JPS6112002B2 - - Google Patents

Info

Publication number
JPS6112002B2
JPS6112002B2 JP8633283A JP8633283A JPS6112002B2 JP S6112002 B2 JPS6112002 B2 JP S6112002B2 JP 8633283 A JP8633283 A JP 8633283A JP 8633283 A JP8633283 A JP 8633283A JP S6112002 B2 JPS6112002 B2 JP S6112002B2
Authority
JP
Japan
Prior art keywords
temperature
combustion
tuyere
equation
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8633283A
Other languages
Japanese (ja)
Other versions
JPS59211511A (en
Inventor
Kenji Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8633283A priority Critical patent/JPS59211511A/en
Publication of JPS59211511A publication Critical patent/JPS59211511A/en
Publication of JPS6112002B2 publication Critical patent/JPS6112002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高炉の操業方法に関するものであり、
さらに詳細に述べるならば高炉羽口燃焼帯の温度
分布を制御する方法に関するものである。 高炉羽口燃焼帯の主たる機能は、コークスを燃
焼させることにより、鉄鉱石の還元に必要な一酸
化炭素ガスを発生すると同時に、鉄鉱石の溶融に
必要な熱を発生することである。とくに後者に関
係する羽口燃焼帯の炉径方向の温度分布は、羽口
燃焼帯直上部における炉径方向の鉄鉱石の溶融速
度や溶融領域の大きさ、ひいては、羽口燃焼帯へ
降下するコークスの降下径路や降下速度すなわ
ち、炉内の装入物の降下状況にも多大の影響を及
ぼすと推察される。したがつて、羽口燃焼帯の温
度分布と密接な関係をもつて考えられる。 コークスの燃焼挙動を把握する目的で、古くよ
り、羽口燃焼帯におけるガス組成分布が測定され
てきた(たとえば、文献1.A.D.GCTLIB(館充
訳):高炉製銑法の理論(1966)、P.288〔日本鉄
鋼協会〕)。すなわち、ガス組成分布を測定するこ
とにより、燃焼帯の大きさや、最高燃焼温度の位
置(以下燃焼焦点という)をある程度推定するこ
とができるため、高炉操業上の有用な指標として
利用できたからである。 しかしながら、羽口燃焼帯内の最高燃焼温度は
ふつう2500℃以上になると推定されており、この
ような高温に耐える温度計がないため、最近のよ
うに高送風温度操業を行つている高炉羽口燃焼帯
の燃焼ガスの温度分布を測定したとの報告例は見
受けられない。 そこで、羽口燃焼帯の温度分布特性すなわち、
燃焼帯の温度分布に及ぼす送風条件、たとえば送
風温度や羽口風速などの影響を把握する目的で、
送風条件から羽口燃焼帯の温度分布などを演えき
的、理論的に推定する試みもなされるようになつ
た(たとえば、文献2鞭巌編:製錬化学工学演習
(1974)、P.81〔養賢堂〕) しかしながら、羽口燃焼帯の状況は、たとえば
燃焼帯の大きさ一つを例にとつても、燃焼帯上部
に存在する鉄鉱石の融着層の位置や形状、炉壁付
着物の脱着の状態および燃焼帯の前面に存在する
炉芯の張り出し具合やコークス粉の発生程度によ
つて大きな影響を受けることは明白であり、羽口
燃焼帯の温度分布の理論的な推定結果の信頼性に
は限界があることは言うまでもないことである。 以上のように、稼動中の高炉の羽口燃焼帯にお
ける温度分布は、高炉操業上の重要な指標となる
にもかかわらず、計測が困難なため、ほとんど実
測した例もなく、またガス組成などの実測値か
ら、温度分布を間接的に推定する具体的な方法も
報告されていなかつた。 本発明の目的は、高炉操業上とくに重要な羽口
燃焼帯上部での鉄鉱石の還元・溶融とコークスの
降下に多大の影響を及ぼす羽口燃焼帯における温
度分布を的確に推定することによつて、該温度分
布を適正な設定目標値と等しくするように高炉操
業条件を調整するための画期的な方法を提供する
ことにある。すなわち、本発明の要旨は、高炉羽
口より炉内ガスを採取して、酸素、一酸化炭素、
ならびに二酸化炭素のうちの任意の2成分と水素
の各ガス組成を計測し、送風量Vb、送風温度T
b、送風湿度Mb、および補助燃料の吹込量Wa
吹込温度taからなる送風条件と前記のガス組成
の測定値を用いて、次式に基づいて燃焼ガス温度
fを算定し、該燃焼温度の炉径方向の分布が、
あらかじめ設定された適正な温度分布と一致する
ように前記の送風条件、羽口風速および装入条件
の内の一つもしくは複数の条件を調整することを
特徴とする高炉操業方法である。 Tf=(C+D+E+F+G+H+68.3B)/(A−0.75B) ……………(1) ただし A=15.858β+9.211β+17.662β+9.183β+9.626β+13.503β+8.451β ………(2) B=6.588(β+β+β−β
……………(3) C=100039β+28430β−26167β+3037β
+2944β+7631β+2333β+{2864 −(ΔH8゜)298}・β ……………(4) D=(7.16Υ+7.17Υ+6.66β)・Tb ……(5) E=(0.50Υ+1.28Υ+0.51β)×10-3Tb2 ……………(6) F=(0.40Υ−0.08Υ)×105/Tb ……(7) G=(6.52ta+0.39×10-3ta 2−0.12×105/ta)・β ……………(8) H=(4.10ta+0.51×10-3ta 2+2.10×105/ta)・β ……………(9) ここで、 Υ=β+0.5β+β
……………(10) Υ=β+β ……………(11) βi(i=1〜8):送風条件およびガス組成に
基づく物質収支から定まる反応物質(CO2
CO、H2、N2、O2、H2Oおよび補助燃料のH2
C)のモル流量。 (ΔH8゜)298:補助燃料の熱分解に伴うエンタル
ピー変化。 以下、本発明の具体的な構成、作用および効果
を詳細に説明する。 高炉羽口燃焼帯における主要な反応と関与物質
の状態変化は次式で表される。 O2(Tb)+C(tc)=CO2(Tf) ………(12) 1/2O2(Tb)+C(tc)=CO(Tf) ………(13) H2O(Tb)+C(tc)=H2(Tf)+CO(Tf) ……………(14) N2(Tb)=N2(Tf) ……………(15) O2(Tb)=O2(Tf) ……………(16) H2O(Tb)=H2O(Tf
……………(17) H2(ta)=H2(Tf) ……………(18) C(ta)=C(tc) ……………(19) ここで、( )内の記号は、物質の温度(K)を表
わし、Tb:送風温度(K)、tc:コークス(炭素)
温度(K)、Tf:燃焼ガス温度(K)、ta:補助燃料温
度(K)である。そして、(12)〜(19)式の反応のエン
タルピー変化をΔHi(kcal/kmol(生成物);i
=1〜8)とおくと、(20)〜(27)式が得られ
る。 ΔH1=(ΔH1゜)298+∫Tf 298PCO2dT−∫Tb 298PCO2dT−∫tc 298PcdT ……(20) ΔH2=(ΔH2゜)298+∫Tf 298PCOdT−1/2∫Tb 298PO2dT−∫tc 298PcdT ………(21) ΔH3=(ΔH3゜)298+∫Tf 298PH2dT+∫Tf 298PCOdT−∫Tb 298PH2OdT −∫tc 298PcdT ……………(22) ΔH4=∫Tf TbPN2dT ……………(23) ΔH5=∫Tf TbPO2dT ……………(24) ΔH6=∫Tf TbPH2OdT ……………(25) ΔH7=∫Tf taPH2dT ……………(26) ΔH8=(ΔH8゜)298+∫tc taPcdT ……(27) ただし、 (ΔH1゜)298:(12)式の反応の標準エンタルピ
ー変化文献(3)(−97000kcal/kmol CO2) (ΔH2゜)298:(13)式の反応の標準エンタルピ
ー変化文献(3)(−29410kcal/kmol CO) (ΔH3゜)298:(14)式の反応の標準エンタルピ
ー変化文献(3)(28390kcal/kmol H2) 文献(3) 日本学術振興会、日本鉄鋼協会:鉄鋼
熱計算用数値(1966)、133〔日刊工業新聞社〕
(ΔH8゜)298:補助燃料の熱分解に伴うエンタピ
ー変化(kcal/kmol C)であり、(28)式で表わ
される。 (ΔH8゜)298=1200Qa/(C)a ……………(28) ここで、 Qa:補助燃料の分解熱(kcal/Kg) (C)a:補助燃料中のCの重量パーセント(%) また、 CPi:物質iの定圧真比熱(kcal・kmol-1・K-1) であり、一般に(29)式で表わされる。 CPi=ai+biT+ciT-2 ……………(29) ここで、ai、bi、ciは第1表で与えられてい
る。文献(4)
The present invention relates to a method of operating a blast furnace,
More specifically, the present invention relates to a method of controlling the temperature distribution in the blast furnace tuyere combustion zone. The main function of the blast furnace tuyere combustion zone is to burn coke to generate the carbon monoxide gas necessary for reducing the iron ore, and at the same time to generate the heat necessary for melting the iron ore. In particular, the temperature distribution in the radial direction of the tuyere combustion zone, which is related to the latter, is determined by the melting rate of iron ore in the radial direction of the furnace just above the tuyere combustion zone, the size of the melting region, and, ultimately, the temperature distribution in the tuyere combustion zone. It is presumed that this has a great influence on the coke descending path and descending speed, that is, the descending state of the charge in the furnace. Therefore, it is considered that there is a close relationship with the temperature distribution in the tuyere combustion zone. For the purpose of understanding the combustion behavior of coke, the gas composition distribution in the tuyere combustion zone has been measured for a long time (for example, Reference 1.ADGCTLIB (translated by Mitsuru Tate): Theory of Blast Furnace Iron Making Method (1966), P. .288 [Japan Iron and Steel Association]). In other words, by measuring the gas composition distribution, it is possible to estimate to some extent the size of the combustion zone and the location of the highest combustion temperature (hereinafter referred to as the combustion focus), which can be used as a useful indicator for blast furnace operation. . However, the maximum combustion temperature in the tuyere combustion zone is usually estimated to be over 2500°C, and because there are no thermometers that can withstand such high temperatures, blast furnace tuyere There are no reports of measurements of the temperature distribution of combustion gas in the combustion zone. Therefore, the temperature distribution characteristics of the tuyere combustion zone, that is,
In order to understand the effects of blowing conditions such as blowing temperature and tuyere wind speed on the temperature distribution of the combustion zone,
Attempts have also been made to theoretically and theoretically estimate the temperature distribution in the tuyere combustion zone from the air blowing conditions (for example, Ref. 2, edited by Fukuiwa: Smelting and Refining Chemical Engineering Exercises (1974), p. 81 [Yokendo]) However, the condition of the tuyere combustion zone, for example, even if we take one size of the combustion zone as an example, the position and shape of the cohesive layer of iron ore existing in the upper part of the combustion zone, the furnace wall, etc. It is clear that it is greatly affected by the state of adhesion and desorption of deposits, the protrusion of the furnace core in front of the combustion zone, and the degree of coke powder generation.Theoretical estimation of the temperature distribution in the tuyere combustion zone Needless to say, there are limits to the reliability of the results. As mentioned above, although the temperature distribution in the tuyere combustion zone of an operating blast furnace is an important indicator for blast furnace operation, it is difficult to measure, so there are almost no actual measurements, and the gas composition A specific method for indirectly estimating temperature distribution from actual measured values has not been reported. The purpose of the present invention is to accurately estimate the temperature distribution in the tuyere combustion zone, which has a great influence on the reduction and melting of iron ore and the descent of coke in the upper part of the tuyere combustion zone, which is particularly important for blast furnace operation. Therefore, it is an object of the present invention to provide an innovative method for adjusting blast furnace operating conditions so that the temperature distribution is equal to an appropriately set target value. That is, the gist of the present invention is to collect furnace gas from the blast furnace tuyere and extract oxygen, carbon monoxide,
In addition, each gas composition of arbitrary two components of carbon dioxide and hydrogen is measured, and the air flow rate V b and the air blowing temperature T are determined.
Calculate the combustion gas temperature Tf based on the following formula using the blowing conditions consisting of b , blowing humidity Mb , auxiliary fuel injection amount Wa and blowing temperature ta , and the measured value of the gas composition, The distribution of the combustion temperature in the furnace radial direction is
This blast furnace operating method is characterized in that one or more of the above-mentioned air blowing conditions, tuyere air speed, and charging conditions are adjusted so as to match a preset appropriate temperature distribution. T f = (C+D+E+F+G+H+68.3B)/(A-0.75B) ……………(1) However, A=15.858β 1 +9.211β 2 +17.662β 3 +9.183β 4 +9.626β 5 +13.503β 6 +8 .451β 7 ………(2) B=6.588 (β 1 + β 2 + β 3 − β 8 )
……………(3) C=100039β 1 +28430β 2 −26167β 3 +3037β
4 +2944β 5 +7631β 3 +2333β 7 + {2864 − (ΔH 8゜) 298 }・β 8 ……………(4) D=(7.16Υ 1 +7.17Υ 2 +6.66β 4 )・Tb ……(5 ) E=(0.50Υ 1 +1.28Υ 2 +0.51β 4 )×10 -3 Tb 2 ……………(6) F=(0.40Υ 1 −0.08Υ 2 )×10 5 /Tb ……(7 ) G=(6.52t a +0.39×10 -3 t a 2 −0.12×10 5 /t a )・β 7 ……………(8) H=(4.10t a +0.51×10 -3 t a 2 +2.10×10 5 /t a )・β 8 ……………(9) Here, Υ 1 = β 1 +0.5β 2 + β 5
……………(10) Υ 2 = β 3 + β 6 ……………(11) β i (i=1 to 8): Reactant (CO 2 ,
Molar flow rates of CO, H 2 , N 2 , O 2 , H 2 O and auxiliary fuels H 2 and C). (ΔH 8 °) 298 : Enthalpy change due to thermal decomposition of auxiliary fuel. Hereinafter, the specific configuration, operation, and effects of the present invention will be explained in detail. The main reactions and state changes of the substances involved in the blast furnace tuyere combustion zone are expressed by the following equation. O 2 (T b ) + C (t c ) = CO 2 (T f ) ...... (12) 1/2O 2 (T b ) + C (t c ) = CO (T f ) ...... (13) H 2 O (T b ) + C (t c ) = H 2 (T f ) + CO (T f ) ……………(14) N 2 (T b ) = N 2 (T f ) ……………( 15) O 2 (T b ) = O 2 (T f ) ……………(16) H 2 O (T b ) = H 2 O (T f )
……………(17) H 2 (t a )=H 2 (T f ) ……………(18) C(t a )=C(t c ) ………(19) Here , The symbol in parentheses represents the temperature (K) of the substance, T b : Blow temperature (K), t c : Coke (carbon)
temperature (K), T f : combustion gas temperature (K), ta : auxiliary fuel temperature (K). Then, the enthalpy change of the reaction of equations (12) to (19) is expressed as ΔHi (kcal/kmol (product); i
=1 to 8), formulas (20) to (27) are obtained. ΔH 1 = (ΔH 1゜) 298 +∫ Tf 298 C PCO2 dT−∫ Tb 298 C PCO2 dT−∫ tc 298 C Pc dT ... (20) ΔH 2 = (ΔH 2゜) 298 +∫ Tf 298 C PCO dT−1/2∫ Tb 298 C PO2 dT−∫ tc 298 C Pc dT ………(21) ΔH 3 = (ΔH 3゜) 298 +∫ Tf 298 C PH2 dT+∫ Tf 298 C PCO dT−∫ Tb 298 C PH2O dT −∫ tc 298 C Pc dT ……………(22) ΔH 4 =∫ Tf Tb C PN2 dT ……………(23) ΔH 5 =∫ Tf Tb C PO2 dT ……………( 24) ΔH 6 =∫ Tf Tb C PH2O dT ……………(25) ΔH 7 =∫ Tf ta C PH2 dT ……………(26) ΔH 8 = (ΔH 8゜) 298 +∫ tc ta C Pc dT...(27) However, (ΔH 1゜) 298 : Standard enthalpy change for the reaction of equation (12) (3) (-97000kcal/kmol CO 2 ) (ΔH 2゜) 298 : For the reaction of equation (13) Standard enthalpy change literature for reaction (3) (-29410kcal/kmol CO) (ΔH 3゜) 298 : Standard enthalpy change literature for reaction of equation (14) (3) (28390kcal/kmol H 2 ) Literature (3) Japanese Science Shinkokai, Japan Iron and Steel Institute: Numerical values for steel thermal calculation (1966), 133 [Nikkan Kogyo Shimbun]
(ΔH 8 °) 298 : Entropy change (kcal/kmol C) accompanying thermal decomposition of auxiliary fuel, expressed by equation (28). (ΔH 8゜) 298 = 1200Q a / (C) a ……………(28) Here, Q a : Heat of decomposition of auxiliary fuel (kcal/Kg) (C) a : Weight of C in auxiliary fuel Percentage (%) Also, C Pi is the true specific heat at constant pressure (kcal·kmol −1 ·K −1 ) of substance i, which is generally expressed by equation (29). C Pi = ai + biT + ciT -2 ……………(29) Here, ai, bi, and ci are given in Table 1. Literature (4)

【表】 文献(4) O.Kubaschewski and E.L.Evans:
Mettallurgical Thermochemistry、London
(1956) 以下(20)〜(27)式に含まれる∫Tf ゜CPidT
の近似式を導出する。(29)式を代入すると次式
が得られる。 ∫TfT゜CPidT=∫Tf ゜(ai+biT+ciT-2)dT=(aiTf+bi/2Tf2−ci/Tf)−(aiT゜ +bi/2T゜−ci/T゜) ……………(30) ここで、(aiTf+bi/2T −ci/Tf)は、
Tfが1773〜 3073Kの範囲では、第1図に示すようにほゞTfの
1次式(直線関係)で近似できる。 たとえば、∫Tf 298PCO2dTは、(31)式で表わ

る。 ∫Tf 298PCO2dT=10.55Tf+1.08×10-3T +2.04×10/Tf−3924≒15.858Tf−10187 ……(31) 同様に、CO、H2、N2、O2、H2OおよびCの場
合もTfもしくはtcの1次式で近似でき、それぞ
れ次式で表される。 ∫Tf 298PCOdT=6.79Tf+0.49×10-3T +0.11×10/Tf−2104≒9.211Tf−5012……………(32
) ∫Tf 298PH2dT=6.52Tf+0.39×10-3T −0.12×10/Tf−1937≒8.451Tf−4270 ………(33) ∫Tf TbPN2dT=6.66Tf+0.51×10-3T −(6.66Tb+0.51×10-3T )≒9.183Tf−3037 −(6.66Tb+0.51×10-3T ) ……………(34) ∫Tf TbPO2dT=7.16Tf+0.50×10-3T +0.40×10/Tf−(7.16Tb+0.50×10-3Tb2+0.40 ×105/Tb)≒9.626Tf−2944−(7.16Tb+0.50×10-3T +0.40×105/Tb) ……(35) ∫Tf TbPH2O=7.17Tf+1.28×10-3T −0.08×105/Tf−(7.17Tb+1.28×10-3T −0.08 ×105/Tb)≒13.503Tf−7631−(7.17Tb+1.28×10-3T −0.08×105/Tb) ………(36) ∫Tf taPH2dT≒8.451Tf−2333−(6.52ta+0.39×10-3t −0.12×10/t) ……………(37) ∫tc 298PCdT=4.1tc+0.51×10-3tc 2+2.10×105/tc−1972≒6.588tc−4836 ………(38) ∫tc taPCdT≒6.588tc−2864−(4.1ta+0.51×10-3ta 2+2.1×10/t) ……………(39) この他、O2およびH2Oの温度Tbまでのエンタ
ルピー変化は(40)、(41)式で表せる。 ∫Tb 298PO2dT=7.16Tb+0.50×10-3Tb2+0.40×105/Tb−2312 ……………(40) ∫Tb 298PH2OdT=7.17Tb+1.28×10-3Tb2−0.08×105/Tb−2223 ……………(41) 以下、高炉羽口燃焼帯の温度Tf(K)の算定式を
導出する。 ここで、羽口燃焼帯を断熱系とみなすと(42)
式がなりたつ。 ただし、β:(12)〜(19)式の反応に関与
するCO2、CO、H2、N2、O2、H2O、H2、および
Cのモル量(kmol(i)/min)であり、後述(67)
〜(74)式で表せる。 (31)〜(41)式を(20)〜(27)式および
(42)式へ代入し、整理すると、燃焼ガス温度Tf
およびコークス温度tcの関係式として(43)式
が得られる。 A・Tf−B・tc=C+D+E+F+G+H ……………(43) ただし、 A=15.858β+9.211β+17.662β+9.183β+9.626β+13.503β+8.451β ……(2) B=6.588(β+β+β−β
……………(3) C=100039β+28430β−26167β+3037β
+2944β+7631β+2333β+{2864 −(ΔH8゜)298}・β ……………(4) D=(7.16Υ+7.17Υ+6.66β)・Tb ……(5) E=(0.50Υ+1.28Υ+0.51β)×10-3Tb2 ……………(6) F=(0.40Υ−0.08Υ)×105/Tb ……(7) G=6.52ta+0.39×10-3ta 2−0.12×105/ta)・β ……………(8) H=(4.10ta+0.51×10-3ta 2+2.10×105/ta)・β ……………(9) ここで、 Υ=β+0.5β+β
……………(10) Υ=β+β ……………(11) ここで、簡単化のため(44)式で示す。Ramm
の仮定を採用すると、tcとTfの関係式として
(45)式が得られる。 tc−273=0.75(Tf−273) …………(44) tc=0.75Tf+68.3 ……………(45) (45)式を(43)式へ代入して、Tfについて
整理すると(1)式が得られる。 Tf=C+D+E+F+G+H+68.3B/A−0.7
5B………(1) (1)式によつて、羽口燃焼帯における燃焼ガス温
度Tfを算定することできる。なお、tcとTfの関
係式として、(44)式を仮定したが、羽口燃焼帯
の炉径方向におけるコークス温度tcの分布を実
測することにより、(43)式に基づいて、より正
確にTfを算定できることはいうまでもないこと
である。 つぎに、高炉羽口よりガスを採取して、羽口燃
焼帯の任意の位置から、O2、CO、CO2のうちの
任意の2成分とH2の各ガス組成を計測し、送風
量Vb(Nm3(dry)/min)、送風湿度Mb(g/Nm3(w
et)、および補助燃料吹込量Wa(Kg/min)からな
る送風条件と前記のガス組成とから、前記の(2)〜
(11)式に含まれるβi(i=1〜8)を導出する。 羽口より吹きこまれるO2、N2およびH2O(水
蒸気)の容積流量をそれぞれVO2、VN2、VH2O
(Nm3/min)とおくと、次式が得られる。 VO2=0.21Vb ……………(46) VN2=0.79Vb ……………(47) VH2O=Mb・Vb/(804−Mb) …(48) 従つて(1)、ガス組成としてO2(%)、CO2
(%)、H2(%)を用いる場合を例にすると 以下、燃焼生成ガスの容積流量をVt(Nm3(dr
y)/min)とおいて、物質収支からVtを導出す
る。(16)式に関する未反応O2量をVO2R(N
m3/min)とおくと、 VO2R=(O/100)・Vt…………(49) (12)式の反応で生成するCO2量をVCO2(N
m3/min)とおくと、 VCO2=(CO/100)・Vt……………(50) 同様に(14)、(18)式の反応で生成するH2
の合計をVH2(Nm3/min)とおくと、 VH2=(H/100)・Vt ……………(51) ところで、(18)式の反応で、補助燃料の熱分
解によつて生成するH2量をVH2a(Nm3/min)
とおくと、 VH2a=(22.4/2)(H)a/100・Wa=0.112(
H)a・Wa ……………(52) ここで、(H)a:補助燃料中のH2の重量パーセン
ト(%)したがつて、(14)式の反応で生成する
H2およびCOの量をVH2W(Nm3/min)とおく
と、 VH2W=VH2−VH2a=(H/100)・Vt−VH2a ……………(53) また、(17)式の反応に関与する未反応のH2O
量をVH2OR(Nm3/min)とおくと、 VH2OR=VH2O−VH2W=VH2O+VH2a−(H/100)・Vt ……………(54) ところで、O2に関する物質収支より、(13)式
の反応で消費されるO2の量VO2CO(Nm3/min)
は次式で与えられる。 VO2CO=VO2−VCO2−VO2R …(55) (49)、(50)式へ代入すると、 VO2CO=VO2−(O+CO/100)・Vt…(5
6) したがつて、(13)式および(14)式の反応で
生成するCOの量をVCO(Nm3/min)とおくと、
次式が成り立つ。 VCO=2VO2CO+VH2W …(57) (53)、(56)式を(57)式へ代入して整理する
と、 VCO=2VO2−VH2a+{H−2(O+CO)/100}・Vt……………(58) しかるに、燃焼生成ガス(dry)は、O2
CO2、CO、H2、N2より構成されているので次式
が成り立つ。 VO2R+VCO2+VCO3VH2+VN2=Vt …(59) そこで、(49)、(50)式および(58)式を
(59)式へ代入し、Vtについて整理すると次式が
得られる。 Vt=2VO2+VN2−VH2/1+(O+C
−2H)/100………(60) よつて、(60)式から求まるVtを、(49)、
(50)、(51)、(53)、(54)、(58)式へ代入する

とにより、VO2R、VCO2、VH2、VH2W、VH2
およびVCOを算定することができる。 次に(2)、ガス組成としてO2(%)、CO(%)、
H2(%)を用いる場合には、 燃焼生成ガス中のCOの量VCO(Nm3/min)
は、次式で表わされる。 VCO=(CO/100)Vt …………(61) したがつて、(13)式の反応で生成するCOの量
CO13(Nm3/min)は、次式で表わされる。 VCO13=VCO−VH2W ……………(62) (53)、(61)式を(62)式へ代入すると、 VCO13=(CO−H/100)Vt+VH2a………
(63) したがつて、(12)式の反応で消費されるO2
量、すなわち、CO2の生成量をVCO2(Nm3/mi
n)とおくと、次式がなりたつ。 VCO2=VO2−1/2VCO13−VO2R ………(64) よつて、(49)、(63)式を(64)式へ代入する
と次式が得られる。 VCO2=VO2−1/2VH2a−1/2(CO−H+20/100)Vt ……………(65) そこで、(49)、(51)、(61)、(65)式を(59)
式へ代入し、Vtについて整理すると次式が得ら
れる。 Vt=VO2+VN2−VH2/2/1−(CO
+3H)/200…………(66) なお、導出はしないけれども、ガス組成として
CO2(%)、CO(%)およびH2(%)を用いる場
合の燃焼生成ガスの容積流量Vtも、(66)式で与
えられ、Vtが定まれば、前記と同様に、VO2
、VCO2、VH2、VH2W、VH2OR、VCOを求
めることができる。そして、羽口燃焼帯で行われ
る(12)〜(19)式の反応に関与するCO2
CO、H2、N2、O2、H2O、および補助燃料中のH2
とCのモル流量βi(i=1〜8)は次式で表さ
れる。 β=VCO2/22.4 ……………(67) β=VCO13/22.4 ……………(68) β=VH2W/22.4 ……………(69) β=VN2/22.4 ……………(70) β=VO2R/22.4 ……………(71) β=VH2OR/22.4 ……………(72) β=(H)a・Wa/200 ……………(73) β=(C)・Wa/1200 ……………(74) 以上、高炉羽口燃焼帯におけるガス組成分布の
測定値と送風条件に基づく、物質収支から、反応
に関与する物質i(i;CO2、CO、H2、N2
O2、H2O、補助燃料中のH2とC)のモル流量β
iの算定式を導出したが、該βiを前記(1)〜(11)式
へ代入することにより;前記のガス組成分布に対
応する燃焼ガス温度Tfの分布を算定することが
できる、又後述するように送風条件および装入条
件を調整することによつて、前記の燃焼ガス温度
分布を適正な分布と一致させることができる。 以上、本発明の構成を詳細に説明したが、以下
実施例に基づいて、本発明の実施態様とその作用
と効果を説明する。 第2図は、オールコークス高炉操業時の羽口燃
焼帯の炉径方向におけるO2、CO2、H2の各ガス
組成分布の測定結果および、該ガス組成分布と図
中に示した送風条件とから、本発明の方法で算出
した燃焼ガス温度分布を示したものである。第2
図に示すオールコークス操業条件では、最高燃焼
温度は約2600℃と算出されたが、かかる高温の燃
焼ガス温度を実測することはきわめて困難である
ことは自明であり、ガス組成分布の測定結果よ
り、間接的に温度分布を算定できる本発明の有効
性を示す証左である。ところで、高炉操業上の重
要な指標として、理論燃温度(フレーム温度とも
呼ばれる)が用いられている。すなわち、羽口よ
り吹きこまれたO2およびH2Oが、全量Cと反応
してCOとH2に変成したとき、すなわち、O2
CO2、H2Oがすべて0%になつたときの燃焼ガス
温度を理論燃焼温度と呼んでおり、送風条件のみ
から推算することができるが、送風温度1100℃、
送風湿度30g/Nm3、送風量7500Nm3/min(羽口
風速236m/s)、の送風条件における理論燃焼温は
第2図からも容易に類推できるように約2300℃と
推定されるので、前記の最高燃焼温度は、理論燃
焼温度より約300℃高くなつていることがわか
る。 そして、この最高燃焼温度の絶対値が鉄鉱石の
溶融速度に大きな影響を及ぼし、さらに、燃焼焦
点の位置が鉄鉱石の溶融領域の大きさや炉下部温
度状態と密接な関係をもつことは自明である。ち
なみに、オールコークス操業では、炉下部とくに
羽口直上部の炉壁近傍の温度が、重油や微粉炭な
どの補助燃料吹込時に比べて、かなり低くなる現
象が観察されているが、羽口燃焼帯の温度分布の
ちがいがその一原因と考えられる。すなわち、第
2図に示すように、オールコークス操業時の燃焼
焦点の位置は、羽口先端から約0.8mとかなり炉
壁から遠ざかつているのに対して、補助燃料吹込
時は、後述(第3図)のように、燃焼焦点が羽口
先端から0.4mと、炉壁へ近づいているためと推
察される。 第3図は、補助燃料として、微粉炭を銑鉄tあ
たり39Kg羽口より吹きこんでいたときの羽口燃焼
帯のガス組成分布の測定結果と、本発明の方法で
算定した燃焼ガス温度分布を示したものである。
送風温度1300℃、送風湿度10g/Nm3、微粉炭250
Kg/min(粉炭比39Kg/t)、送風量7200Nm3/min
(羽口速度253m/s)の送風条件での最高燃焼温度
は、約2750℃であり、燃焼焦点の位置も羽口先端
から0.4mの位置にあり、第2図の操業時い比べ
て、炉下部の炉壁近傍の温度も高く、装入物の降
下状態および通気性も安定しており、低燃料比操
業を行うことができた。すなわち、羽口燃焼帯の
燃焼ガスの温度分布としては、第2図の分布よ
り、第3図の分布の方がより適正なことが判明し
た。そして、このように、燃焼焦点を炉壁側へ近
づけるためには、前記のように、補助燃料を吹き
こむことの他に、図示はしないけれど送風条件と
しては、羽口風速を小さくすること、装入条件と
しては、炉壁近傍へ装入するコークス粒子径を小
さくすることにより、羽口燃焼帯でのコークスの
燃焼速度を大きくすることが有効であることを見
出した。また、最高燃焼温度を含めて、羽口燃焼
帯の燃焼ガス温度の絶対値を増減するためには、
送風温度を増減し、送風湿度を減増すればよいこ
とは自明であり、装入条件とくに、羽口燃焼帯直
上部へ降下してくる鉄鉱石の層厚およびコークス
の層厚に応じて、適宜、前記の送風条件を調整す
ればよい。 また、羽口燃焼帯の燃焼焦点の位置は、CO2
最大となる位置が決まるが、最高燃焼温度はCO2
の最大値の大小のみでは決定されず、送風条件に
よつても相当影響される。たとえば、第2図の場
合には、CO2の最大値が14%と大きいにもかかわ
らず最高燃焼温度は2600℃であるのに対して、第
3図の場合は、CO2の最大値が13%であつても、
最高燃焼温度は2750℃と高いからである。したが
つて、この点からも、ガス組成分布よりは、燃焼
ガス温度分布という指標に転換した方が、高炉操
業上重要な鉄鉱石の溶融に関して有用な指標を提
供することは自明である。 以上、本発明の効果を高炉羽口燃焼帯を例にと
つて説明したが、高炉以外にも、コークスや石炭
を主燃料とする固定層、あるいは移動層あるいは
流動層での燃焼にも、本発明の方法を応用できる
ことはいうまでもない。以上の通り本発明の効果
は大である。
[Table] Literature (4) O. Kubaschewski and ELEvans:
Mettallurgical Thermochemistry, London
(1956) ∫ Tf T゜C Pi dT included in equations (20) to (27) below
Derive an approximate formula for By substituting equation (29), the following equation is obtained. ∫ TfT゜C Pi dT=∫ Tf T゜(ai+biT+ciT -2 ) dT=(aiTf+bi/2Tf 2 -ci/Tf)-(aiT゜ +bi/2T゜2 -ci/T゜) ……………(30 ) Here, (aiTf+bi/ 2T2f - ci/Tf) is
In the range of Tf from 1773 to 3073K, it can be approximately approximated by a linear equation (linear relationship) for Tf, as shown in FIG. For example, ∫ Tf 298 C PCO2 dT can be expressed by equation (31). ∫ Tf 298 C PCO2 dT=10.55Tf+1.08×10 -3 T 2 f +2.04×10 5 /Tf−3924≒15.858Tf−10187 …(31) Similarly, CO, H 2 , N 2 , O 2 , H 2 O, and C can also be approximated by a linear expression of Tf or tc , and each is expressed by the following equation. ∫ Tf 298 C PCO dT=6.79Tf+0.49×10 -3 T 2 f +0.11×10 5 /Tf−2104≒9.211Tf−5012…………(32
) ∫ Tf 298 C PH2 dT=6.52Tf+0.39×10 -3 T 2 f −0.12×10 5 /Tf−1937≒8.451Tf−4270 ………(33) ∫ Tf Tb C PN2 dT=6.66Tf+0 .51×10 -3 T 2 f − (6.66Tb+0.51×10 -3 T 2 b )≒9.183Tf−3037 −(6.66Tb+0.51×10 -3 T 2 b ) ……………(34) ∫ Tf Tb C PO2 dT=7.16Tf+0.50×10 -3 T 2 f +0.40×10 5 /Tf-(7.16Tb+0.50×10 -3 Tb 2 +0.40×10 5 /Tb)≒9.626Tf −2944− (7.16Tb+0.50×10 -3 T 2 b +0.40×10 5 /Tb) ……(35) ∫ Tf Tb C PH2O =7.17Tf+1.28×10 -3 T 2 f −0.08×10 5 /Tf-(7.17Tb+1.28×10-3 T2b - 0.08× 105 /Tb)≒13.503Tf-7631-(7.17Tb + 1.28× 10-3 T2b - 0.08 × 105 /Tb) ………(36) ∫ Tf ta C PH2 dT≒8.451Tf−2333−(6.52t a +0.39×10 -3 t 2 a −0.12×10 5 /t a ) ……………(37 ) ∫ tc 298 C PC dT=4.1t c +0.51×10 -3 t c 2 +2.10×10 5 /t c −1972≒6.588t c −4836 ………(38) ∫ tc ta C PC dT ≒6.588t c −2864− (4.1t a +0.51×10 -3 t a 2 +2.1×10 5 /t a ) ……………(39) In addition, the temperature of O 2 and H 2 O The enthalpy change up to Tb can be expressed by equations (40) and (41). ∫ Tb 298 C PO2 dT=7.16Tb+0.50×10 -3 Tb 2 +0.40×10 5 /Tb−2312 ……………(40) ∫ Tb 298 C PH2O dT=7.17Tb+1.28×10 -3 Tb 2 −0.08×10 5 /Tb−2223 ……………(41) Below, the calculation formula for the temperature Tf (K) of the blast furnace tuyere combustion zone will be derived. Here, if we consider the tuyere combustion zone as an adiabatic system, (42)
The ceremony takes place. However , β 1 : The molar amount ( kmol ( i ) / min), described later (67)
~ (74) can be expressed as formula. Substituting equations (31) to (41) into equations (20) to (27) and (42) and rearranging, the combustion gas temperature Tf
Equation (43) is obtained as a relational expression between the coke temperature tc and the coke temperature tc . A・Tf−B・t c =C+D+E+F+G+H ……………(43) However, A=15.858β 1 +9.211β 2 +17.662β 3 +9.183β 4 +9.626β 5 +13.503β 6 +8.451β 7 … …(2) B=6.588 (β 1 + β 2 + β 3 − β 8 )
……………(3) C=100039β 1 +28430β 2 −26167β 3 +3037β
4 +2944β 5 +7631β 3 +2333β 7 + {2864 − (ΔH 8゜) 298 }・β 8 ……………(4) D=(7.16Υ 1 +7.17Υ 2 +6.66β 4 )・Tb ……(5 ) E=(0.50Υ 1 +1.28Υ 2 +0.51β 4 )×10 -3 Tb 2 ……………(6) F=(0.40Υ 1 −0.08Υ 2 )×10 5 /Tb ……(7 ) G=6.52t a +0.39×10 -3 t a 2 −0.12×10 5 /t a )・β 7 ……………(8) H=(4.10t a +0.51×10 -3 t a 2 +2.10×10 5 /t a )・β 8 ……………(9) Here, Υ 1 = β 1 +0.5β 2 + β 5
……………(10) Υ 236 ……………(11) Here, for the sake of simplicity, it is expressed as equation (44). Ramm
If the assumption is adopted, equation (45) is obtained as the relational expression between t c and Tf. t c −273=0.75(Tf−273) ………(44) t c =0.75Tf+68.3 ……………(45) Substitute equation (45) into equation (43) and organize for Tf Then, equation (1) is obtained. Tf=C+D+E+F+G+H+68.3B/A-0.7
5B......(1) Using equation (1), the combustion gas temperature Tf in the tuyere combustion zone can be calculated. Although we assumed equation (44) as the relational expression between t c and Tf, by actually measuring the distribution of coke temperature t c in the radial direction of the furnace in the tuyere combustion zone, we could obtain a better relationship based on equation (43). It goes without saying that Tf can be calculated accurately. Next, gas is collected from the blast furnace tuyere, and the gas composition of any two components of O 2 , CO , CO 2 and H 2 is measured from any position in the tuyere combustion zone, and the air flow rate is measured. Vb (Nm 3 (dry)/min), ventilation humidity Mb (g/Nm 3 (w
et) and the blowing conditions consisting of the auxiliary fuel injection amount Wa (Kg/min) and the above gas composition, the above (2) ~
βi (i=1 to 8) included in equation (11) is derived. The volumetric flow rates of O 2 , N 2 and H 2 O (water vapor) blown in from the tuyeres are V O2 , V N2 and V H2O , respectively.
(Nm 3 /min), the following equation is obtained. V O2 = 0.21Vb ……………(46) V N2 = 0.79Vb ……………(47) V H2O = Mb・Vb/(804−Mb) …(48) Therefore, (1), gas composition as O2 (%), CO2
(%) and H 2 (%). Below, the volumetric flow rate of the combustion gas is V t (Nm 3 (dr
y)/min), V t is derived from the material balance. The amount of unreacted O 2 related to equation (16) is expressed as V O2 , R (N
m 3 /min), V O2 , R = (O 2 /100)・V t ……(49) The amount of CO 2 produced by the reaction of equation (12) is expressed as V CO2 (N
m 3 /min), then V CO2 = (CO 2 /100)・V t ……………(50) Similarly, the total amount of H 2 produced in the reactions of equations (14) and (18) is Letting V H2 (Nm 3 /min), V H2 = (H 2 /100)・V t ……………(51) By the way, in the reaction of equation (18), due to the thermal decomposition of the auxiliary fuel, The amount of H2 generated is V H2 , a (Nm 3 /min)
Then, V H2 , a = (22.4/2)(H)a/100・Wa=0.112(
H) a・W a ……………(52) Here, (H) a : Weight percentage (%) of H 2 in the auxiliary fuel, therefore, generated by the reaction of equation (14)
Letting the amounts of H 2 and CO be V H2 , W (Nm 3 /min), V H2 , W = V H2 − V H2 , a = (H 2 /100)・V t −V H2 , a ... ......(53) Also, unreacted H 2 O involved in the reaction of equation (17)
Letting the quantities be V H2O , R (Nm 3 /min), V H2O , R = V H2O − V H2 , W = V H2O + V H2 , a − (H 2 /100)・V t …………… (54) By the way, from the material balance regarding O 2 , the amount of O 2 consumed in the reaction of equation (13) V O2 , CO (Nm 3 /min)
is given by the following equation. V O2 , CO = V O2 −V CO2 −V O2 , R …(55) When substituted into equations (49) and (50), V O2 , CO = V O2 −(O 2 +CO 2 /100)・V t …(Five
6) Therefore, if we set the amount of CO generated in the reactions of equations (13) and (14) as V CO (Nm 3 /min),
The following formula holds. V CO =2V O2 , CO +V H2 , W …(57) Substituting equations (53) and (56) into equation (57) and rearranging, V CO =2V O2 −V H2 , a + {H 2 − 2(O 2 + CO 2 )/100}・V t ……………(58) However, the combustion generated gas (dry) is O 2 ,
Since it is composed of CO 2 , CO, H 2 , and N 2 , the following formula holds true. V O2 , R + V CO2 + V CO 3V H2 + V N2 = V t (59) Then, by substituting equations (49), (50), and (58) into equation (59) and rearranging for V t , the following equation is obtained. is obtained. V t =2V O2 +V N2 −V H2 , a /1+(O 2 +C
O 2 −2H 2 )/100……(60) Therefore, V t found from equation (60) can be expressed as (49),
By substituting into equations (50), (51), (53), (54), and (58), V O2 , R , V CO2 , V H2 , V H2 , W , V H2
O , R and VCO can be calculated. Next (2), the gas composition is O 2 (%), CO (%),
When using H 2 (%), the amount of CO in the combustion gas V CO (Nm 3 /min)
is expressed by the following formula. V CO = (CO/100) V t …………(61) Therefore, the amount of CO generated in the reaction of formula (13), V CO , 13 (Nm 3 /min), is expressed by the following formula: . V CO , 13 = V CO −V H2 , W ……………(62) (53) When substituting equations (61) into equation (62), V CO , 13 = (CO-H 2 /100) V t +V H2 , a ......
(63) Therefore, the amount of O 2 consumed in the reaction of equation (12), that is, the amount of CO 2 produced, is expressed as V CO2 (Nm 3 /mi
n), the following formula holds. V CO2 =V O2 -1/2V CO , 13 -V O2 , R (64) Therefore, by substituting equations (49) and (63) into equation (64), the following equation is obtained. V CO2 = V O2 -1/2V H2 , a -1/2 (CO-H 2 +20 2 /100) V t ...... (65) Therefore, (49), (51), (61), (65) to (59)
By substituting into the equation and rearranging for Vt , the following equation is obtained. V t =V O2 +V N2 −V H2 , a /2/1−(CO
+3H 2 )/200…………(66) Although not derived, as a gas composition
The volumetric flow rate V t of combustion gas when using CO 2 (%), CO (%) and H 2 (%) is also given by equation (66), and once V t is determined, as above, VO2 ,
R , V CO2 , V H2 , V H2 , W , V H2O , R , and V CO can be determined. Then, CO 2 involved in the reactions of equations (12) to (19) that take place in the tuyere combustion zone,
CO, H2 , N2 , O2 , H2O , and H2 in auxiliary fuels
The molar flow rate βi (i=1 to 8) of C and C is expressed by the following formula. β 1 = V CO2 /22.4 ……………(67) β 2 = V CO , 13 /22.4 ……………(68) β 3 = V H2 , W /22.4 ……………(69) β 4 = V N2 /22.4 ……………(70) β 5 = V O2 , R /22.4 ……………(71) β 6 = V H2O , R /22.4 ……………(72) β 7 =(H) a・W a /200 ……………(73) β 8 =(C)・W a /1200 ……………(74) The above is the measurement of gas composition distribution in the blast furnace tuyere combustion zone From the mass balance based on the values and air blowing conditions, the substances involved in the reaction i (i; CO 2 , CO , H 2 , N 2 ,
O 2 , H 2 O, H 2 and C in the auxiliary fuel molar flow rate β
Although a calculation formula for i has been derived, by substituting βi into the above equations (1) to (11), it is possible to calculate the distribution of combustion gas temperature Tf corresponding to the above gas composition distribution. By adjusting the blowing conditions and charging conditions so as to make the combustion gas temperature distribution match the appropriate distribution. The configuration of the present invention has been described in detail above, and the embodiments of the present invention and their functions and effects will be described below based on Examples. Figure 2 shows the measurement results of the gas composition distribution of O 2 , CO 2 , and H 2 in the furnace radial direction in the tuyere combustion zone during all-coke blast furnace operation, and the gas composition distribution and the blowing conditions shown in the figure. This figure shows the combustion gas temperature distribution calculated by the method of the present invention. Second
Under the all-coke operating conditions shown in the figure, the maximum combustion temperature was calculated to be approximately 2600°C, but it is obvious that it is extremely difficult to actually measure combustion gas temperatures at such high temperatures, and based on the measurement results of gas composition distribution. This is proof that the present invention is effective in indirectly calculating temperature distribution. By the way, the stoichiometric combustion temperature (also called flame temperature) is used as an important index in blast furnace operation. That is, when O 2 and H 2 O injected from the tuyere react with the total amount of C and transform into CO and H 2 , that is, O 2 ,
The combustion gas temperature when CO 2 and H 2 O are all 0% is called the theoretical combustion temperature, and it can be estimated from only the ventilation conditions, but the ventilation temperature is 1100℃,
The theoretical combustion temperature under the conditions of air blowing humidity of 30 g/Nm 3 and air flow rate of 7500 Nm 3 /min (tuyere wind speed 236 m/s) is estimated to be approximately 2300°C, as can be easily inferred from Figure 2. It can be seen that the maximum combustion temperature mentioned above is about 300°C higher than the theoretical combustion temperature. It is obvious that the absolute value of this maximum combustion temperature has a large effect on the melting rate of iron ore, and that the position of the combustion focal point has a close relationship with the size of the melting region of iron ore and the temperature condition at the bottom of the furnace. be. Incidentally, in all-coke operation, it has been observed that the temperature near the furnace wall in the lower part of the furnace, especially just above the tuyere, is considerably lower than when auxiliary fuel such as heavy oil or pulverized coal is injected. One reason for this is thought to be the difference in temperature distribution. In other words, as shown in Fig. 2, the combustion focal point during all-coke operation is approximately 0.8 m from the tuyere tip, which is quite far from the furnace wall, whereas when auxiliary fuel is injected, This is thought to be because the combustion focal point is 0.4 m from the tuyere tip, which is close to the furnace wall, as shown in Figure 3). Figure 3 shows the measurement results of the gas composition distribution in the tuyere combustion zone when 39 kg of pulverized coal was injected per ton of pig iron from the tuyere as an auxiliary fuel, and the combustion gas temperature distribution calculated by the method of the present invention. This is what is shown.
Blow temperature 1300℃, Blow humidity 10g/ Nm3 , Pulverized coal 250
Kg/min (pulverized coal ratio 39Kg/t), air flow rate 7200Nm 3 /min
The maximum combustion temperature under the air blowing conditions (tuyere speed 253 m/s) is approximately 2750°C, and the combustion focal point is also located 0.4 m from the tuyere tip, compared to the operation shown in Figure 2. The temperature near the furnace wall in the lower part of the furnace was high, the descending state of the charge and the ventilation were stable, and low fuel ratio operation was possible. That is, it has been found that the temperature distribution of the combustion gas in the tuyere combustion zone is more appropriate in the distribution shown in FIG. 3 than in the distribution shown in FIG. 2. In order to bring the combustion focus closer to the furnace wall in this way, in addition to injecting auxiliary fuel as described above, the blowing conditions include reducing the tuyere wind speed, although not shown in the figure. It has been found that it is effective to increase the combustion rate of coke in the tuyere combustion zone by reducing the diameter of coke particles charged near the furnace wall as charging conditions. In addition, in order to increase or decrease the absolute value of the combustion gas temperature in the tuyere combustion zone, including the maximum combustion temperature,
It is obvious that it is sufficient to increase or decrease the blast temperature and the blast humidity, depending on the charging conditions, especially the layer thickness of iron ore and coke that are falling directly above the tuyere combustion zone. What is necessary is just to adjust the said ventilation conditions suitably. In addition, the position of the combustion focal point in the tuyere combustion zone is determined by the position where CO 2 is maximum, but the maximum combustion temperature is determined by CO 2
It is determined not only by the maximum value of , but is also considerably influenced by the air blowing conditions. For example, in the case of Figure 2, the maximum combustion temperature is 2600°C even though the maximum value of CO 2 is as large as 14%, whereas in the case of Figure 3, the maximum value of CO 2 is 2,600°C. Even if it is 13%,
This is because the maximum combustion temperature is as high as 2750°C. Therefore, from this point of view as well, it is obvious that converting to an index of combustion gas temperature distribution rather than gas composition distribution provides a more useful index regarding the melting of iron ore, which is important for blast furnace operation. The effects of the present invention have been explained using the blast furnace tuyere combustion zone as an example, but the present invention can also be applied to combustion in fixed beds, moving beds, or fluidized beds where coke or coal is the main fuel, in addition to blast furnaces. It goes without saying that the method of invention can be applied. As described above, the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高炉羽口燃焼帯での反応に関与する
物質の定圧真比熱の積分値が1500℃以上の高温域
で温度と直線関係にあることを示す図。第2図
は、オールコークス高炉操業時の羽口燃焼帯のガ
ス組成分布の測定結果例と、本発明の方法により
算定した燃焼ガス温度分布の関係を示す図。第3
図は、微粉炭を吹込んでいる場合の羽口燃焼帯の
ガス組成分布の測定結果例と本発明の方法により
算定した燃焼ガス温度分布の関係を示す図であ
る。
Figure 1 is a diagram showing that the integral value of constant pressure true specific heat of substances involved in the reaction in the blast furnace tuyere combustion zone has a linear relationship with temperature in the high temperature range of 1500°C or higher. FIG. 2 is a diagram showing an example of the measurement results of the gas composition distribution in the tuyere combustion zone during all-coke blast furnace operation and the relationship between the combustion gas temperature distribution calculated by the method of the present invention. Third
The figure is a diagram showing the relationship between an example of the measurement results of the gas composition distribution in the tuyere combustion zone when pulverized coal is injected and the combustion gas temperature distribution calculated by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 高炉羽口より炉内ガスを採取して酸素、一酸
化炭素ならびに二酸化炭素のうちの任意の2成分
と水素の各ガス組成を計測し、このガス組成の測
定値と送風量Vb、送風温度Tb、送風湿度Mbお
よび補助燃料の吹込量Waと吹込温度taからなる
送風条件を用いて、次式に基づいて高炉羽口燃焼
帯の炉径方向の燃焼ガス温度Tfを算定し、該燃
焼温度の炉径方向の分布があらかじめ設定された
適正な温度分布と一致するように前記の各送風条
件、羽口風速および装入条件の内の一つ、もしく
は複数の条件を調整することを特徴とする高炉操
業方法。 Tf=(C+D+E+F+G+H+68.3B)/(A−0.75B) ……………(1) ただし A=15.858β+9.211β+17.662β+9.183β+9.626β+13.503β+8.451β ……(2) B=6.588(β+β+β−β
……………(3) C=100039β+28430β−26167β+3037β
+2944β+7631β+2333β+{2864 −(ΔH8゜)298}・β ……………(4) D=(7.16Υ+7.17Υ+6.66β)・Tb ……(5) E=(0.50Υ+1.28Υ+0.51β)×10-3Tb2 ……………(6) F=(0.40Υ−0.08Υ)×105/Tb ……(7) G=6.52ta+0.39×10-3t −0.12×105/ta)・β ……………(8) H=(4.10ta+0.51×10-3ta 2+2.10×105/ta)・β ……………(9) ここで、 Υ=β+0.5β+β
……………(10) Υ=β+β ……………(11) β(i=1〜8):送風条件およびガス組成に
基づく物質収支から定まる反応物質(CO2
CO、H2、N2、O2、H2Oおよび補助燃料のH2
C)のモル流量。 (ΔH8゜)298:補助燃料の熱分解に伴うエンタル
ピー変化。
[Claims] 1. Gas in the furnace is sampled from the blast furnace tuyeres, and the gas composition of oxygen, carbon monoxide, and carbon dioxide, and hydrogen, are measured. Using the airflow conditions consisting of the airflow volume Vb, airflow temperature Tb, airflow humidity Mb, and auxiliary fuel injection amount Wa and injection temperature ta, calculate the combustion gas temperature Tf in the radial direction of the blast furnace tuyere combustion zone based on the following formula. Calculate one or more of the above-mentioned blowing conditions, tuyere air speed, and charging conditions so that the distribution of combustion temperature in the furnace radial direction matches the preset appropriate temperature distribution. A blast furnace operating method characterized by adjusting. Tf=(C+D+E+F+G+H+68.3B)/(A-0.75B) ……………(1) However, A=15.858β 1 +9.211β 2 +17.662β 3 +9.183β 4 +9.626β 5 +13.503β 6 +8. 451β 7 ...(2) B=6.588 (β 1238 )
……………(3) C=100039β 1 +28430β 2 −26167β 3 +3037β
4 +2944β 5 +7631β 6 +2333β 7 + {2864 − (ΔH 8゜) 298 }・β 8 ……………(4) D=(7.16Υ 1 +7.17Υ 2 +6.66β 4 )・Tb ……(5 ) E=(0.50Υ 1 +1.28Υ 2 +0.51β 4 )×10 -3 Tb 2 ……………(6) F=(0.40Υ 1 −0.08Υ 2 )×10 5 /Tb ……(7 ) G=6.52t a +0.39×10 -3 t 2 a −0.12×10 5 /t a )・β 7 ……………(8) H=(4.10t a +0.51×10 -3 t a 2 +2.10×10 5 /t a )・β 8 ……………(9) Here, Υ 1 = β 1 +0.5β 2 + β 5
……………(10) Υ 2 = β 3 + β 6 ……………(11) β 1 (i=1 to 8): Reactant (CO 2 ,
Molar flow rates of CO, H 2 , N 2 , O 2 , H 2 O and auxiliary fuels H 2 and C). (ΔH 8゜) 298 : Enthalpy change due to thermal decomposition of auxiliary fuel.
JP8633283A 1983-05-17 1983-05-17 Operating method of blast furnace Granted JPS59211511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8633283A JPS59211511A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8633283A JPS59211511A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Publications (2)

Publication Number Publication Date
JPS59211511A JPS59211511A (en) 1984-11-30
JPS6112002B2 true JPS6112002B2 (en) 1986-04-05

Family

ID=13883878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8633283A Granted JPS59211511A (en) 1983-05-17 1983-05-17 Operating method of blast furnace

Country Status (1)

Country Link
JP (1) JPS59211511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425609Y2 (en) * 1986-05-31 1992-06-19

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835076B2 (en) * 2012-04-17 2015-12-24 新日鐵住金株式会社 Heating method of charge and residue at bottom of blast furnace
CN109022650B (en) * 2018-09-29 2020-06-16 武汉钢铁有限公司 Method for identifying distribution of upper gas flow of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425609Y2 (en) * 1986-05-31 1992-06-19

Also Published As

Publication number Publication date
JPS59211511A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
Reed et al. A predictive model for stratified downdraft gasification of biomass
CN112593030B (en) Method for determining furnace heat by utilizing blast furnace slag iron heat index
EP4067510A1 (en) Blast furnace operation method
Burgess Fuel combustion in the blast furnace raceway zone
JPS6112002B2 (en)
JPS614788A (en) Carbon gasification
JPH07305105A (en) Method for evaluating raceway condition of blast furnace
US4248627A (en) Process for the manufacture and use of high purity carbonaceous reductant from carbon monoxide-containing gas mixtures
JP3099322B2 (en) Blast furnace heat management method
KR100381094B1 (en) Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation
KR102144168B1 (en) Method for predicting injection effect of furnace pulverized coal
JP2021181613A (en) Method for starting blast furnace after resting blowing
JP4061135B2 (en) Blast furnace operation method with pulverized coal injection
JPS6112003B2 (en)
TWI795277B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
CN115216569B (en) Method for regulating and controlling process parameters of blast furnace blowing flux through theoretical combustion temperature
JP7265161B2 (en) Blast furnace operation method
JPH09287009A (en) Operation of blast furnace
RU2804434C1 (en) Blast furnace operation method
JP2018168416A (en) Blast furnace operation method
WO2023199550A1 (en) Operation method for blast furnace
KR100356156B1 (en) A method for promoting combustibility in balst furnace
US3218155A (en) Method of operating metallurgical furnaces
Stewart et al. “Pulsed” oxygen admission for control of combustion zone ash-clinkering in static oxygen-steam and air-steam gas producers
JPH02200712A (en) Method for operating blast furnace