JPS61121466A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61121466A
JPS61121466A JP59244278A JP24427884A JPS61121466A JP S61121466 A JPS61121466 A JP S61121466A JP 59244278 A JP59244278 A JP 59244278A JP 24427884 A JP24427884 A JP 24427884A JP S61121466 A JPS61121466 A JP S61121466A
Authority
JP
Japan
Prior art keywords
layer
insulating film
electrode
epitaxial
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59244278A
Other languages
Japanese (ja)
Other versions
JPH0467786B2 (en
Inventor
Yoshinobu Kakihara
柿原 良亘
Fumihiro Atsunushi
厚主 文弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59244278A priority Critical patent/JPS61121466A/en
Publication of JPS61121466A publication Critical patent/JPS61121466A/en
Publication of JPH0467786B2 publication Critical patent/JPH0467786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Abstract

PURPOSE:To contrive to realize the higher-speed operation and higher-integration of a semiconductor device by a method wherein an electrode layer for emitter electrode lead-out and opening parts are respectively provided in the second insulating film and at sites, where correspond to the active layer in the bipolar transistor circuit. CONSTITUTION:A silicon epitaxial n<+> type layer 3, which is used as the first epitaxial layer, is formed on the upper surface of a first insulating film 2 and a second insulating film 4 is formed in the same manner. Then a silicon epitaxial n-type layer 12, which is used as the second epitaxial layer, and an oxide film 13 are formed on the upper surface of the insulating film 4, and base p<+> type layers 5 and 5a, collector n-type layers 6 and 6a, base electrode layers 7 and 7a and an emitter electrode layer 8, which is an n<+> type layer, are formed. Then, holes for element isolation are bored in the silicon epitaxial n-type layer 12, an insulating film 4 for element isolation is formed from the upper direction of the holes all over, the surface is flattened and windows 15-17, 17a and so forth are opened to perform a treatment in order by an RIE method. Lastly, polycrystalline silicon electrodes or metal electrodes are formed and the semiconductor device is manufactured. As the device is one to be constituted in the structure, wherein each electrode and the emitter electrode are insulat ed, the higher-speed operation and higher-integration thereof can be realized.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 この発明は半導体装置に関し、詳しくは高速化・高集積
化に好適なバイポーラトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a bipolar transistor suitable for high speed and high integration.

〔従来の技術〕[Conventional technology]

従来から、ハイポ−ラトランジスタには、PN接合方式
と酸化膜分離方式とがあるのが知られている。
Conventionally, it has been known that hyperpolar transistors include a PN junction type and an oxide film separation type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このバイポーラトランジスタは、近年、高速化・高集積
化が進められている大規模集積回路(LSI)及び超L
SI(VLSI)に用いられるが、前記PN接合分離方
式では、寄生容量の減少化や微細化に限界があるため、
高速化や高密度化を実施するのは非常に難かしく、一方
散化膜分離方式では、サブミクロン加工の領域に入ると
PN接合分離方式と同様に高速化・高密度化ができなく
なると考えられている。また、バイポーラトランジスタ
の基板にサファイヤ基板を用いて、上記欠点を解決する
方法も検討されているが、サファイヤ基板の価格が高く
、しかもシリコン半導体のエピタキシャル膜の電気的特
性や欠陥の数が多いためバイポーラ素子などのデバイス
には適用されていないのが実状である。
This bipolar transistor is used in large-scale integrated circuits (LSI) and ultra-Large integrated circuits, which are becoming faster and more highly integrated in recent years.
Although it is used for SI (VLSI), the PN junction isolation method has limitations in reducing parasitic capacitance and miniaturization.
It is extremely difficult to achieve higher speeds and higher densities, and on the other hand, with the dispersion membrane separation method, we believe that once we enter the area of submicron processing, we will no longer be able to achieve higher speeds and higher densities, similar to the PN junction separation method. It is being In addition, a method of solving the above drawbacks by using a sapphire substrate as the substrate of a bipolar transistor is being considered, but the cost of the sapphire substrate is high, and the electrical characteristics of the silicon semiconductor epitaxial film and the number of defects are large. The reality is that it has not been applied to devices such as bipolar elements.

この発明は以上の事情に鑑みなされたもので、その主要
な目的は半導体装置内部に、エミッタ電極を共通とした
差動増幅機能を有する一対のバイポーラトランジスタ回
路を設けるとともにこの回路の各素子を絶縁して、半導
体装置の高速化・高集積化を図ることにある。
This invention was made in view of the above circumstances, and its main purpose is to provide a pair of bipolar transistor circuits with a common emitter electrode and a differential amplification function inside a semiconductor device, and to insulate each element of this circuit. The objective is to achieve higher speed and higher integration of semiconductor devices.

(ロ)発明の構成 この発明は、シリコン結晶基板上に酸化物単結晶からな
る第1の絶縁膜を介して第1のエピタキシャル層が形成
され、さらにこの第1のエピタキシャル層の上面に第2
の絶縁膜を介して第2のエピタキシャル層が形成され、
この第2のエピタキシャル層には一つのエミ・ンタ電極
とこれを共通とした一対のバイポーラトランジスタ回路
が形成され、第2の絶縁膜には、エミッタ電極取出し用
の電極層と前記バイポーラトランジスタ回路における活
性層に対応する部位に開口部がそれぞれ設けられ、これ
により前記エミッタ電極とバイポーラトランジスタ回路
の各電極とが絶縁されて構成されたことを特徴とする半
導体装置である。
(B) Structure of the Invention In the present invention, a first epitaxial layer is formed on a silicon crystal substrate with a first insulating film made of an oxide single crystal interposed therebetween, and a second epitaxial layer is further formed on the upper surface of the first epitaxial layer.
A second epitaxial layer is formed through the insulating film,
In this second epitaxial layer, one emitter/interelectrode and a pair of bipolar transistor circuits using this in common are formed, and in the second insulating film, an electrode layer for taking out the emitter electrode and a pair of bipolar transistor circuits using this in common are formed. The semiconductor device is characterized in that openings are provided in portions corresponding to the active layer, whereby the emitter electrode and each electrode of the bipolar transistor circuit are insulated.

すなわち、この発明は一対のバイポーラトランジスタ回
路及び絶縁層によって半導体装置の高速化・高集積化を
実現することにある。
That is, the object of the present invention is to realize higher speed and higher integration of a semiconductor device by using a pair of bipolar transistor circuits and an insulating layer.

〔実施例〕〔Example〕

以下第1図及び第2図に基づ〈実施例に基づいてこの発
明を詳述する。なお、これによってこの発明が限定され
るものではない。
The present invention will be described in detail below based on embodiments with reference to FIGS. 1 and 2. Note that this invention is not limited to this.

第1図(a) (b)は半導体装置(S)の縦断面図及
びその構成図で、第2図は半導体装置(S)の製造工程
を示す図である。
FIGS. 1(a) and 1(b) are longitudinal cross-sectional views and configuration diagrams of the semiconductor device (S), and FIG. 2 is a diagram showing the manufacturing process of the semiconductor device (S).

第2図(alにおいて、(1)はシリコン単結晶基板、
(2)は第1の酸化物単結晶膜からなる絶縁膜である。
In Figure 2 (al), (1) is a silicon single crystal substrate,
(2) is an insulating film made of a first oxide single crystal film.

この絶縁膜(2)は、安定化ジルコニア膜(ZrOz 
O,8・Y20! 0.2. Zr(h O,8・Mg
O0,2)をスパッタ、有機金属化学気相堆積法(MO
CVD)、イオン化クラスタビーム法(ICB)、原子
層エピタキシャル法(ALE)、イオンプレーテング法
等で形成したものである。
This insulating film (2) is a stabilized zirconia film (ZrOz
O,8・Y20! 0.2. Zr(h O,8・Mg
O0,2) was sputtered and metalorganic chemical vapor deposition (MO
CVD), ionized cluster beam method (ICB), atomic layer epitaxial method (ALE), ion plating method, etc.

まず、第1の絶縁膜(′2)の上面に、シリコンのエピ
タキシャル装置によりモノシラン(SiH4)とアルシ
ン(AsH2)を原料として、第1のエピタキシャル層
としてのシリコンのエピタキシャルn中層(3)を0.
3〜1μの範囲で形成する。そして、このエピタキシャ
ルn中層(3)に、第2図(b)に示すように第1の絶
縁膜(2)形成方法と同様な方法で第2の絶縁膜(4)
としての酸化物単結晶である安定化ジルコニア膜を形成
する。なお、この膜(4)は減圧化学気相成長法(LP
GVD)により形成された二酸化ケイ素(SiOz)の
酸化膜であってもよい。この絶縁1i (41は、反応
性イオンエツチング法(RIE)によりバイポーラトラ
ンジスタ回路として必要な活性領域f51. (5a)
や、エミッタ共通電極部(8)(第1図ta+参照)に
当る各箇所が所定のパターンにエツチング処理され開口
されている。(18)〜(20)はその開口部である。
First, a silicon epitaxial intermediate layer (3) as a first epitaxial layer is formed on the upper surface of the first insulating film ('2) using a silicon epitaxial device using monosilane (SiH4) and arsine (AsH2) as raw materials. ..
It is formed in the range of 3 to 1 μm. Then, as shown in FIG. 2(b), a second insulating film (4) is formed on this epitaxial n-middle layer (3) by the same method as the first insulating film (2).
A stabilized zirconia film, which is an oxide single crystal, is formed. Note that this film (4) was produced using low pressure chemical vapor deposition (LP).
It may be an oxide film of silicon dioxide (SiOz) formed by GVD). This insulation 1i (41 is an active region f51. (5a) necessary for a bipolar transistor circuit by reactive ion etching (RIE).
Also, each location corresponding to the emitter common electrode portion (8) (see ta+ in FIG. 1) is etched into a predetermined pattern and opened. (18) to (20) are the openings thereof.

次いで、絶縁膜(4)の上面に第2のエピタキシャル層
としてのシリコンのエピタキシャルn層(12)を所定
の膜厚で形成する。(第2図(C)参照)。
Next, an epitaxial n-layer (12) of silicon as a second epitaxial layer is formed with a predetermined thickness on the upper surface of the insulating film (4). (See Figure 2(C)).

次に、第2図(d)に示すようにエピタキシャルnFi
 (12)の外表面に薄い酸化膜(13)を形成し、そ
の後、イオン注入法により酸化膜(13)を通してバイ
ポーラトランジスタ回路の活性層であるベース電極層(
51,(5a)及びコレクタn層(61,(6a)を順
次形成する。又ベース電極数り出し用箇所にp中層のベ
ース電極層(7)、 (7a)を一対形成するとともに
、エミッタ電極の取り出し用の個所には高濃度のヒ素(
As)を打込みn+層のエミッタ電極層(8)を形成す
る。
Next, as shown in FIG. 2(d), epitaxial nFi
A thin oxide film (13) is formed on the outer surface of the bipolar transistor circuit (12), and then the base electrode layer (13), which is the active layer of the bipolar transistor circuit, is passed through the oxide film (13) by ion implantation.
51, (5a) and the collector n layer (61, (6a)) are formed in sequence. Also, a pair of p-middle base electrode layers (7), (7a) are formed at the location for counting the base electrode, and the emitter electrode There is a high concentration of arsenic (
As) is implanted to form an n+ layer emitter electrode layer (8).

次いで、第2図(e)に示す如く、所定のパターンに従
って、エミッタ電極層(8)とベース電極層(7)。
Next, as shown in FIG. 2(e), an emitter electrode layer (8) and a base electrode layer (7) are formed according to a predetermined pattern.

ベース電極層(7)とコレクタn m (61、コレク
タn層(6a)とベース電極M(7a)、バイポーラト
ランジスタ回路(T1)と(T2)等の各部の分離用孔
及びデバイス全体の素子分離用の孔をエピタキシャルn
i (12)内に穿け、その上から全体に素子分離用の
絶縁層(14)をLPGVDにより形成する。なお、こ
の層(14)は酸化膜からなる。
Base electrode layer (7) and collector n m (61, collector n layer (6a) and base electrode M (7a), isolation holes for each part such as bipolar transistor circuits (T1) and (T2), and element isolation for the entire device The holes for epitaxial n
i (12), and an insulating layer (14) for element isolation is formed on the entire surface by LPGVD. Note that this layer (14) is made of an oxide film.

その後表面を平坦化技術により平坦化し、第2図(f)
に示す様に、共通のエミッタ電極(11)の窓(15)
、前記(T1)のベース電極(9)の窓(16) 、前
記(T1)のコレクタ電極α0)の窓(17) 、前記
(T2)のコレクタ電極(10a)の窓(17a) 、
前記(T2)のベース電極(9a)の窓(16)等の窓
あけをRIEにより順次処理する。
After that, the surface is flattened by flattening technology, as shown in Fig. 2(f).
As shown in the window (15) of the common emitter electrode (11)
, the window (16) of the base electrode (9) of (T1), the window (17) of the collector electrode α0) of (T1), the window (17a) of the collector electrode (10a) of (T2),
Opening of the window (16) of the base electrode (9a) and the like in (T2) is sequentially performed by RIE.

最後に、全面にわたって電極のポリシリコンもしくは金
属電極を形成後、所定のパターンに従ってエツチングし
てデバイス処理工程が完了し、第1図fa)の半導体装
置(S)が製造される。
Finally, after forming polysilicon or metal electrodes over the entire surface, etching is performed according to a predetermined pattern to complete the device processing step, and the semiconductor device (S) shown in FIG. 1fa is manufactured.

この装置(S)は、その内部にエミッタ電極(11)を
共通としたバイポーラトランジスタ回路(Tt ) (
T2 )を2個内蔵し、差動増幅機能を所持しているの
で(T1)のベース電極(9)と(T2)のベース電極
(9a)に信号を入れることにより動作する。
This device (S) has a bipolar transistor circuit (Tt) (
Since it has two built-in T2) and has a differential amplification function, it operates by inputting a signal to the base electrode (9) of (T1) and the base electrode (9a) of (T2).

以上のごとく半導体装置(S)を構成することによって
、ECL回路(Emitter coupled lo
gic)に最も必要とする半導体装置の一部を容易に達
成することができ、その上従来のバイポーラトランジス
タ回路はコレクタ接地型が多いけれど、この発明はエミ
ッタ接地型であるため、従来のものより作り方や工程を
簡素化することができる。しかも、一対のバイポーラト
ランジスタ回路の各素子が完全にアイソレーション(絶
縁)されているため高速化や高集積化を実現することが
できる。さらに、この装置(S)は、バイポーラトラン
ジスタ回路が対称型に形成されているため、エミッタや
コレクタの不純物濃度を変えることにより任意に接地方
式や回路を変えることが可能である。また、この発明は
npn型のバイポーラトランジスタに限ることなく、p
np型のバイポーラトランジスタについても適用出来る
ことは言うまでもない。
By configuring the semiconductor device (S) as described above, an ECL circuit (Emitter coupled lo
It is possible to easily achieve a part of the semiconductor device most needed for gic), and in addition, conventional bipolar transistor circuits are often of the collector-grounded type, but this invention is of the emitter-grounded type, so it is more efficient than the conventional one. The method and process can be simplified. Moreover, since each element of the pair of bipolar transistor circuits is completely isolated, high speed and high integration can be achieved. Furthermore, since this device (S) has a symmetrical bipolar transistor circuit, it is possible to arbitrarily change the grounding system and circuit by changing the impurity concentration of the emitter and collector. Furthermore, the present invention is not limited to npn-type bipolar transistors;
Needless to say, the present invention can also be applied to np type bipolar transistors.

(ハ)発明の効果 この発明は、第2の絶縁膜を介して二層のシリコンのエ
ピタキシャル層を有し、これらの層のうち上層側の層に
一対のバイポーラトランジスタ回路を形成するとともに
、この回路の各電極とエミッタ電極とが絶縁されて構成
されたものであるから、高速化・高集積化が実現でき、
しかも小型化することができ、その上素子分離が容易と
なるとともに装置の製作工程を簡略化することができる
効果を奏する。
(c) Effects of the invention This invention has two epitaxial layers of silicon with a second insulating film interposed therebetween, and forms a pair of bipolar transistor circuits in the upper layer of these layers. Since each electrode of the circuit and the emitter electrode are insulated, high speed and high integration can be realized.
Furthermore, it is possible to reduce the size, and furthermore, it is possible to easily separate elements and to simplify the manufacturing process of the device.

【図面の簡単な説明】 第1図(a) (b)はこの発明に係る半導体装置の一
実一施例の原理を示す説明図及びその記号図、第2図(
al〜(flはその製造工程を示すに所図原理断與Sで
ちる。 (Sr−半導体装置、(Tt ) (T2 ) −バイ
ポーラトランジスタ回路、(IL−シリコン単結晶基板
、(2L−一一第1の絶縁膜、(3)・・−エピタキシ
ャルn中層(第1のエピタキシャル層) 、(41−第
2の絶縁膜、(12)−一エピタキシャル層(第2のエ
ピタキシートル層) 、(18)〜(20)−・−開口
部。 代理人 弁理士  野 河 信 太 部¥ 第2図 (a)
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) and 1(b) are explanatory diagrams and symbolic diagrams thereof showing the principle of one embodiment of a semiconductor device according to the present invention, and FIG.
(Sr-semiconductor device, (Tt) (T2)-bipolar transistor circuit, (IL-silicon single crystal substrate, (2L-11) First insulating film, (3) - epitaxial n middle layer (first epitaxial layer), (41 - second insulating film, (12) - epitaxial layer (second epitaxial layer), (18) )~(20)-・-Opening. Agent Patent Attorney Nobuhito Nogawa Figure 2 (a)

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン結晶基板上に酸化物単結晶からなる第1の
絶縁膜を介して第1のエピタキシャル層が形成され、さ
らにこの第1のエピタキシャル層の上面に第2の絶縁膜
を介して第2のエピタキシャル層が形成され、この第2
のエピタキシャル層には一つのエミッタ電極とこれを共
通とした一対のバイポーラトランジスタ回路が形成され
、第2の絶縁膜には、エミッタ電極取出し用の電極層と
前記バイポーラトランジスタ回路における活性層に対応
する部位に開口部がそれぞれ設けられ、これにより前記
エミッタ電極とバイポーラトランジスタ回路の各電極と
が絶縁されて構成されたことを特徴とする半導体装置。
1. A first epitaxial layer is formed on a silicon crystal substrate with a first insulating film made of an oxide single crystal interposed therebetween, and a second epitaxial layer is formed on the upper surface of this first epitaxial layer with a second insulating film interposed therebetween. an epitaxial layer is formed, and this second
One emitter electrode and a pair of bipolar transistor circuits using this in common are formed in the epitaxial layer, and the second insulating film has an electrode layer for taking out the emitter electrode and an active layer corresponding to the bipolar transistor circuit. 1. A semiconductor device, characterized in that openings are provided at each portion, whereby the emitter electrode and each electrode of the bipolar transistor circuit are insulated.
JP59244278A 1984-11-19 1984-11-19 Semiconductor device Granted JPS61121466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59244278A JPS61121466A (en) 1984-11-19 1984-11-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59244278A JPS61121466A (en) 1984-11-19 1984-11-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61121466A true JPS61121466A (en) 1986-06-09
JPH0467786B2 JPH0467786B2 (en) 1992-10-29

Family

ID=17116364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59244278A Granted JPS61121466A (en) 1984-11-19 1984-11-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61121466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112044A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112044A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Also Published As

Publication number Publication date
JPH0467786B2 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
JPS61121466A (en) Semiconductor device
JP3173184B2 (en) Semiconductor device
JP2976513B2 (en) Semiconductor device
JPH02207534A (en) Semiconductor device
JPH05343413A (en) Bipolar transistor and manufacture thereof
JP3260009B2 (en) Semiconductor device and manufacturing method thereof
JPH01208865A (en) Manufacture of semiconductor device
JPS6120141B2 (en)
JPH0226061A (en) Manufacture of semiconductor integrated circuit
JPS59182566A (en) Semiconductor device
JPS61127157A (en) Semiconductor device
JP2518357B2 (en) Semiconductor device and manufacturing method thereof
JPS61127168A (en) Manufacture of semiconductor device
JPS63308385A (en) Manufacture of buried-gate field-effect transistor
JPS62141768A (en) Semiconductor device and manufacture thereof
JPH04192336A (en) Semiconductor device and its manufacture
JPH04207038A (en) Semiconductor device and its manufacture
JPH04363059A (en) Semiconductor device and its manufacture
JPH07245313A (en) Manufacture of bipolar transistor
JPS63152170A (en) Manufacture of semiconductor device
JPS62111459A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH06163594A (en) Vertical junction-type field-effect transistor having small capacitance between gate and substrate and its manufacture
JPH01278070A (en) Semiconductor device
JPH05145024A (en) Manufacture of bipolar transistor and bi-cmos device mounting the same