JP2970219B2 - Magnetic recording medium and manufacturing method thereof - Google Patents

Magnetic recording medium and manufacturing method thereof

Info

Publication number
JP2970219B2
JP2970219B2 JP14404792A JP14404792A JP2970219B2 JP 2970219 B2 JP2970219 B2 JP 2970219B2 JP 14404792 A JP14404792 A JP 14404792A JP 14404792 A JP14404792 A JP 14404792A JP 2970219 B2 JP2970219 B2 JP 2970219B2
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic recording
substrate
layer containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14404792A
Other languages
Japanese (ja)
Other versions
JPH05342550A (en
Inventor
和義 本田
可治 前澤
達朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14404792A priority Critical patent/JP2970219B2/en
Publication of JPH05342550A publication Critical patent/JPH05342550A/en
Application granted granted Critical
Publication of JP2970219B2 publication Critical patent/JP2970219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は薄膜磁気記録媒体とその
製造方法に関する。
The present invention relates to a thin-film magnetic recording medium and a method for manufacturing the same.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い情報記録担体の
大容量化・高密度化が進められている。磁気テープの分
野においても記録媒体の高密度化を目指した研究開発が
盛んであり、これに応える薄膜媒体がいくつか提案され
ている。超高密度磁気記録材料としてはCo−Cr等が
広く研究されており、Co−Cr薄膜(あるいはCo−
Ni−Cr薄膜)等を用いた研究開発が行われている。
またCo−Cr薄膜の上に磁性を有するCo−O(ある
いはCo−Ni−O薄膜)を積層したCo−O/Co−
Cr磁気記録媒体によって、記録密度特性と実用耐久性
の両立を目指した研究もされている。薄膜磁気記録媒体
を製造する方法としては、連続巻き取り真空蒸着法が特
にその生産性において他を凌いでおり、現実的量産方法
として非常に有力である。すなわち図7のように長尺の
高分子基板が円筒状キャンの周面に沿って走行中に磁性
層を電子ビーム蒸着することによって磁気記録媒体の量
産ができる。磁性体としては主にCo,Ni,Feおよ
びこれらの組合せおよび酸素雰囲気蒸着による酸化物が
用いられる。
2. Description of the Related Art With the progress of the information society, the capacity and density of information recording carriers have been increased. In the field of magnetic tapes as well, research and development aimed at increasing the density of recording media have been actively pursued, and several thin-film media have been proposed to meet this requirement. Co-Cr and the like have been widely studied as ultra-high density magnetic recording materials, and Co-Cr thin films (or Co-Cr thin films) have been studied.
Research and development using Ni-Cr thin films) have been conducted.
Also, a Co—O / Co— layer obtained by laminating a magnetic Co—O (or Co—Ni—O thin film) on a Co—Cr thin film.
Studies have been made to achieve both recording density characteristics and practical durability by using a Cr magnetic recording medium. As a method for manufacturing a thin film magnetic recording medium, a continuous winding vacuum evaporation method is superior to other methods, particularly in terms of productivity, and is very effective as a practical mass production method. That is, as shown in FIG. 7, the magnetic recording medium can be mass-produced by evaporating the magnetic layer while the long polymer substrate is running along the peripheral surface of the cylindrical can. As the magnetic material, Co, Ni, Fe, a combination thereof, and an oxide obtained by vapor deposition in an oxygen atmosphere are mainly used.

【0003】[0003]

【発明が解決しようとする課題】Co−O/Co−Cr
系磁気記録媒体において優れた記録再生特性を実現する
媒体パラメータが十分明らかになっていなかった。ま
た、媒体を真空蒸着法によって形成する場合、記録再生
特性確保並びにクラックの発生防止の点から基板温度を
高くする必要があり、耐熱性の高いポリアミドやポリイ
ミド系の高分子基板が必要であり、ポリエチレンナフタ
レート(PEN)基板やポリエチレンテレフタレート
(PET)基板を使用することができなかった。
SUMMARY OF THE INVENTION Co-O / Co-Cr
Media parameters for realizing excellent recording / reproducing characteristics in a system-based magnetic recording medium have not been sufficiently clarified. Further, when the medium is formed by a vacuum evaporation method, it is necessary to increase the substrate temperature from the viewpoint of securing recording and reproduction characteristics and preventing the occurrence of cracks, and a polyamide or polyimide polymer substrate having high heat resistance is required. A polyethylene naphthalate (PEN) substrate or a polyethylene terephthalate (PET) substrate could not be used.

【0004】[0004]

【課題を解決するための手段】この課題を解決するため
本発明は、基板上に直接あるいは下地層を介して順にC
oとCrまたはCoとNiとCrを主成分として含む
層、CoとOまたはCoとNiとOを主成分として含む
層が形成された磁気記録媒体において、CoとCrまた
はCoとNiとCrを主成分として含む層の1cm2当た
りの飽和磁化量が0.002emu以下であることを特
徴とするものであり、その製造方法として基板上に直接
あるいは下地層を介して順にCoとCrまたはCoとN
iとCrを主成分として含む層、CoとOまたはCoと
NiとOを主成分として含む層を形成する磁気記録媒体
の製造方法において、CoとCrまたはCoとNiとC
rを主成分として含む層を形成するときの基板温度が、
CoとOまたはCoとNiとOを主成分として含む層を
形成するときの基板温度以下であることを特徴とするも
のである。
In order to solve this problem, the present invention provides a method for forming C on a substrate directly or sequentially through an underlayer.
In a magnetic recording medium on which a layer containing o and Cr or Co, Ni and Cr as a main component, and a layer containing Co and O or Co, Ni and O as a main component, Co and Cr or Co, Ni and Cr are used. The layer containing as a main component has a saturation magnetization of less than 0.002 emu per 1 cm 2 , and is manufactured by forming Co and Cr or Co on a substrate either directly or through an underlayer. N
In a method for manufacturing a magnetic recording medium for forming a layer containing i and Cr as main components and a layer containing Co and O or Co, Ni and O as main components, it is preferable that Co and Cr or Co, Ni and C
The substrate temperature when forming a layer containing r as a main component is:
The temperature is lower than the substrate temperature when a layer containing Co and O or Co, Ni and O as main components is formed.

【0005】[0005]

【作用】CoとCrまたはCoとNiとCrを主成分と
して含む層の飽和磁化量を0.002emu以下とする
ことによって、高出力を確保するとともに、ノイズを低
減し、記録再生特性を向上することができる。また、P
ETやPEN等の基板を用いることができるので低コス
ト化が可能である。
By setting the saturation magnetization of a layer containing Co and Cr or Co, Ni and Cr as main components to 0.002 emu or less, high output is ensured, noise is reduced, and recording / reproducing characteristics are improved. be able to. Also, P
Since a substrate such as ET or PEN can be used, the cost can be reduced.

【0006】[0006]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0007】図1に本発明の一実施例の高出力,低ノイ
ズ媒体の模式図を示す。この媒体は図7に示すような装
置で形成した。図において排気系1によって真空排気さ
れた真空槽2の中で巻き出しロール3から回転方向12
に沿って巻出された長尺の高分子基板4は磁性層形成用
キャン5の周面に沿って走行中に電子ビーム6を照射さ
れている電子ビーム蒸発源7より遮蔽板9の開口部にお
いてCo−Cr層の蒸着を受けた後に、巻き取りロール
10に巻き取られる。Co−Cr層上へのCo−O層の
積層は、Co−Cr層形成後に蒸発源をCo−Crから
Co−Oに交換して同様の工程を繰り返し行うことによ
って行われる。
FIG. 1 is a schematic view of a high-output, low-noise medium according to an embodiment of the present invention. This medium was formed by an apparatus as shown in FIG. In the figure, a rotation direction 12 is taken from an unwind roll 3 in a vacuum chamber 2 evacuated by an exhaust system 1.
The long polymer substrate 4 unwound along the periphery of the magnetic layer forming can 5 is irradiated with the electron beam 6 while traveling along the peripheral surface of the can 5 for opening the shielding plate 9 from the electron beam evaporation source 7. After being subjected to the deposition of a Co—Cr layer in, the film is taken up by a take-up roll 10. The lamination of the Co-O layer on the Co-Cr layer is performed by changing the evaporation source from Co-Cr to Co-O after the formation of the Co-Cr layer and repeating the same steps.

【0008】なお、Co−O層形成時には酸素導入ノズ
ル8より酸素ガスが導入されており、反応蒸着によって
酸化物磁性層が形成される。
[0008] When forming the Co-O layer, oxygen gas is introduced from the oxygen introducing nozzle 8, and an oxide magnetic layer is formed by reactive vapor deposition.

【0009】蒸気流の基板への入射角は基板法線に対し
て60度〜30度の範囲になるように遮蔽板9によって
制限した。Co−O層の膜厚を100nm−200nm
の二通りとし、Co−O層の飽和磁化を500emu/
ccで一定として、Co−Cr層の膜厚dと飽和磁化M
sを変えた。Co−Cr層の膜厚dはフィルムの搬送速
度によって変化させた。dの評価は比較的低搬送速度で
形成した膜を用いてSEMによって行い、フィルムの搬
送速度が早い場合にはdが速度に反比例するものとして
算出した。また、飽和磁化Msは蒸発源のCr濃度を変
えることによって行い、Ms・dを評価する指標として
1cm2の試料片を用いて振動試料磁力計で求めた飽和磁
化量を用いた。Co−O層形成時のキャン温度は20℃
及び10℃とし、Co−Cr層形成時のキャン温度を2
0℃〜250℃の範囲で変化させた。作製した媒体の記
録再生特性はドラムテスタを用いて、センダストMIG
ヘッドで記録波長0.5μmにおいて評価した。図2に
Co−Cr層の膜厚が10nm以上となる範囲でCo−
Cr層の膜厚と飽和磁化を変えたときのCo−O/Co
−Cr媒体の記録再生特性の測定結果を示す。横軸はC
o−Cr層の1cm2当たりの飽和磁化量とした。記録波
長は0.5μmである。図2から分かるようにCo−C
r層の1cm2当たりの飽和磁化量が大きくなるにつれて
キャン温度の低い場合には再生出力が低下する。また、
キャン温度に関わらず、1cm2当たりの飽和磁化量が大
きくなるにしたがってノイズが大きくなる。Co−O層
の厚みが100nm,200nmいずれの場合にもCo
−Cr層の1cm2当たりの飽和磁化量が0.002em
u以下のときに高出力,低ノイズが得られる。この傾向
は飽和磁化量を膜厚・飽和磁化いずれによって変化させ
たときにも共通であった。
The angle of incidence of the vapor stream on the substrate is limited by the shielding plate 9 so as to be in the range of 60 to 30 degrees with respect to the normal to the substrate. The thickness of the Co—O layer is set to 100 nm to 200 nm.
And the saturation magnetization of the Co—O layer is set to 500 emu /
cc, the film thickness d of the Co—Cr layer and the saturation magnetization M
changed s. The thickness d of the Co—Cr layer was changed according to the film transport speed. The evaluation of d was performed by SEM using a film formed at a relatively low transport speed. When the transport speed of the film was high, d was calculated as being inversely proportional to the speed. The saturation magnetization Ms was measured by changing the Cr concentration of the evaporation source, and the saturation magnetization measured by a vibrating sample magnetometer using a 1 cm 2 sample piece was used as an index for evaluating Ms · d. The can temperature at the time of forming the Co—O layer is 20 ° C.
And 10 ° C., and the can temperature when forming the Co—Cr layer is 2
The temperature was changed in the range of 0 ° C to 250 ° C. The recording / reproducing characteristics of the produced medium were measured using Sendust MIG using a drum tester.
The evaluation was performed at a recording wavelength of 0.5 μm using a head. FIG. 2 shows that the Co-Cr layer has a thickness of 10 nm or more.
Co-O / Co when changing the thickness and saturation magnetization of the Cr layer
-Shows the measurement results of the recording and reproducing characteristics of the Cr medium. The horizontal axis is C
The saturation magnetization was determined per 1 cm 2 of the o-Cr layer. The recording wavelength is 0.5 μm. As can be seen from FIG.
As the saturation magnetization per cm 2 of the r layer increases, the reproduction output decreases when the can temperature is low. Also,
Regardless of the can temperature, noise increases as the saturation magnetization per cm 2 increases. When the thickness of the Co—O layer is 100 nm or 200 nm,
The saturation magnetization per cm 2 of the Cr layer is 0.002 em
High output and low noise can be obtained at u or less. This tendency was common when the saturation magnetization was changed by either the film thickness or the saturation magnetization.

【0010】なお、Co−Cr層の飽和磁化は0、すな
わち非磁性であってもよい。図3はCo−Cr層の膜厚
が100nmのときに平均飽和磁化が500emu/c
cとなる蒸発条件でフィルムの搬送速度を変えた場合
の、Co−Cr層の膜厚dと記録再生特性の測定結果を
示した図である。記録波長は0.5μmである。図3の
結果から、Co−Crの厚さが5nm以下になると再生
出力が急激に低下する。したがってCo−Cr走破5n
m以上の厚さであることが望ましい。この理由は明確で
はないが、基板表面の被覆率や、Co−Cr層表面の結
晶配向性などに関係しているものと思われる。Co−C
r層の膜厚が100nm以下の場合には基板温度20℃
においても膜表面にクラックは発生しなかった。
[0010] The saturation magnetization of the Co-Cr layer may be 0, that is, non-magnetic. FIG. 3 shows that the average saturation magnetization is 500 emu / c when the thickness of the Co—Cr layer is 100 nm.
FIG. 9 is a diagram showing the measurement results of the film thickness d of the Co—Cr layer and the recording / reproducing characteristics when the film transport speed is changed under the evaporation condition of c. The recording wavelength is 0.5 μm. From the results shown in FIG. 3, when the thickness of Co—Cr becomes 5 nm or less, the reproduction output sharply decreases. Therefore, Co-Cr running 5n
m or more. Although the reason for this is not clear, it is thought to be related to the coverage of the substrate surface, the crystal orientation of the Co—Cr layer surface, and the like. Co-C
When the thickness of the r layer is 100 nm or less, the substrate temperature is 20 ° C.
No cracks were generated on the film surface.

【0011】図4はCo−Cr層を厚さ40nm、1cm
2当たりの飽和磁化量を0.0012nmとして形成
し、Co−Cr層の蒸着温度と入射角を変えて形成した
ときの、媒体全体の面内方向磁化曲線の角型比と記録波
長0.5μmでの再生出力の関係を示す図である。図4
から分かるように、面内方向角型比は膜面内から0.6
度から0.9の範囲が望ましい。
FIG. 4 shows a Co-Cr layer having a thickness of 40 nm and a thickness of 1 cm.
A square magnetization ratio of the in-plane direction magnetization curve of the entire medium and a recording wavelength of 0.5 μm when the saturation magnetization amount per 2 was formed at 0.0012 nm and the Co—Cr layer was formed at different deposition temperatures and incident angles. FIG. 6 is a diagram showing a relationship between reproduction outputs in the case of FIG. FIG.
As can be seen from FIG.
A range from degrees to 0.9 is desirable.

【0012】図5はCo−Cr層を厚さ40nm、1cm
2当たりの飽和磁化量を0.0012nmとして形成
し、Co−Cr層の蒸着温度と入射角を変えて形成した
ときの、媒体全体の磁化容易方向と記録波長0.5μm
での再生出力の関係を示す図である。
FIG. 5 shows a Co-Cr layer having a thickness of 40 nm and 1 cm.
When the saturation magnetization per 2 was formed at 0.0012 nm, and the Co-Cr layer was formed by changing the deposition temperature and the incident angle, the direction of easy magnetization of the entire medium and the recording wavelength of 0.5 μm
FIG. 6 is a diagram showing a relationship between reproduction outputs in the case of FIG.

【0013】図5から分かるように、磁化容易方向は膜
面内から15度から35度の範囲が望ましい。また、記
録波長が0.3μmのときにも図5,図6と同様の結果
が得られた。
As can be seen from FIG. 5, the easy magnetization direction is desirably in the range of 15 to 35 degrees from the plane of the film. Also, when the recording wavelength was 0.3 μm, the same results as in FIGS. 5 and 6 were obtained.

【0014】これまでCo−Cr層の蒸着には高基板温
度が不可欠とされてきたが、以上の結果から、Co−C
r層の単位面積当たりの飽和磁化量が小さくすることに
よって、Co−Cr層形成時の基板温度を低くすること
ができることが分かった。このことは従来Co−Cr層
の蒸着時に要求されていた耐熱性の非常に高い、高価な
ポリアミド基板やポリイミド基板を使用する必要がな
く、これらの基板に比べて安価なポリエチレンナフタレ
ート基板やポリエチレンテレフタレート基板が使用でき
ることを示しており、工業上の意義が大きい。さらに、
性能面においてもCo−Cr層を低温で形成することに
は利点がある。このことについて以下に述べる。
Until now, high substrate temperature has been indispensable for the deposition of the Co—Cr layer.
It was found that the substrate temperature at the time of forming the Co—Cr layer can be lowered by reducing the saturation magnetization per unit area of the r layer. This means that there is no need to use expensive polyamide or polyimide substrates, which are extremely high in heat resistance, which was conventionally required when depositing a Co-Cr layer, and polyethylene naphthalate substrates and polyethylene are inexpensive compared to these substrates. This indicates that a terephthalate substrate can be used, and has great industrial significance. further,
Forming the Co—Cr layer at a low temperature also has an advantage in terms of performance. This is described below.

【0015】薄膜磁気記録媒体においては基板表面に予
め微粒子の塗布によって形状を付与し、その上に蒸着を
行うことによって、微粒子形状を媒体表面に保存反映さ
せることが一般的である。これによって磁気ヘッド・記
録媒体間の摩擦係数を下げて媒体の実用耐久性を確保し
ている。したがって、微粒子による突起数・突起形状は
厳密に制御されるべき要因であり、突起密度が少なすぎ
ても多すぎても耐久性に悪影響を及ぼす。また、突起高
さは記録再生時のスペーシング損失を発生させるので、
突起高さは耐久性が確保できる範囲でできるだけ低くな
るように設計される。ところが斜め入射成分を含む蒸着
において蒸着温度が高い場合には蒸着膜そのものが自己
陰影効果によって顕著な突起形状を発生する。斜め蒸着
時に自己陰影効果によって形成される突起は従来微粒子
の塗布によって検討されている最適突起密度に比べて突
起密度が高く、また高温蒸着の場合は特に突起高さも高
い。したがって媒体表面の突起の点からは、実用耐久性
と高密度記録再生特性の確保のために蒸着温度はできる
だけ低いことが望ましい。Co−O層は基板温度によっ
て静磁気特性や記録再生特性が変化するので基板温度の
低下には限度があるが、本発明の実施例に示したよう
に、Co−Cr層は1cm2当たりの飽和磁化量が0.0
02emu以下であれば基板温度を低くしても記録再生
特性の低下を起こさない。したがって自己陰影効果によ
る余分な突起発生を抑えるための媒体の製造条件として
もCo−Cr層形成時の基板温度をCo−O層形成時の
基板温度よりも低くすることは、Co−Cr層が突起の
主要因とならない条件として重要である。言いかえれ
ば、この基板温度条件でCoとCrまたはCoとNiと
Crを主成分として含む層の1cm2当たりの飽和磁化量
を0.002emu以下にすることによって、記録再生
特性が確保でき、かつ基板に付与した形状を十分に活か
すことができるのである。
In a thin-film magnetic recording medium, it is general that the shape of the fine particles is preliminarily applied to the surface of the substrate by depositing fine particles on the surface of the substrate, and the shape of the fine particles is stored and reflected on the surface of the medium by vapor deposition. This lowers the coefficient of friction between the magnetic head and the recording medium to ensure the practical durability of the medium. Therefore, the number of protrusions and the shape of the protrusions due to the fine particles are factors to be strictly controlled, and if the protrusion density is too small or too large, the durability is adversely affected. Also, the projection height causes spacing loss during recording and playback,
The height of the projection is designed to be as low as possible within a range where durability can be ensured. However, when the deposition temperature is high in the deposition including the oblique incident component, the deposited film itself generates a prominent projection shape due to the self-shading effect. The projections formed by the self-shading effect during oblique deposition have a higher projection density than the optimum projection density which has been conventionally studied by applying fine particles, and the projection height is particularly high in the case of high-temperature deposition. Therefore, from the viewpoint of protrusions on the medium surface, it is desirable that the deposition temperature be as low as possible in order to ensure practical durability and high-density recording / reproducing characteristics. Co-O layer there is a limit to reduction in the substrate temperature since the static magnetic properties and the recording reproducing characteristics vary by the substrate temperature, but as shown in the embodiment of the present invention, Co-Cr layer per 1 cm 2 When the saturation magnetization is 0.0
If it is equal to or less than 02 emu, the recording / reproducing characteristics do not deteriorate even if the substrate temperature is lowered. Therefore, making the substrate temperature at the time of forming the Co-Cr layer lower than the substrate temperature at the time of forming the Co-O layer also as a manufacturing condition of the medium for suppressing the generation of the extra projection due to the self-shading effect, This is important as a condition that does not become the main factor of the protrusion. In other words, by setting the saturation magnetization per cm 2 of the layer containing Co and Cr or Co, Ni and Cr as the main components under the substrate temperature condition to 0.002 emu or less, the recording and reproducing characteristics can be secured, and The shape given to the substrate can be fully utilized.

【0016】また、Co−Cr層形成時の蒸気流の初期
入射角は90度(接線方向)としない方がよい。90度
成分を入れると膜の付着強度が低下するほか、記録再生
特性にも若干の劣化が起きる。Co−O層については入
射角を90度(接線方向)成分を入れた場合、0度(垂
直入射)成分を入れた場合のいずれにおいても記録再生
特性の明らかな劣化がみられる。特に0度成分を入れた
場合には突起高さや表面保護層の厚さの変化に対して出
力が非常に敏感に変化し、スペーシングロスファクタが
大きくなっているものと思われる。90度から0度まで
の範囲での最適な入射角範囲は基板温度や使用する磁気
ヘッドの特性によって最適値が異なる。
It is preferable that the initial incident angle of the vapor flow at the time of forming the Co—Cr layer is not 90 degrees (tangential direction). When the 90-degree component is added, the adhesion strength of the film is reduced, and the recording / reproducing characteristics are slightly deteriorated. Regarding the Co-O layer, the recording / reproducing characteristics are clearly deteriorated both when the incident angle component of 90 degrees (tangential direction) is included and when the incident angle component is 0 degrees (normal incidence). In particular, when the 0-degree component is added, it is considered that the output changes very sensitively to the change in the height of the protrusion and the thickness of the surface protective layer, and the spacing loss factor is increased. The optimum range of the incident angle in the range from 90 degrees to 0 degrees differs depending on the substrate temperature and the characteristics of the magnetic head used.

【0017】なお、実施例としては第1層としてCo−
Crを用いた場合についてのみ述べてきたが、Co−N
i−Crを用いた場合にも同様の効果が得られた。同様
に実施例では第2層としてCo−Oを用いた場合につい
てのみ述べてきたが、Co−Ni−Oを用いた場合にも
同様の効果が得られた。また、実施例の記録再生特性の
測定結果はテープ状の薄膜磁気記録媒体についてのみ述
べてきたが、これに限らず、薄膜磁気記録媒体全般に本
発明が有効であることは言うまでもない。
In the embodiment, the first layer is made of Co-
Although only the case where Cr is used has been described, Co-N
Similar effects were obtained when i-Cr was used. Similarly, in the embodiment, only the case where Co-O was used as the second layer was described, but the same effect was obtained when Co-Ni-O was used. Although the measurement results of the recording / reproducing characteristics of the embodiments have been described only for the tape-shaped thin film magnetic recording medium, the present invention is not limited to this, and it goes without saying that the present invention is effective for thin film magnetic recording media in general.

【0018】[0018]

【発明の効果】以上のように本発明の磁気記録媒体およ
びその製造方法によれば、ポリエチレンナフタレート基
板やポリエチレンテレフタレート基板を使用して、優れ
た記録再生特性を有するCo−O/Co−Cr系の磁気
記録媒体を提供することができる。
As described above, according to the magnetic recording medium and the method of manufacturing the same of the present invention, a Co-O / Co-Cr film having excellent recording / reproducing characteristics using a polyethylene naphthalate substrate or a polyethylene terephthalate substrate. System magnetic recording medium can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の構成の一例を示す断面
FIG. 1 is a sectional view showing an example of the configuration of a magnetic recording medium according to the present invention.

【図2】Co−Cr層の1cm2当たりの飽和磁化量を変
えたときのCo−O/Co−Cr媒体の記録再生特性の
測定結果を示す特性図
FIG. 2 is a characteristic diagram showing measurement results of recording / reproducing characteristics of a Co—O / Co—Cr medium when a saturation magnetization amount per 1 cm 2 of a Co—Cr layer is changed.

【図3】Co−Cr層の膜厚dを変えたときの記録再生
特性の測定結果を示した特性図
FIG. 3 is a characteristic diagram showing measurement results of recording / reproducing characteristics when a film thickness d of a Co—Cr layer is changed.

【図4】媒体全体の面内方向磁化曲線の角型比と再生出
力の関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the squareness ratio of the in-plane direction magnetization curve of the entire medium and the reproduction output.

【図5】媒体全体の磁化容易方向と再生出力の関係を示
す特性図
FIG. 5 is a characteristic diagram showing the relationship between the direction of easy magnetization of the entire medium and the reproduction output.

【図6】連続蒸着法による磁気記録媒体の製造方法の例
を示す模式図
FIG. 6 is a schematic view showing an example of a method for manufacturing a magnetic recording medium by a continuous vapor deposition method.

【符号の説明】[Explanation of symbols]

1 排気系 2 真空槽 3 巻き出しロール 4 高分子基板 5 磁性層形成用キャン 6 電子ビーム 7 電子ビーム蒸発源 8 酸素導入ノズル 9 遮蔽板 10 巻き取りロール 11 ガイドロール 12 回転方向 DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Vacuum tank 3 Unwind roll 4 Polymer substrate 5 Can for magnetic layer formation 6 Electron beam 7 Electron beam evaporation source 8 Oxygen introduction nozzle 9 Shielding plate 10 Take-up roll 11 Guide roll 12 Rotation direction

フロントページの続き (56)参考文献 特開 平5−334646(JP,A) 特開 昭53−62198(JP,A) 特開 平3−86914(JP,A) 特開 平5−159269(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/66 G11B 5/85 Continuation of front page (56) References JP-A-5-334646 (JP, A) JP-A-53-62198 (JP, A) JP-A-3-86914 (JP, A) JP-A-5-159269 (JP, A) , A) (58) Field surveyed (Int.Cl. 6 , DB name) G11B 5/66 G11B 5/85

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に直接あるいは下地層を介して順に
CoとCrまたはCoとNiとCrを主成分として含む
層、及びCoとOまたはCoとNiとOを主成分として
含む層が形成された磁気記録媒体において、前記Coと
CrまたはCoとNiとCrを主成分として含む層の1
cm2当たりの飽和磁化量が0.002emu以下である
ことを特徴とする磁気記録媒体。
1. A layer forming comprising a layer containing Co and Cr, or Co, Ni and Cr in order directly or via an underlying layer on the substrate as a main component, and Co and O or Co, Ni and O as main components In one of the layers containing Co and Cr or Co, Ni and Cr as main components,
A magnetic recording medium having a saturation magnetization per cm 2 of 0.002 emu or less.
【請求項2】CoとCrまたはCoとNiとCrを主成
分として含む層の膜厚が5nm以上であることを特徴と
する請求項1記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the thickness of the layer containing Co and Cr or Co, Ni and Cr as main components is 5 nm or more.
【請求項3】面内方向の角型比が0.6以上0.9以下
であることを特徴とする請求項1あるいは請求項2記載
の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the squareness ratio in the in-plane direction is 0.6 or more and 0.9 or less.
【請求項4】磁化容易方向が膜面内方向となす角度が
5度以上35度以下であることを特徴とする請求項1、
請求項2あるいは請求項3記載の磁気記録媒体。
4. An angle between the easy magnetization direction and the in-plane direction of the film is 1.
The angle is not less than 5 degrees and not more than 35 degrees,
The magnetic recording medium according to claim 2 or claim 3.
【請求項5】基板上に直接あるいは下地層を介して順に
CoとCrまたはCoとNiとCrを主成分として含む
層、及びCoとOまたはCoとNiとOを主成分として
含む層を真空蒸着法によって形成する磁気記録媒体の製
造方法において、前記CoとCrまたはCoとNiとC
rを主成分として含む層の1cm2当たりの飽和磁化量が
0.002emu以下で、かつ、前記CoとCrまたは
CoとNiとCrを主成分として含む層を形成するとき
の基板温度が、CoとOまたはCoとNiとOを主成分
として含む層を形成するときの基板温度以下であること
を特徴とする磁気記録媒体の製造方法。
Vacuum a layer containing 5. A layer comprising in sequence directly or via an undercoat layer on a substrate as main components Co and Cr, or Co, Ni and Cr, and Co and O or Co, Ni and O as main components In the method for manufacturing a magnetic recording medium formed by a vapor deposition method, the Co and Cr or Co, Ni and C
The layer containing r as a main component has a saturation magnetization of not more than 0.002 emu per 1 cm 2 , and the substrate temperature when forming the layer containing Co and Cr or Co, Ni and Cr as a main component is Co A method for producing a magnetic recording medium, wherein the temperature is equal to or lower than the substrate temperature when a layer containing Co and Ni and O as main components is formed.
【請求項6】基板へのCoとCrまたはCoとNiとC
rを主成分として含む層を形成するときの蒸気入射方向
の範囲が接線方向の入射を含まないことを特徴とする請
求項5記載の磁気記録媒体の製造方法。
6. Co and Cr or Co, Ni and C on a substrate.
6. The method for producing a magnetic recording medium according to claim 5, wherein the range of the vapor incident direction when forming the layer containing r as a main component does not include the tangential direction.
【請求項7】基板へのCoとOまたはCoとNiとOを
主成分として含む層を形成するときの蒸気入射方向の範
囲が垂直入射および接線方向の入射のいずれも含まない
ことを特徴とする請求項5、あるいは請求項6記載の磁
気記録媒体の製造方法。
7. A method of forming a layer containing Co and O or Co, Ni and O as main components on a substrate, wherein a range of a vapor incidence direction does not include both a normal incidence and a tangential incidence. The method for manufacturing a magnetic recording medium according to claim 5 or 6, wherein
JP14404792A 1992-06-04 1992-06-04 Magnetic recording medium and manufacturing method thereof Expired - Fee Related JP2970219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14404792A JP2970219B2 (en) 1992-06-04 1992-06-04 Magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14404792A JP2970219B2 (en) 1992-06-04 1992-06-04 Magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05342550A JPH05342550A (en) 1993-12-24
JP2970219B2 true JP2970219B2 (en) 1999-11-02

Family

ID=15353090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14404792A Expired - Fee Related JP2970219B2 (en) 1992-06-04 1992-06-04 Magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2970219B2 (en)

Also Published As

Publication number Publication date
JPH05342550A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US6713197B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
KR100256026B1 (en) Magnetic recording medium for digital recording
EP0573026B1 (en) Magnetic recording medium and method for producing the same
JP4385235B2 (en) Magnetic recording medium and magnetic recording / reproducing system
US5796533A (en) System for magnetic contact duplication
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
JPH11328645A (en) Method for reproducing magnetic recording medium
JP2988188B2 (en) Magnetic recording medium and method of manufacturing the same
EP1434198A1 (en) Magnetic recording medium
JP2004046928A (en) Magnetic recording medium
JP2977618B2 (en) Magnetic recording method
JP3044850B2 (en) Magnetic recording medium and method of manufacturing the same
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JP3009943B2 (en) Magnetic recording media for digital recording
JP2004326888A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH06150285A (en) Magnetic recording medium
JP2001143236A (en) Magnetic recording medium and its manufacturing method
JPH06139541A (en) Magnetic recording medium
JP2002092862A (en) Metal thin film type magnetic recording medium
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPH04337519A (en) Magnetic recording medium
JPS6194239A (en) Preparation of magnetic recording medium
JPH05159263A (en) Magnetic recording medium
JPH01303623A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees