JPS6112003B2 - - Google Patents

Info

Publication number
JPS6112003B2
JPS6112003B2 JP8633383A JP8633383A JPS6112003B2 JP S6112003 B2 JPS6112003 B2 JP S6112003B2 JP 8633383 A JP8633383 A JP 8633383A JP 8633383 A JP8633383 A JP 8633383A JP S6112003 B2 JPS6112003 B2 JP S6112003B2
Authority
JP
Japan
Prior art keywords
temperature
air
gas
tuyere
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8633383A
Other languages
Japanese (ja)
Other versions
JPS59211510A (en
Inventor
Kenji Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8633383A priority Critical patent/JPS59211510A/en
Publication of JPS59211510A publication Critical patent/JPS59211510A/en
Publication of JPS6112003B2 publication Critical patent/JPS6112003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は高炉の操業方法に関するものであり、
さらに詳細に述べるならば高炉羽口燃焼帯の温度
分布を制御する方法に関するものである。
[Detailed description of the invention] The present invention relates to a method of operating a blast furnace,
More specifically, the present invention relates to a method of controlling the temperature distribution in the blast furnace tuyere combustion zone.

高炉羽口燃焼帯の主たる機能は、コークスを燃
焼させることにより、鉄鉱石の還元に必要な一酸
化炭素ガスを発生すると同時に、鉄鉱石の溶融に
必要な熱を発生することである。とくに後者に関
係する羽口燃焼帯の炉径方向の温度分布は、羽口
燃焼帯直上部における炉径方向の鉄鉱石の溶融速
度や溶融領域の大きさ、ひいては、羽口燃焼帯へ
降下するコークスの降下径路や降下速度すなわ
ち、炉内の装入物の降下状況にも多大の影響を及
ぼすと推察される。したがつて、羽口燃焼帯の温
度分布と密接な関係をもつと考えられる。
The main function of the blast furnace tuyere combustion zone is to burn coke to generate the carbon monoxide gas necessary for reducing the iron ore, and at the same time to generate the heat necessary for melting the iron ore. In particular, the temperature distribution in the radial direction of the tuyere combustion zone, which is related to the latter, is determined by the melting rate of iron ore in the radial direction of the furnace just above the tuyere combustion zone, the size of the melting region, and, ultimately, the temperature distribution in the tuyere combustion zone. It is presumed that this has a great influence on the coke descending path and descending speed, that is, the descending state of the charge in the furnace. Therefore, it is thought that there is a close relationship with the temperature distribution in the tuyere combustion zone.

コークスの燃焼挙動を把握する目的で、古くよ
り、羽口燃焼帯におけるガス組成分布が測定され
てきた(たとえば、(文献1)A.D.GOTLIB(館
充訳):高炉製銑法の理論(1966)、P.288〔日本
鉄鋼協会〕)。すなわち、ガス組成分布を測定する
ことにより、燃焼帯の大きさや、最高燃焼温度の
位置(以下燃焼焦点という)をある程度推定する
ことができるため、高炉操業上の有用な指標とし
て利用できたからである。
For the purpose of understanding the combustion behavior of coke, the gas composition distribution in the tuyere combustion zone has been measured for a long time (for example, (Reference 1) ADGOTLIB (translated by Mitsuru Tate): Theory of Blast Furnace Iron Making Method (1966), P.288 [Japan Iron and Steel Association]). In other words, by measuring the gas composition distribution, it is possible to estimate to some extent the size of the combustion zone and the location of the highest combustion temperature (hereinafter referred to as the combustion focus), which can be used as a useful indicator for blast furnace operation. .

しかしながら、羽口燃焼帯内の最高燃焼温度は
ふつう2500℃以上になると推定されており、この
ような高温に耐える温度計がないため、最近のよ
うに高送風温度操業を行つている高炉羽口燃焼帯
の(燃焼)温度分布を測定した報告例は見受けら
れない。
However, the maximum combustion temperature in the tuyere combustion zone is usually estimated to be over 2500°C, and because there are no thermometers that can withstand such high temperatures, blast furnace tuyere There are no reports that have measured the (combustion) temperature distribution in the combustion zone.

そこで、羽口燃焼帯の温度分布特性すなわち、
燃焼帯の温度分布に及ぼす送風条件たとえば送風
温度や羽口風速などの影響を把握する目的で、送
風条件から羽口燃焼帯の温度分布などを演えき
的、理論的に推定する試みもなされるようになつ
た(たとえば、文献2)鞭巌編:製錬化学工業演
習(1974)、P.81〔養賢堂〕) しかしながら、羽口燃焼帯の状況は、たとえば
燃焼帯の大きさ一つを例にとつても、燃焼帯上部
に存在する鉄鉱石の融着層の位置や形状、炉壁付
着物の脱着の状態および燃焼帯の前面に存在する
炉芯の張り出し具合やコークス粉の発生程度によ
つて大きな影響を受けることは明白であり、羽口
燃焼帯の温度分布の理論的な推定結果の信頼性に
は限界があることは言うまでもないことである。
Therefore, the temperature distribution characteristics of the tuyere combustion zone, that is,
In order to understand the effects of air blowing conditions, such as air temperature and tuyere wind speed, on the temperature distribution of the combustion zone, attempts have been made to theoretically and theoretically estimate the temperature distribution of the tuyere combustion zone from the air blowing conditions. (For example, Document 2, Edited by Fuigawa: Smelting and Refining Chemical Industry Exercises (1974), P. 81 [Yokendo]) However, the situation of the tuyere combustion zone, for example, For example, the position and shape of the cohesive layer of iron ore that exists in the upper part of the combustion zone, the state of desorption of materials deposited on the furnace wall, the protrusion of the furnace core that exists in front of the combustion zone, and the occurrence of coke powder. It is clear that the temperature is greatly affected by the degree of combustion, and it goes without saying that there is a limit to the reliability of the theoretical estimation results of the temperature distribution in the tuyere combustion zone.

以上のように、稼動中の高炉の羽口燃焼帯にお
ける温度分布は、高炉操業上の重要な指標となる
にもかかわらず、計測が困難なため、ほとんど実
測した例もなく、また、ガス組成などの実測値か
ら、温度分布を間接的に推定する具体的な方法も
報告されていなかつた。
As mentioned above, although the temperature distribution in the tuyere combustion zone of an operating blast furnace is an important indicator for blast furnace operation, it is difficult to measure, so there are almost no actual measurements, and the gas composition There has also been no report on a specific method for indirectly estimating temperature distribution from actual measured values.

本発明の目的は、高炉操業上とくに重要な羽口
燃焼帯上部での鉄鉱石の還元・溶融とコークスの
降下に多大に影響を及ぼす羽口燃焼帯における温
度分布を的確に推定することによつて、該温度分
布を適正な設定目標値と等しくするように高炉操
業条件を調整するための画期的な方法を提供する
ことにある。すなわち、本発明の要旨は、高炉羽
口より炉内ガスを採取して酸素、一酸化酸素、な
らびに二酸化炭素のうちの任意の2成分と水素の
各ガス組成を計測し、送風量Vb、送風温度Tb
送風湿度Mb、および補助燃料の吹込量Waと吹込
温度taなる送風条件と前記のガス組成の測定値を
用いて、次式に基づいて燃焼ガス温度Tfを算定
し、該燃焼温度の炉径方向の分布が、あらかじめ
設定された適正な温度分布と一致するように前記
の送風条件、羽口風速および装入条件の内の一つ
もしくは複数の条件を調整することを特徴とする
高炉の操業方法である。
The purpose of the present invention is to accurately estimate the temperature distribution in the tuyere combustion zone, which greatly affects the reduction and melting of iron ore and the descent of coke in the upper part of the tuyere combustion zone, which is particularly important for blast furnace operation. Therefore, it is an object of the present invention to provide an innovative method for adjusting blast furnace operating conditions so that the temperature distribution is equal to an appropriately set target value. That is, the gist of the present invention is to collect the furnace gas from the blast furnace tuyere, measure the gas composition of oxygen, oxygen monoxide, and any two components of carbon dioxide, and hydrogen, and determine the air flow rate V b , Blow temperature T b ,
Calculate the combustion gas temperature T f based on the following formula using the air blowing humidity M b , the air blowing conditions of the auxiliary fuel injection amount W a and the injection temperature ta, and the measured value of the gas composition, and calculate the combustion gas temperature T f . A blast furnace characterized in that one or more of the blowing conditions, tuyere air speed, and charging conditions are adjusted so that the distribution in the furnace radial direction matches a preset appropriate temperature distribution. This is the operating method.

f=(−S+√2+4)/(2P)………(1) ただし P=(5.42VCO2+2.25VCO+1.67VH2+2.25VN2+2.33VO2R +5.67VH2OR−3.05Wc)×10-5 ………(2) S=0.469VCO2+0.313VCO+0.303VH2+0.311VN2+0.327VO2R +0.353VH2OR−0.233Wc ………(3) R=(0.34Vb+0.41VH2O)Tb+CPa・Wa・ta+4330VCO2 +1313VCO−2580VH2W−Qa・Wa ………(4) Wc=0.536(VCO2+VCO)−(C)a・Wa/100 ………(5) ここで Tf:燃焼ガスの温度(℃) Vb、VH2O:送風量、水蒸気吹込量(Nm3/min) Tb:送風温度(℃) VCO2、VCO、VH2、VN2、VO2R、VH2OR
H2W: 送風条件とガス組成に基づく物質収支から定
まる、燃焼ガス中のCO2、CO、H2、N2
O2、H2Oおよび水性ガス反応で生成するH2
の容積流量(Nm3/min)Wa、ta、CPa、Q
a、(C)a:補助燃料の吹込量(Kg/min)、吹込
温度(℃)、平均比熱(Kcal/Kg・℃)、分解
熱(Kcal/Kg)およびC含有率(%)。
T f = (−S+√ 2 +4) / (2P)……(1) However, P = (5.42V CO2 +2.25V CO +1.67V H2 +2.25V N2 +2.33V O2 , R +5.67V H2O , R −3.05W c )×10 -5 ………(2) S=0.469V CO2 +0.313V CO +0.303V H2 +0.311V N2 +0.327V O2 , R +0.353V H2O , R −0.233W c … ……(3) R = (0.34V b +0.41V H2O ) T b +C Pa・W a・t a +4330V CO2 +1313V CO −2580V H2 , W −Q a・W a ………(4) W c = 0.536 (V CO2 + V CO ) - (C) a・W a /100 ...... (5) Here, Tf: Temperature of combustion gas (℃) V b , V H2O : Air flow rate, water vapor injection rate (Nm 3 / min) Tb : Air blowing temperature (°C) V CO2 , V CO , V H2 , V N2 , V O2 , R , V H2O , R ,
V H2 , W : CO 2 , CO, H 2 , N 2 , in the combustion gas, determined from the mass balance based on the blowing conditions and gas composition.
O 2 , H 2 O and H 2 produced in water gas reactions
Volumetric flow rate (Nm 3 /min) W a , t a , C Pa , Q
a , (C) a : Auxiliary fuel injection amount (Kg/min), injection temperature (°C), average specific heat (Kcal/Kg・°C), decomposition heat (Kcal/Kg), and C content (%).

以下、本発明の具体的な構成、作用および効果
を詳細に説明する。
Hereinafter, the specific configuration, operation, and effects of the present invention will be explained in detail.

高炉羽口燃焼帯で行われる主な反応と関与物質
の状態変化は次式で表わされる。
The main reactions that take place in the blast furnace tuyere combustion zone and the state changes of the substances involved are expressed by the following equation.

O2(Tb)+C(tc)=CO2(Tf)+4330Kcal/Nm3(CO2) ……(6) 1/2O2(Tb)+C(tc)=CO(Tf)+1313Kcal/Nm3(CO) ………(7) H2O(Tb)+C(tc)=H2(Tf)+CO(Tf)−1267Kcal/Nm3(H2) ……(8) N2(Tb)=N2(Tf) …………(9) O2(Tb)=O2(Tf) …………(10) H2O(Tb)=H2O(Tf) ………(11) H2(ta)=H2(Tf)−QaKcal/Kg(補助燃料) ……(12) ここで、( )内の記号は、物質の温度(℃)
であり、tcはコークス温度、Tbは送風温度であ
る。
O 2 (T b ) + C (t c ) = CO 2 (T f ) + 4330Kcal/Nm 3 (CO 2 ) ...(6) 1/2 O 2 (T b ) + C (tc) = CO (T f ) + 1313 Kcal /Nm 3 (CO) ………(7) H 2 O (T b ) + C (tc) = H 2 (T f ) + CO (T f ) −1267Kcal/Nm 3 (H 2 ) …(8) N 2 (T b )=N 2 (T f ) …………(9) O 2 (T b )=O 2 (T f ) …………(10) H 2 O (T b )=H 2 O (T f ) ......(11) H 2 (ta) = H 2 (T f ) - Q a Kcal/Kg (auxiliary fuel) ... (12) Here, the symbol in parentheses is the temperature of the substance. (℃)
where tc is the coke temperature and Tb is the blast temperature.

さて、(6)式、(8)式〜(11)式の反応もしくは、状態
に関与するCO2(6式)、H2(8式)、N2(9
式)、O2(10式)、H2O(11式)の容積流量をそ
れぞれ、VCO2、VH2W、VN2、VO2R、VH2
、(Nm3/min)とおき、燃焼生成ガス中のCO
およびH2の容積流量を各VCO、VH2(Nm3/min)
とにおいて、以下、羽口燃焼帯の熱収支を行う。
Now, CO 2 (Formula 6), H 2 (Formula 8), and N 2 (9
), O 2 (Equation 10), and H 2 O (Equation 11) are expressed as V CO2 , V H2 , W , V N2 , V O2 , R , V H2 , respectively.
O , R , (Nm 3 /min), CO in combustion gas
and the volumetric flow rate of H2 , respectively V CO , V H2 (Nm 3 /min)
In the following, the heat balance of the tuyere combustion zone will be explained.

入熱量Qin(Kcal/min)(顕熱および反応熱)
は次式で表される。
Heat input Qin (Kcal/min) (sensible heat and reaction heat)
is expressed by the following formula.

Qin=(Vb・Cpair+VH2O・CPH2O)・Tb +Wc・CPc Qin=(V b・C pair +V H2O・C PH2O )・T b +W c・C Pc

Claims (1)

【特許請求の範囲】 1 高炉羽口より炉内ガスを採取して酸素、一酸
化炭素ならびに二酸化炭素のうちの任意の2成分
と水素の各ガス組成を計測し、このガス組成の測
定値と、送風量Vb、送風温度Tb、送風湿度Mb
および補助燃料の吹込量Waと吹込温度taからな
る送風条件を用いて、次式に基づいて高炉羽口燃
焼帯の炉径方向の燃焼ガス温度Tfを算定し、該
燃焼温度の炉径方向の分布があらかじめ設定され
た適正な温度分布と一致するように前記の各送風
条件、羽口風速および装入条件の内の一つ、もし
くは複数を調整することを特徴とする高炉の操業
方法。 Tf=(−S+√2+4)/(2P) ………(1) ただし P=(5.42VCO2+2.25VCO+1.67VH2+2.25VN2+2.33VO2R +5.67VH2OR−3.05WC)×10-5 ………(2) S=0.469VCO2+0.313VCO+0.303VH2+0.311VN2+0.327VO2R +0.353VH2OR−0.233Wc ………(3) R=(0.34Vb+0.41VH2O)Tb+CPa・Wa・ta+4330VCO2+1313VCO −2580VH2W−Qa・Wa ………(4) Wc=0.536(VCO2+VCO)−(C)a・Wa/100 ………(5) ここで Tf:燃焼ガスの温度(℃) Vb、VH2O:送風量、水蒸気吹込量(Nm3/min) Tb:送風温度(℃) VCO2、VCO、VH2、VN2、VO2R、VH2OR
H2W: 送風条件とガス組成に基づく物質収支から定
まる、燃焼ガス中のCO2、CO、H2、N2
O2、H2Oおよび水性ガス反応で生成するH2
の容積流量(Nm3/min)Wa、ta、CPa、Q
a、(C)a:補助燃料の吹込量(Kg/min)、吹込
温度(℃)、平均比熱(Kcal/Kg・℃)、分解
熱(Kcal/Kg)およびC含有率(%)。
[Claims] 1. Gas in the furnace is sampled from the blast furnace tuyere, and the gas composition of oxygen, carbon monoxide, and carbon dioxide, and hydrogen, are measured. , air volume V b , air temperature T b , air humidity M b
Using the blowing conditions consisting of the auxiliary fuel injection amount W a and the injection temperature ta, calculate the combustion gas temperature Tf in the furnace radial direction of the blast furnace tuyere combustion zone based on the following formula, and A method for operating a blast furnace, comprising adjusting one or more of the above-mentioned air blowing conditions, tuyere air speed, and charging conditions so that the distribution of temperature matches a preset appropriate temperature distribution. T f = (-S+√ 2 +4) / (2P) ...... (1) However, P = (5.42V CO2 +2.25V CO +1.67V H2 +2.25V N2 +2.33V O2 , R +5.67V H2O , R −3.05W C )×10 -5 ………(2) S=0.469V CO2 +0.313V CO +0.303V H2 +0.311V N2 +0.327V O2 , R +0.353V H2O , R −0.233W c … ……(3) R = (0.34V b +0.41V H2O ) T b +C Pa・W a・t a +4330V CO2 +1313V CO −2580V H2 , W −Q a・W a ………(4) W c = 0.536 (V CO2 + V CO ) - (C) a・W a /100 ...... (5) Here, T f : Temperature of combustion gas (℃) V b , V H2O : Air blowing amount, water vapor blowing amount (Nm 3 /min) Tb : Air blowing temperature (°C) V CO2 , V CO , V H2 , V N2 , V O2 , R , V H2O , R ,
V H2 , W : CO 2 , CO, H 2 , N 2 , in the combustion gas, determined from the mass balance based on the blowing conditions and gas composition.
O 2 , H 2 O and H 2 produced in water gas reactions
Volumetric flow rate (Nm 3 /min) W a , t a , C Pa , Q
a , (C) a : Auxiliary fuel injection amount (Kg/min), injection temperature (°C), average specific heat (Kcal/Kg・°C), decomposition heat (Kcal/Kg), and C content (%).
JP8633383A 1983-05-17 1983-05-17 Operating method of blast furnace Granted JPS59211510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8633383A JPS59211510A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8633383A JPS59211510A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS59211510A JPS59211510A (en) 1984-11-30
JPS6112003B2 true JPS6112003B2 (en) 1986-04-05

Family

ID=13883908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8633383A Granted JPS59211510A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS59211510A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293246B (en) * 2021-02-22 2023-03-24 山西太钢不锈钢股份有限公司 Method for judging disappearance of reflow zone in blowing-out process

Also Published As

Publication number Publication date
JPS59211510A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
CN112593030B (en) Method for determining furnace heat by utilizing blast furnace slag iron heat index
CN111241715A (en) Method for determining test parameters of combustion rate of pulverized coal injected into blast furnace under different coal ratios
JPS6112003B2 (en)
JPH1161284A (en) Evaluation test method of reduction degradation characteristic of sintered ore
JP3099322B2 (en) Blast furnace heat management method
US3314781A (en) Method for the control of blast refining of carbon-containing metal melts
JPH10310808A (en) Operation of blast furnace
JPS6112002B2 (en)
JPS59568B2 (en) Oxygen converter blowing control method
TWI795277B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
JP4933925B2 (en) Powder composite blowing blast furnace operation method
Ökvist The melting properties of tuyere slags with and without flux injection into the blast furnace
TWI795278B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
JPH0689393B2 (en) Method for estimating molten iron C concentration in iron-containing cold material melting method
CA1165561A (en) Blast furnace control method
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
MIYASHITA et al. Limits of Oxygen Enrichment, Tuyere Fuel Injection, and Prospect of Stack Gas Injection in an Experimental Furnace
JPH10298620A (en) Method for charging ore and the like into blast furnace
JP2897363B2 (en) Hot metal production method
JP4161526B2 (en) Operation method of smelting reduction furnace
JPH10237513A (en) Operation of blast furnace
JP3384298B2 (en) Blast furnace operation method
JPH0723503B2 (en) Hot metal manufacturing method
Jepson Calculated Aluminum Oxidation Rates During Rotary Furnace Melting Through Flue Gas Analysis
JPH05239522A (en) Production of molten iron