JPS6111919A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6111919A
JPS6111919A JP13083984A JP13083984A JPS6111919A JP S6111919 A JPS6111919 A JP S6111919A JP 13083984 A JP13083984 A JP 13083984A JP 13083984 A JP13083984 A JP 13083984A JP S6111919 A JPS6111919 A JP S6111919A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13083984A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takagi
高木 博嗣
Kenji Suzuki
謙二 鈴木
Fumio Kishi
岸 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13083984A priority Critical patent/JPS6111919A/en
Publication of JPS6111919A publication Critical patent/JPS6111919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To make use of merits of a Co-Cr vertical magnetic medium having excellent recording-reproduction characteristics in the shortwave region and to form a magnetic recording medium capable of obtaining a high reproduction output over a wide band leading further to the long-wave region by providing a laminated structure specifying the orientation of the C axis of a Co crystal to a magnetic layer. CONSTITUTION:The magnetic layer having a laminated structure consists of the first layer having 15-30 deg. DELTAtheta50 index which shows the orientation of the C axis of a Co crystal on a substrate and the second layer having <=15 deg. DELTAtheta50 on the first layer, and is formed by gaseous-phase thin film deposition. The magnetic layer having larger DELTAtheta50 is placed at the lower side so that the recording layer for long-wave recording which is less affected by the spacing may be placed at the lower side and the shortwave recording layer may be placed at the upper side to reduce a decrease in the output with the shortwave. When the DELTAtheta50 of the first layer exceeds 30 deg., the orientation of the Co-Cr film of the second layer is disturbed, and the DELTAtheta50 of the second layer does not become less than 15 deg.. The Cr/Co ratio in the Co-Cr film is preferably regulated in the range 0.1-0.35 throughout the first and the second layer.

Description

【発明の詳細な説明】 1亙豆1 本発明は、長波長領域における再生出力を増大したCo
−Cr系金属薄膜型記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a Co
-This invention relates to a Cr-based metal thin film type recording medium.

宜JJL磨 近年、各種機器の小型化、軽量化がすすんでいるが、磁
気記録の分野においても1例えばフロッピーディスク径
が8インチ、5.25インチ、3゜インチへと小さくな
っているよう、に、記録装置の小型化が急速に進んでい
る。磁気記録媒体においては、こうした小型化に対応し
て、一層の高密度記録化が要求されている。高密度化の
ために、従来の面内磁化方式においては記録層の薄膜化
、高保磁力化、残留磁束密度の増加などの手段が採用さ
れつつある。モの一例が斜め蒸着法で作成したCo−N
i等の金属薄膜型記録媒体である。高密度化の手段とし
ては、他方、面内磁化方式で問題となる短波長領域での
自己減磁のない垂直磁化方式の開発が盛んであり、スバ
ッタリシグ、真空蒸着法で形成したCo−Cr膜および
Baフェライト塗布膜を中心とした開発が行なわれてい
る。
In recent years, various devices have become smaller and lighter, and in the field of magnetic recording, for example, the diameter of floppy disks has decreased to 8 inches, 5.25 inches, and 3 degrees. In addition, recording devices are rapidly becoming smaller. In magnetic recording media, in response to such miniaturization, even higher recording density is required. In order to increase the density, measures such as making the recording layer thinner, increasing the coercive force, and increasing the residual magnetic flux density are being adopted in the conventional in-plane magnetization method. An example of this is Co-N produced using an oblique evaporation method.
It is a metal thin film type recording medium such as i. As a means of increasing density, on the other hand, perpendicular magnetization methods that do not suffer from self-demagnetization in the short wavelength region, which is a problem with in-plane magnetization methods, are being actively developed. Developments are currently being carried out centering on Ba ferrite coatings.

しかしながら、この垂直磁化方式においては。However, in this perpendicular magnetization method.

面内磁化方式とは逆に長波長において自己減磁作用が働
くという問題がある。その結果、垂直磁化媒体は、面内
磁化媒体に比べて、第1図に示すそれぞれの再生出力で
ある、曲線11(メタル塗布媒体)と曲線’12(Co
−Cr垂直磁化媒体)の比較でわかるように、短波長で
の記録再生に優れるものの、長波長での実効値出力が小
さいという欠点がある。これは、垂直磁化媒体を広い帯
域を使用するアナログ記録に用いる最大きな障害となる
ものである。
Contrary to the in-plane magnetization method, there is a problem in that self-demagnetization occurs at long wavelengths. As a result, compared to the in-plane magnetized medium, the perpendicularly magnetized medium has the respective reproduction outputs of curve 11 (metal coated medium) and curve '12 (co
-Cr perpendicular magnetization media), although it is excellent in recording and reproducing at short wavelengths, it has the drawback of low effective value output at long wavelengths. This is the biggest obstacle to using perpendicularly magnetized media for analog recording using a wide band.

え1立13 本発明は、上述した垂直磁化媒体の欠点を除去し、短波
長領域で優れた記録−再生特性を有するCo−Cr垂直
磁化媒体の長所を生かし、さらに長波長まで広い帯域に
わたり、高再生出力の得、られる記録媒体を提供するこ
とを目的とする。
The present invention eliminates the drawbacks of the perpendicularly magnetized medium described above, takes advantage of the advantages of the Co-Cr perpendicularly magnetized medium, which has excellent recording and reproducing characteristics in the short wavelength region, and furthermore covers a wide band up to long wavelengths. The purpose of the present invention is to provide a recording medium that can provide high reproduction output.

l見立11 本発明の磁気記録媒体は、上述の目的を達成するために
開発されたものであり、より詳しくは、非磁性基体上に
CoとCrを主成分とする磁性層を形成してなる磁気記
録媒体において、該磁性層が、Coの結晶C軸配向性を
表わす指標Δθ卸が15から30°である第1層、およ
びΔθ園が15°以下である!s2層を、基体上にこの
順序で気相薄膜堆積した積層構造を有することを特徴と
するものである。
lMitate 11 The magnetic recording medium of the present invention has been developed to achieve the above-mentioned object, and more specifically, the magnetic recording medium of the present invention is developed by forming a magnetic layer mainly composed of Co and Cr on a non-magnetic substrate. In the magnetic recording medium, the magnetic layer is a first layer in which the index Δθ, which represents the crystal C-axis orientation of Co, is from 15 to 30°, and the Δθ is 15° or less! It is characterized by having a laminated structure in which the s2 layer is deposited as a vapor phase thin film on the substrate in this order.

本発明に至る経緯について、若干説明する。The circumstances leading to the present invention will be briefly explained.

垂直磁化膜としての必要条件は、膜面垂直方向の磁気異
方性Kuが反磁界エネルギー2πM s 2よりも大き
いことである。ここでMsは膜の飽和磁化である。垂直
磁化膜となるCo−Cr膜はCoのC軸方向が磁化容易
方向であり、成膜の条件を選ぶことにより、C軸を膜厚
方向に配向させることができる。またCrの添加がC軸
配向性および、結晶異方性を大きく損なわず“、Msを
低下させるため、Co−Cr層が垂直磁化膜となるため
には結晶C軸配向性が重要なファクターである。
A necessary condition for a perpendicularly magnetized film is that the magnetic anisotropy Ku in the direction perpendicular to the film surface is larger than the demagnetizing field energy 2πM s 2 . Here Ms is the saturation magnetization of the film. In a Co--Cr film that is a perpendicularly magnetized film, the C-axis direction of Co is the direction of easy magnetization, and by selecting film-forming conditions, the C-axis can be oriented in the film thickness direction. In addition, since the addition of Cr does not significantly impair the C-axis orientation and crystal anisotropy and lowers Ms, the crystal C-axis orientation is an important factor for the Co-Cr layer to become a perpendicularly magnetized film. be.

この配向性を表わす指標として、従来よりX線回折にお
けるC軸(002,)のロッキング曲線の半値幅Δθ閏
が用いられている0本発明者らは、このC軸配向性を表
わす指標Δ0IIOとC,o−Cr媒体の再生周波数特
性とが密接な関係にあることを見い出し、短波長から長
波長までの再生周波数特性が総合的に改善された・本発
明の積層構成のC0−Cr@気記録媒体の開発に成功し
たものである。
The half-width Δθ leap of the rocking curve of the C-axis (002,) in X-ray diffraction has conventionally been used as an index representing this orientation. It was discovered that there is a close relationship between the reproduction frequency characteristics of the C,o-Cr medium, and the reproduction frequency characteristics from short wavelengths to long wavelengths have been comprehensively improved. This was a successful development of a recording medium.

すなわちリング型ヘッドで記録−再生した時の長波長の
再生波形(入力は正弦波)は、面内磁化媒体(第1図の
曲線11に相当するもの)においては第2図、垂直磁化
媒体(第1図の曲線12に相当するもの)では第3図、
に示す通りの波形を示す、Co−Cr媒体においては、
Δθ(資)が概ね15″のときを境ズして、Δθ聞が大
きい媒体は面内磁化媒体と同一の#12図の再生波形を
示し、60問が小さい媒体は垂直磁化特有の第3図の再
生波形を示す、すなわちΔθ(資)が大きいCo−Cr
媒体は、長波長の領域では磁化の面内成分が寄与してい
ることがわかった。その結果Δθ園の大きいCo−Cr
媒体の周波数特性は第1図の面内媒体の周波数特性と類
似し・たちのとなり、長波長での出力が大きくなる。一
方、短波長での出力はΔθsoが小さい、すなわちC軸
配向性の良いCo−Cr媒体の方が優れる。
In other words, the long-wavelength reproduction waveform (input is a sine wave) when recording and reproducing with a ring head is as shown in FIG. 2 for an in-plane magnetized medium (corresponding to curve 11 in FIG. (corresponding to curve 12 in Fig. 1), Fig. 3,
In the Co-Cr medium, which shows the waveform as shown in
Beyond the time when Δθ (equity) is approximately 15'', media with large Δθ exhibit the same reproduction waveform as shown in Figure #12 as in-plane magnetized media, and media with small 60 questions exhibit the third waveform peculiar to perpendicular magnetization. Co-Cr which shows the reproduced waveform in the figure, that is, has a large Δθ (equity)
It was found that the in-plane magnetization component of the medium contributes in the long wavelength region. As a result, Co-Cr with large Δθ garden
The frequency characteristics of the medium are similar to those of the in-plane medium shown in FIG. 1, and the output is large at long wavelengths. On the other hand, a Co--Cr medium with a small Δθso, that is, a good C-axis orientation, is superior in terms of output at short wavelengths.

上記の結果よりΔθ薗が犬のCo−Cr膜とΔθ閏が小
のGo−Crltlを2層重ねることにより垂直磁化膜
であるGo−Cr媒体本来の優れた高密度記録−再生特
性を有し、かつ長波長領域を含め広い帯域にわたり高い
再生出力を有する記録媒体が可能となる。
The above results show that Δθsono has the excellent high-density recording and reproducing characteristics inherent to the Go-Cr medium, which is a perpendicularly magnetized film, by stacking two layers of a Co-Cr film and a Go-Crltl film with a small Δθ jump. , and a recording medium having high reproduction output over a wide band including the long wavelength region can be realized.

より詳しくは、本発明の磁気記録媒体は、ポリエステル
、ポリイミド、ポリカーボネート等からなる非磁性基体
上に、Δθ霞が15から30”である第1のCo−Cr
層、およびΔ0(資)が15゜よりも小さい第2のCo
−Cr層を、気相薄膜堆積することにより得られる。こ
のように、Δθ園が大なる磁性層を下におくのは、スペ
ーシングの影響の少ない長波長を記録する記録層を下層
にし、短波長記録層を上部におき、短波長での出力低下
を小さくするためである。
More specifically, the magnetic recording medium of the present invention comprises a first Co-Cr film having a Δθ haze of 15 to 30” on a non-magnetic substrate made of polyester, polyimide, polycarbonate, etc.
layer, and a second Co layer with Δ0(equity) smaller than 15°.
The -Cr layer is obtained by vapor phase thin film deposition. In this way, the reason why the Δθ garden places a large magnetic layer at the bottom is that the recording layer that records long wavelengths, which is less affected by spacing, is placed at the bottom, and the short wavelength recording layer is placed at the top, which reduces the output at short wavelengths. This is to make it smaller.

なお第1層のΔ0!laが30”を越えると第2層のC
o−Cr膜の配向性が乱れ、第2層のΔθ。
Note that Δ0 of the first layer! When la exceeds 30”, the second layer C
The orientation of the o-Cr film is disordered, and Δθ of the second layer.

が15°以下とならない。is not less than 15°.

各層の厚さの比は1.第1層と第2層とで、5:1〜1
:2の範囲が適当であり、合計厚さは0゜2〜2pmの
範囲が適当である。第2層は、その下層である第1層か
ら見ると、ヘッドとのスペーシングの増加であり、第1
層からの磁束を有効に使用するためには、第2層をあま
り厚くすることはできない。第1図より、面内磁化媒体
の出力が垂直磁化媒体の出力を越えるのは、概ね波長が
5ルm以上の領域である。すなわち、第2層の厚さとし
ては、0.5JLm以下であることが望ましい。
The ratio of the thickness of each layer is 1. 5:1 to 1 between the first layer and the second layer
:2 is suitable, and the total thickness is suitably in the range of 0°2 to 2 pm. The second layer increases the spacing between the head and the first layer when viewed from the first layer, which is the layer below it.
In order to effectively use the magnetic flux from the layer, the second layer cannot be made too thick. From FIG. 1, it is seen that the output of the in-plane magnetized medium exceeds the output of the perpendicularly magnetized medium in a region where the wavelength is approximately 5 lumen or more. That is, the thickness of the second layer is preferably 0.5 JLm or less.

また、第1層、第2層を通じて、Co−1cr膜中のC
r / Co比は、0.1〜0.35(7)範囲、であ
ることが好ましい。0.1未満では、第2層が垂直磁化
膜とならず、また0、35を越えると、非磁性となる。
Also, through the first layer and the second layer, C in the Co-1cr film is
The r/Co ratio is preferably in the range of 0.1 to 0.35(7). If it is less than 0.1, the second layer will not become a perpendicularly magnetized film, and if it exceeds 0.35, it will become non-magnetic.

このようにΔθIIoの異なる第1および第2のCoQ
 t @を順次、形成するためには、スパッタリング等
の気相堆積に際してアルゴン等の不活性ガス分圧を変化
させる(第1R形成時に比べて第2層形成時に分圧を小
とする)方法、ターゲットと基体との距離を変える(第
1層形成時に比べて第2層形成時には距離を小とする)
方法あるいは基体への入射角をマスク等により変化させ
る方法等が採用できる。
In this way, the first and second CoQs with different ΔθIIo
In order to sequentially form t@, a method of changing the partial pressure of an inert gas such as argon during vapor phase deposition such as sputtering (lowering the partial pressure when forming the second layer compared to when forming the first layer); Change the distance between the target and the substrate (distance is smaller when forming the second layer than when forming the first layer)
Alternatively, a method of changing the angle of incidence on the substrate using a mask or the like can be adopted.

笈ム1 以下、実施例により本発明を、更に具体的に説明する。Komu 1 Hereinafter, the present invention will be explained in more detail with reference to Examples.

1呈1」 高周波マグネトロンスパッタ法により厚さ12μmのポ
リエステルフィルム上に、厚さ0.31層mのS1層お
よび厚さ0.27層mの第2層のGo−Cr膜を形成し
た磁気記録媒体を得た。ターゲットはGo82%、Cr
lB%の金属ターゲットであり、スパッタ条件は、第1
層形成時はスパッタ中のアルゴンガス雰囲気を8X10
−3Torr、第2層形成時は2X10=Torrとし
た。
1 Presentation 1'' Magnetic recording in which an S1 layer with a thickness of 0.31 m and a Go-Cr film as a second layer with a thickness of 0.27 m are formed on a polyester film with a thickness of 12 μm by high-frequency magnetron sputtering. Got the medium. Target is Go82%, Cr
1B% metal target, and the sputtering conditions were the first
During layer formation, the argon gas atmosphere during sputtering was adjusted to 8×10
−3 Torr, and 2×10=Torr when forming the second layer.

得られた磁気記録媒体(試料No、1)の第1層のΔ0
.。は17°、第1層、第2層合わせたΔθ5oは11
″であった。この結果より、第2層のΔθ50は約96
であると推定される。
Δ0 of the first layer of the obtained magnetic recording medium (sample No. 1)
.. . is 17°, and the combined Δθ5o of the first and second layers is 11
''. From this result, the Δθ50 of the second layer was approximately 96
It is estimated that

比較試料として、ポリエステルフィルム上に」二記第2
層の形成条件で膜厚0.5JLmの単層のCo−Cr膜
を形成した磁気記録媒体を得た(試料No 、2)、、
:c7)Co−Cr膜のΔθ50は5゜であった・ 本発明の実施例にかかる試料N011と比較例試料N0
92の保磁力Hcは、それぞれ5400e、410 0
eであった。これらの試料をテープ状にし、ギヤツブ巾
0.3μmのリング型ヘッドで自己記録−再生した時の
再生出力の波長依存性を測定した結果、第4図のように
、短波長領域での出力においては両者はとんど差はな、
い゛ が、長波長領域では本発明の試料No、1(曲線
41)の方が、試料No、2(曲線42)に比べ2〜4
dB大きな再生出力を与えた。
As a comparative sample, "2, Part 2" was applied on a polyester film.
A magnetic recording medium in which a single-layer Co--Cr film with a thickness of 0.5 JLm was formed under the layer formation conditions was obtained (sample No. 2).
:c7) The Δθ50 of the Co-Cr film was 5°・Sample No. 11 according to the example of the present invention and comparative example No. 0
The coercive force Hc of 92 is 5400e and 4100, respectively.
It was e. We made these samples into tapes and measured the wavelength dependence of the playback output when self-recording and playback was performed using a ring-shaped head with a gear width of 0.3 μm. As shown in Figure 4, the output in the short wavelength region There is not much difference between the two,
However, in the long wavelength region, sample No. 1 (curve 41) of the present invention has a wavelength of 2 to 4 compared to sample No. 2 (curve 42).
It gave a dB larger playback output.

支良皇」 第5図に示した電子ビーム連続蒸着装置により、Co−
Cr膜を厚さ1.21層mのポリイミドフィルム上に形
成した。
Co-co
A Cr film was formed on a polyimide film with a thickness of 1.21 m.

すなわち、この電子ビーム連続蒸着装置は、排気系に連
結した真空槽52中に、回転キャン53を配置し、ロー
ラー54から巻出された基体フィルム50をフリーロラ
ー55を介して、この回転キャンに沿わせ、ローラー5
6に巻取る過程で、回転キャン53上の基体フィルム5
0に対し、遮蔽板57により入射角を調整しつつCo蒸
着源58、Cr蒸着源58aに電子ビーム59を照射し
て、スパッタリングを行なうように構成したものである
That is, in this continuous electron beam evaporation apparatus, a rotating can 53 is arranged in a vacuum chamber 52 connected to an exhaust system, and the base film 50 unwound from a roller 54 is moved along the rotating can via a free roller 55. Roller 5
6, the base film 5 on the rotating can 53
0, the electron beam 59 is irradiated onto the Co evaporation source 58 and the Cr evaporation source 58a while adjusting the incident angle using a shielding plate 57 to perform sputtering.

蒸着前の到達真空度は7X10−・TOrr、キャン5
3の温度は250℃に設定され、テープ(基体フィルム
)送り速度は4.5m/分とした。c。
The ultimate vacuum level before evaporation is 7X10-・Torr, Can 5
The temperature in No. 3 was set at 250° C., and the tape (substrate film) feeding speed was 4.5 m/min. c.

蒸着源58、Cr蒸着$ 58 aからのそれぞれの蒸
発速度を制御することにより、G o−Cr膜中のCr
組成lIt、18〜20%とした。
By controlling the respective evaporation rates from the evaporation source 58 and the Cr evaporation source 58a, Cr in the Go-Cr film
The composition was 18 to 20%.

Go−Cr膜の結晶配向性、すなわち40図は蒸着粒子
の入射方向を変化さ・せて制御した。C。
The crystal orientation of the Go-Cr film, that is, the crystal orientation in FIG. 40 was controlled by changing the incident direction of the deposited particles. C.

粒子の入射角θを700〜45′″、および90゜〜4
5°に、それぞれ制限して成膜した二種のCo−Cr膜
のΔθ(資)は、前者゛が24°、後者が8°であった
。 第1層のθを70°〜45°、第2層のθを90°
〜45°に制限し、それぞれ0.2ILmずつの厚さで
成膜して得た試料No。
The incident angle θ of the particles is 700~45′″ and 90°~4
The Δθ (value) of the two types of Co--Cr films formed with an angle of 5° was 24° for the former and 8° for the latter. θ of the first layer is 70° to 45°, θ of the second layer is 90°
Sample No. obtained by forming a film with a thickness of 0.2 ILm each with the angle limited to ~45°.

3のΔθ、。は13″であり、Hcは890’ Oeで
あった・ 第6図は、かくして得られた磁気記録媒体試料No、3
と、θを90〜45°に制限して単層のCo−Cr膜を
形成した磁気記録媒体試料No。
Δθ of 3. was 13'', and Hc was 890' Oe. Figure 6 shows the thus obtained magnetic recording medium sample No. 3.
and magnetic recording medium sample No. in which a single-layer Co--Cr film was formed with θ limited to 90 to 45 degrees.

4 ()ic=580  Qe)について、実施例1と
同一の方法により測定した再生出力の周波数特性である
0本発明の2層構成を有する試料3(曲線61)の方が
試料4(曲線62)よりも、はぼ全周波数領域にわたり
大きな再生出力が得られている。
4 ()ic=580 Qe), which is the frequency characteristic of the reproduced output measured by the same method as in Example 1. Sample 3 (curve 61) having the two-layer structure of the present invention is better than sample 4 (curve 62). ), a larger reproduction output is obtained over almost the entire frequency range.

なお、上述の実施例では、第1層、第2層の形成方法を
同一としたが、各層を異なる成膜法を用いても同様の効
果が得られる。
Note that in the above-described embodiment, the first layer and the second layer were formed using the same method, but the same effect can be obtained even if a different film forming method is used for each layer.

良m丸1 以上説明したように、未発明によれば、垂直磁化媒体で
あるCo−Cr磁性膜を、結晶配向性の指標となるΔθ
園を基板近傍では大きく、表面側では小さいも゛のとす
る二層構成にすることにより、垂直磁化の持つ優れた短
波長記録−再生特性を有し、かつ長波長領域憾おいても
大きな実効値再生出力を与える、高密度アナログ記゛録
用として優れた記録媒体が提供される。
As explained above, according to the invention, a Co-Cr magnetic film, which is a perpendicular magnetization medium, is
By creating a two-layer structure in which the magnetic field is large near the substrate and small on the surface side, it has the excellent short wavelength recording and reproducing characteristics of perpendicular magnetization, and has great effectiveness even in the long wavelength region. An excellent recording medium for high-density analog recording that provides a value reproduction output is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は面内磁化媒体と垂直磁化媒体の再生出力対波長
、すなわち周波数特性の比較図、!s2図は長波長(λ
=IOpm)での面内磁化媒体の出力波形、第3図はλ
=10pmでの垂直磁化媒体の出力波形、第4・図は実
施例1の本発明試料No、lと比較試料NO12の再生
出力周波数特性、゛第5図は実施例2で用いた電子ビー
ム蒸着装置の概略図、第6図は実施例2の本発明試料N
o、3と比較試料No、4の再生出6.力周波数特性で
ある。 11−@−面内磁化媒体の再生出力、 12・・・垂直磁化媒体の再生出力。 41・Φ・本発明試料N001の再生出力、42・・や
比較試料No、2の再生出力、501・ベースフィルム
、 51・・・排気系、 52φ争・真空槽、 53・・・回転キャン、 54・・・巻出しローラー、 551・フリーローラー、 56・φ・巻取りローラー、 57・φ・遮蔽板、 58・−・Co蒸発源、 58a・・・Cr蒸発源、 59・−・電子ビーム、 61−・・本発明試料No、3の再生出力、62・・・
比較試料No、4の再生出力。 幻LLl:第4図 第1図 17連長(J、lm−1) 12ffl 第3図 !14図 1/遺長 (JJm”1 第5図 第6 図 1/儂長〔μm−zl 手続補正書 昭和58年8月:JI日
Figure 1 is a comparison of reproduction output versus wavelength, or frequency characteristics, of in-plane magnetization media and perpendicular magnetization media. The s2 diagram shows long wavelength (λ
=IOpm), the output waveform of the in-plane magnetized medium, Figure 3 is λ
= Output waveform of the perpendicularly magnetized medium at 10 pm, Figure 4 shows reproduction output frequency characteristics of inventive samples No. 1 of Example 1 and comparison sample No. 12, and Figure 5 shows electron beam evaporation characteristics used in Example 2. A schematic diagram of the apparatus, FIG. 6 shows the present invention sample N of Example 2.
Reproduction of o, 3 and comparative sample No. 46. This is the power frequency characteristic. 11-@- Reproduction output of in-plane magnetization medium, 12... Reproduction output of perpendicular magnetization medium. 41・φ・Reproduction output of the present invention sample No. 001, 42・・Reproduction output of comparison sample No. 2, 501・Base film, 51・Exhaust system, 52φ・vacuum chamber, 53・Rotating can, 54...Unwinding roller, 551.Free roller, 56.φ.Take-up roller, 57.φ.shielding plate, 58.--Co evaporation source, 58a...Cr evaporation source, 59.--electron beam , 61-... Reproduction output of present invention sample No. 3, 62...
Reproduction output of comparison sample No. 4. Illusion LLl: Figure 4 Figure 1 Figure 17 Reunion Chief (J, lm-1) 12ffl Figure 3! 14 Figure 1/Icho (JJm”1 Figure 5 6 Figure 1/Icho [μm-zl Procedural Amendment August 1981: JI date)

Claims (1)

【特許請求の範囲】 1、非磁性基体上にCoとCrを主成分とする磁性層を
形成してなる磁気記録媒体において、該磁性層が、Co
の結晶C軸配向性を表わす指標Δθ_5_0が15から
30°である第1層、およびΔθ_5_0が15°より
も小さい第2層を、基体上にこの順序で気相薄膜堆積し
た積層構造を有することを特徴とする磁気記録媒体。 2、磁性層中のCr/Co重量比が0.1から0.35
である特許請求の範囲第1項記載の磁気記録媒体。 3、第2層の厚みが0.5μm以下であることを特徴と
する特許請求の範囲第1項記載の磁気記録媒体。
[Claims] 1. A magnetic recording medium in which a magnetic layer mainly composed of Co and Cr is formed on a non-magnetic substrate, wherein the magnetic layer is made of Co and Cr.
It has a laminated structure in which a first layer having an index Δθ_5_0 representing the crystal C-axis orientation of 15 to 30°, and a second layer having a Δθ_5_0 of less than 15° are deposited as vapor phase thin films on a substrate in this order. A magnetic recording medium characterized by: 2. Cr/Co weight ratio in the magnetic layer is 0.1 to 0.35
A magnetic recording medium according to claim 1. 3. The magnetic recording medium according to claim 1, wherein the thickness of the second layer is 0.5 μm or less.
JP13083984A 1984-06-27 1984-06-27 Magnetic recording medium Pending JPS6111919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13083984A JPS6111919A (en) 1984-06-27 1984-06-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13083984A JPS6111919A (en) 1984-06-27 1984-06-27 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6111919A true JPS6111919A (en) 1986-01-20

Family

ID=15043901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13083984A Pending JPS6111919A (en) 1984-06-27 1984-06-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6111919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331746A (en) * 1990-12-21 1994-07-26 Martin Gmbh Fur Umwelt-Und Energietechnik Process and an apparatus for removing water from ash
US5470550A (en) * 1993-12-30 1995-11-28 Westinghouse Electric Corporation Zirconium sulfate precipitation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111110A (en) * 1979-02-21 1980-08-27 Fujitsu Ltd Vertical type magnetic recording medium
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111110A (en) * 1979-02-21 1980-08-27 Fujitsu Ltd Vertical type magnetic recording medium
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331746A (en) * 1990-12-21 1994-07-26 Martin Gmbh Fur Umwelt-Und Energietechnik Process and an apparatus for removing water from ash
US5470550A (en) * 1993-12-30 1995-11-28 Westinghouse Electric Corporation Zirconium sulfate precipitation

Similar Documents

Publication Publication Date Title
JPH05342553A (en) Magnetic recording medium and its production
JPH06150289A (en) Magnetic recording medium and its manufacture
JPS6111919A (en) Magnetic recording medium
JP2988188B2 (en) Magnetic recording medium and method of manufacturing the same
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0581967B2 (en)
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP3009943B2 (en) Magnetic recording media for digital recording
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
JP2977618B2 (en) Magnetic recording method
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS5948822A (en) Vertical magnetic recording medium and its production
JPS6194239A (en) Preparation of magnetic recording medium
JP2558753B2 (en) Magnetic recording media
JP3041088B2 (en) Digital magnetic recording system
JPH0485716A (en) Thin magnetic film for magnetic head
JPS619823A (en) Magnetic recording medium
JPH06111272A (en) Magnetic recording medium and its manufacture
JPS6194240A (en) Preparation of magnetic recording medium
JPH01205716A (en) Magnetic recording medium
JPH0729143A (en) Magnetic recording medium and its manufacture
JPH0652537A (en) Magnetic recording medium
JPH04163722A (en) Magnetic transfer method
JPS6260119A (en) Magnetic recording medium and its production
JPH05159267A (en) Magnetic recording medium and production of the medium