該共振周波数と温度又は圧力の関係がわかってい
ればそのときのこれらの値を測定することができる。
Therefore, by extracting the ultrasonic wave from the outside and measuring its frequency, the resonant frequency of the crystal oscillator can be determined.If the relationship between the resonant frequency and temperature or pressure is known in advance, these values at that time can be determined. can be measured.

伺、前記水晶振動子Xと超音波トランスデユーサSWと
の共振周波数がすべての温度又は圧力に関して常に同一
であることが望ましいが。
However, it is desirable that the resonant frequencies of the crystal oscillator X and the ultrasonic transducer SW are always the same at all temperatures or pressures.

この超音波トランスデユーサ−のQ値はかなり低下され
た状態としであるので例えこれが幾分異るとしても若干
効率の低下はあるものの水晶の共振周波数に応じた超音
波振動出力が得られることには異いがない。
The Q value of this ultrasonic transducer is in a considerably reduced state, so even if this is slightly different, an ultrasonic vibration output corresponding to the resonant frequency of the crystal can be obtained, albeit with a slight decrease in efficiency. There is no difference.

この超音波トランスデユーサの構造としては種々考えら
れるが例えば第参図に示すように構成すればよい。
Although various structures can be considered for this ultrasonic transducer, for example, it may be constructed as shown in FIG.

即ち、共振周波数が前記水晶振動子とはy等しくなる様
な共振周波数音もったチタン酸バリウムを厚み縦振動モ
ードで用いた振動子7の振動方向両端に電極8,8t−
付加すると共に該電せしめることによって、超音波トラ
ンスデユーサの感度全使用周波数内ではソ一定とすると
ともに、不要なスプリアスの出現を防いだ超音波トラン
スデユーサと前記水晶振動子Xとアンテナ・コイルLl
と該電極8,8とを直列に接続するよう構成したもので
ある。
That is, the electrodes 8, 8t- are placed at both ends in the vibration direction of the vibrator 7, which is made of barium titanate having a resonance frequency that is equal to that of the crystal vibrator in the thickness longitudinal vibration mode.
The ultrasonic transducer, the crystal oscillator Ll
and the electrodes 8, 8 are connected in series.

尚上述の水晶振動子の周波数を検出する方法としては前
記超音波トランスデ、ユーザSWの超音波周波数を測定
する代りに、前記外部がら照射する電磁波周波数を変化
せしめ前記超音波出力が最大となる前記電磁波周波数を
観測することによって行なってもよい。
In addition, as a method of detecting the frequency of the crystal resonator described above, instead of measuring the ultrasonic frequency of the ultrasonic transducer and the user SW, the frequency of the electromagnetic wave irradiated from the outside is changed, and the ultrasonic wave output is maximized. This may be done by observing electromagnetic wave frequencies.

即ち、第2図にこのような測定方法を実施する場合に用
いる外部測定装置の一実施例のブロック図を示す。
That is, FIG. 2 shows a block diagram of an embodiment of an external measuring device used when carrying out such a measuring method.

同図に於いて1は周波数カラ/り2を付した可変周波数
発振器であって、これに接続した送信用アンテナ・コイ
ルL2t−介して前記グローブに電磁波を照射すると共
に該プローブが発振する前記超音波をマイクロホン3に
よって受信しその電気信号を高周波アンプ4に於いて所
要レベルまで増幅したのちフィルタ5によって前記超音
波と同一周波数の電気信号を抽出しそのレベルをレベル
計6によって観測するよう測定系全構成すると共に、前
記可変周波数発振器1の発振周波数t−変化せしめ前記
レベル計の読みが最大となる点のその周波数を前記周波
数カウンタ2によりで検出する。
In the same figure, reference numeral 1 denotes a variable frequency oscillator with a frequency collar 2, which irradiates the globe with electromagnetic waves through a transmitting antenna coil L2t connected to it, and the oscillator oscillated by the probe. A measurement system is provided in which a sound wave is received by a microphone 3, the electric signal thereof is amplified to a required level in a high frequency amplifier 4, an electric signal having the same frequency as the ultrasonic wave is extracted by a filter 5, and its level is observed by a level meter 6. At the same time, the oscillation frequency t of the variable frequency oscillator 1 is changed and the frequency at which the reading of the level meter becomes maximum is detected by the frequency counter 2.

伺、この際前記レベル計6の読みが最大となる点を検出
する手段を付加しその手段の出力によって前記可変周波
発振器1の発振局波数を制御するよう構成すれば前記超
音波出力が最大となる電磁波周波数を自動的に測定する
ことができ極めて便利である。
At this time, if a means is added to detect the point at which the reading of the level meter 6 is maximum, and the oscillation local wave number of the variable frequency oscillator 1 is controlled by the output of the means, the ultrasonic output can be maximized. It is extremely convenient because it can automatically measure the electromagnetic wave frequency.

以上本発明を一実施例に基づいて詳細に説明し念が9本
発明はこれに限定する必要はなく。
Although the present invention has been described in detail based on one embodiment, it is not necessary to limit the present invention to this.

例えば前記プローブに於いて外部から照射する電磁波を
一旦直流化しこれを新ら九に構成した超音波発振回路の
電源となすと共に該超音波周波数の振動子に温度或は圧
力依存性をもったものを用い外部から超音波周波数を計
測するようにしてもよい。
For example, in the probe, the electromagnetic waves irradiated from the outside are once converted into direct current, and this is used as a power source for a newly configured ultrasonic oscillation circuit, and the transducer of the ultrasonic frequency has temperature or pressure dependence. The ultrasonic frequency may be measured externally using a .

更に以上の説明は測温方法を王として説明し九が、前記
圧電振動子は圧力に対しても共振周波数が依存性を有す
ること周知であるから上述の説明と同様の方法によって
圧力の測定が可能であること明らかである。
Furthermore, although the above explanation focuses on the temperature measurement method, it is well known that the resonant frequency of the piezoelectric vibrator has dependence on pressure as well, so pressure can be measured using a method similar to the above explanation. It is clear that it is possible.

(発明の効果) 本発明は以上説明し念ように構成し外部から照射する電
磁波全生体内に於ける伝播特性が優れた超音波に変換し
、該超音波の観測によって温度或は圧力を測するもので
あるから種々雑多存在する電磁波雑音の影響を除去せし
め効率のよい非接触型の温度又は圧力を測定する方法を
もたらすうえで著効を奏する。
(Effects of the Invention) As explained above, the present invention is designed to convert electromagnetic waves irradiated from the outside into ultrasonic waves with excellent propagation characteristics in the whole body, and to measure temperature or pressure by observing the ultrasonic waves. Therefore, it is very effective in eliminating the influence of various electromagnetic wave noises and providing an efficient non-contact temperature or pressure measuring method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に於いて使用するプローブの一実施例を
示す回路図、第2図は本発明に於いて使用する体外測定
装置の一実施例を示すブロック図、W、3図は本発明の
プローブに用いる超音波トランスデユーサの構造の一実
施例を示す図である。 l・・・・・・・・・可変周波数発振器、  2・・・
・・・・・・周波数カウンタ、  3・・・−・−・・
・超音波マイクロホン、  4・・・・−・・・・高周
波増幅器。 5・・・・−・・・・フィルタ、   6・・・・・・
・・・レベルメータ、  7及び9・・・・・・・・・
チタン酸バリウム振動子、  8,8・・・・・・・・
・電極、   Ll及びL2・・・・・・・・・アンテ
ナ・コイル、  X・・・・・・・・・水晶振動子、 
 SW・・・・・・・・・超音波トランスデユーサ。 特許出願人  東洋通信機株式会社 第 1 図 第3 ■
Fig. 1 is a circuit diagram showing an embodiment of the probe used in the present invention, Fig. 2 is a block diagram showing an embodiment of the in vitro measuring device used in the present invention, and Figs. FIG. 2 is a diagram showing an example of the structure of an ultrasonic transducer used in the probe of the invention. l......Variable frequency oscillator, 2...
・・・・・・Frequency counter, 3・・・−・−・・
・Ultrasonic microphone, 4・・・・−・・High frequency amplifier. 5...-...Filter, 6...
...Level meter, 7 and 9...
Barium titanate oscillator, 8,8...
・Electrode, Ll and L2...Antenna coil, X...Crystal oscillator,
SW・・・・・・Ultrasonic transducer. Patent applicant Toyo Tsushinki Co., Ltd. Figure 1 Figure 3 ■

Claims (2)

【特許請求の範囲】[Claims] (1)被温度測定体内或は表面に温度依存性を持った圧
電振動子を含む共振回路と超音波トランスデューサとを
含んで構成したプローブを装着すると共に、体外から前
記プローブに電磁波を照射しこれに共振する際の前記圧
電振動子に流れる電流によって前記超音波トランスデュ
ーサを制御しもって超音波を発生せしめ、体外から該超
音波を観測することによって温度を測定するようにした
ことを特徴とする非接触型温度等の測定方法。
(1) A probe composed of a resonant circuit including a piezoelectric vibrator with temperature dependence and an ultrasonic transducer is attached to the inside or surface of the body to be measured, and electromagnetic waves are irradiated to the probe from outside the body. The ultrasonic transducer is controlled by a current flowing through the piezoelectric vibrator when it resonates to generate ultrasonic waves, and the temperature is measured by observing the ultrasonic waves from outside the body. Method of measuring contact temperature, etc.
(2)前記プローブの超音波トランスデューサを温度依
存性を有したものとし、前記圧電振動子を除去して共振
回路を構成したことを特徴とする特許請求の範囲第1項
記載の非接触型温度等の測定方法。
(2) A non-contact temperature type according to claim 1, characterized in that the ultrasonic transducer of the probe has temperature dependence, and the piezoelectric vibrator is removed to form a resonant circuit. etc. measurement method.
JP60021542A 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like Granted JPS61181923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021542A JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021542A JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Publications (2)

Publication Number Publication Date
JPS61181923A true JPS61181923A (en) 1986-08-14
JPH0448176B2 JPH0448176B2 (en) 1992-08-06

Family

ID=12057864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021542A Granted JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Country Status (1)

Country Link
JP (1) JPS61181923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721429B1 (en) * 1999-07-01 2004-04-13 Aoi Electronics Co., Ltd Electro-magnetic microphone
JP2008229382A (en) * 1999-03-11 2008-10-02 Biosense Webster Inc Position sensing based on ultrasound emission
JP2010505353A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Wireless field device with antenna and radome for industrial location
JP2020537156A (en) * 2017-08-12 2020-12-17 アルベルト−ルートヴィヒ−ウニベルシタット−フライブルク Measuring device with passive coordinated target

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190736A (en) * 1982-04-30 1983-11-07 Hiroyasu Funakubo Apparatus for measuring temperature
JPS59186542A (en) * 1983-04-07 1984-10-23 インタ−・ノバ株式会社 Clinical temperature measuring method of living body interior

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190736A (en) * 1982-04-30 1983-11-07 Hiroyasu Funakubo Apparatus for measuring temperature
JPS59186542A (en) * 1983-04-07 1984-10-23 インタ−・ノバ株式会社 Clinical temperature measuring method of living body interior

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229382A (en) * 1999-03-11 2008-10-02 Biosense Webster Inc Position sensing based on ultrasound emission
JP2013033054A (en) * 1999-03-11 2013-02-14 Biosense Webster Inc Position detection based on ultrasound radiation
US6721429B1 (en) * 1999-07-01 2004-04-13 Aoi Electronics Co., Ltd Electro-magnetic microphone
JP2010505353A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Wireless field device with antenna and radome for industrial location
JP2020537156A (en) * 2017-08-12 2020-12-17 アルベルト−ルートヴィヒ−ウニベルシタット−フライブルク Measuring device with passive coordinated target

Also Published As

Publication number Publication date
JPH0448176B2 (en) 1992-08-06

Similar Documents

Publication Publication Date Title
US6461301B2 (en) Resonance based pressure transducer system
Ozeri et al. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation
US6015387A (en) Implantation devices for monitoring and regulating blood flow
US5921928A (en) Acoustic force generation by amplitude modulating a sonic beam
Kim et al. An implantable pressure sensing system with electromechanical interrogation scheme
WO2000038567A3 (en) Method and sensor for wireless measurement of physiological variables
JPH10509605A (en) Apparatus and method for ultrasonic bone treatment
JPS61181925A (en) Temperature sensor
US7017404B1 (en) Wireless system for measuring pressure and flow in tubes
JPS61181923A (en) Non-contact type measurement of temperature or the like
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
Liang et al. A novel implantable saw sensor for blood pressure monitoring
JP3619464B2 (en) Resonant pressure transducer system
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
JP2605239B2 (en) Ultrasonic temperature / pressure measuring device
JPS61122845A (en) Measurement of temperature or pressure in living body
KR102003262B1 (en) Ac magnetic field generating device for medical purpose and method for controlling the same
JPS6098323A (en) Probe for measuring temperature in living body
JPS61181094A (en) Temperature measurement for heating body of electromagnetic heating
JPS635700A (en) Ultrasonic microphone
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JP2632190B2 (en) Non-contact temperature measurement device
Naida et al. Methods of Experimental Research of Broadband Piezoelectric Transducer for Medical Applications
JPS61230405A (en) Antenna coil for pickup
JPS6315127A (en) Temperature or pressure measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees