JPS61117823A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS61117823A
JPS61117823A JP23860984A JP23860984A JPS61117823A JP S61117823 A JPS61117823 A JP S61117823A JP 23860984 A JP23860984 A JP 23860984A JP 23860984 A JP23860984 A JP 23860984A JP S61117823 A JPS61117823 A JP S61117823A
Authority
JP
Japan
Prior art keywords
raw material
plasma cvd
gas
cathode electrode
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23860984A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
修 中村
Mitsuo Matsumura
松村 光雄
Keitaro Fukui
福井 慶太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP23860984A priority Critical patent/JPS61117823A/en
Publication of JPS61117823A publication Critical patent/JPS61117823A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable high quality and high yield to be obtained by improving the gas utilization factor by a method wherein the raw material gas introduced into a vacuum reaction layer is passed through a cathode made of stainless mesh. CONSTITUTION:The cathode 4 is made of a porous material having fine holes, through which the raw material gas can be passed, such as stainless mesh, and an earth shield 5 of the back of the cathode 4 is provided with an opening 11. A gas exhaust port 9 is formed by installing an exhaust pipe 12 leading out of the bath to this opening 11. The raw material gas introduced into the vacuum reaction bath 1 through a raw material gas supply port 8 is exhausted out of the bath through the cathode 4. This construction allows the raw material gas introduced into the bath to necessarily pass through a plasma decomposition area, much improving the film production speed and increasing the gas utilization factor. Besides, under the condition of a sufficient amount of supplied gas, photoelectric conductivity much increases, and high-quality films can be produced.

Description

【発明の詳細な説明】 本発明は、プラズマCVD装置の改良に関するものであ
り、更に詳しくいえば、真空反応槽内に導入された原料
ガスを高周波電圧が印加されるカソード電極(下部電極
)を通って槽外へ排出するようにしたプラズマCVD装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of a plasma CVD apparatus, and more specifically, the present invention relates to improvement of a plasma CVD apparatus. The present invention relates to a plasma CVD apparatus in which the plasma is discharged through the tank and discharged to the outside of the tank.

良法Jと皮1 近年、半導体の製造工場においては、特にアモルファス
半導体、例えばアモルファスシリコン半導体等を製膜す
るのにプラズマCVD法が盛んに使用されている。
Ryoho J and Skin 1 In recent years, plasma CVD methods have been widely used in semiconductor manufacturing factories, particularly for forming films of amorphous semiconductors, such as amorphous silicon semiconductors.

従来、このプラズマCVD法は、例えば第2図及び第3
図に示すような装置によって実施されていた。第2図の
プラズマCVD装置は、真空槽1の一側に原料ガス供給
孔8を形成し、対向する側にガス排出口9を設け、シラ
ン(SiH4)、ジシラン(SizH6)等の原料ガス
は真空槽lのガス供給孔8からガス排出口9へと真空槽
内部に対向配置されたアノード電極(サンプル電極また
は上部電極)2とカソード電極(下部電極)4との間を
流動するようにして供給され、アノード電極2に取付け
られた基板3にアモルファス半導体等のサンプルを製膜
するものである。カソード電極4には高周波電源7から
適当な周波数の電圧が印加され、7メード電極2どの間
にプラズマ分解域を形成し、原料ガスを分解して基板3
にアモルファス半導体等のサンプルが製膜される。尚、
カソード電極(下部電極)4の背面部(アノード電極と
対向する面とは反対側の面)にはアースシールド5が設
けられている。
Conventionally, this plasma CVD method has been used, for example, as shown in FIGS. 2 and 3.
This was carried out using the equipment shown in the figure. In the plasma CVD apparatus shown in FIG. 2, a raw material gas supply hole 8 is formed on one side of a vacuum chamber 1, and a gas exhaust port 9 is provided on the opposite side, so that raw material gases such as silane (SiH4) and disilane (SizH6) are The gas flows from the gas supply hole 8 of the vacuum chamber 1 to the gas discharge port 9 between the anode electrode (sample electrode or upper electrode) 2 and the cathode electrode (lower electrode) 4 which are arranged opposite to each other inside the vacuum chamber. A sample such as an amorphous semiconductor is formed into a film on a substrate 3 that is supplied and attached to an anode electrode 2. A voltage of an appropriate frequency is applied to the cathode electrode 4 from a high frequency power source 7, and a plasma decomposition region is formed between the 7 made electrodes 2, decomposing the raw material gas and dissolving the substrate 3.
Samples such as amorphous semiconductors are formed into films. still,
An earth shield 5 is provided on the back surface of the cathode electrode (lower electrode) 4 (the surface opposite to the surface facing the anode electrode).

−。−.

上記構成のプラズマCVD装置では、供給孔8から導入
される原料ガスは対向電極間を通って排出口9より排出
されるが、プラズマ分解域は真空槽内部の全空間には形
成されず、アノード電極とカソード電極間の空間にのみ
形成され、原料ガスのかなりの部分がプラズマ分解域を
通らないで排出されてしまい、ガス利用率が極めて低い
という欠点がある。
In the plasma CVD apparatus with the above configuration, the raw material gas introduced from the supply hole 8 passes between the opposing electrodes and is discharged from the exhaust port 9, but the plasma decomposition region is not formed in the entire space inside the vacuum chamber, and the anode It is formed only in the space between the electrode and the cathode electrode, and a considerable portion of the raw material gas is exhausted without passing through the plasma decomposition zone, resulting in an extremely low gas utilization rate.

このため、第3図に示すプラズマCVD装置が提案され
た。該プラズマCVD装置では、カソード電極4の前面
(アンード電極と対向する面)4aを多数個の穴を有す
るステンレス製のメツシュで形成し、カソード電極4の
後面にガス供給管10を取付け、このガス供給管lOの
入口、即ちガス供給孔8から原料ガスが導入される。該
原料ガスは、カソード電極4のメツシュ4aを通過し、
該原料ガスの流動方向とは直角方向に形成されたガス排
出口9へと流れるようにし、原料ガスの大部分がプラズ
マ分解域を通るように構成されている。尚、このプラズ
マCVD装置では高周波電源7はガス供給管10に接続
され、このガス供給管10を介してカソード電極4に所
定の高周波電圧が供給される。
For this reason, a plasma CVD apparatus shown in FIG. 3 was proposed. In this plasma CVD apparatus, the front surface 4a of the cathode electrode 4 (the surface facing the anode electrode) is formed of a stainless steel mesh having a large number of holes, and a gas supply pipe 10 is attached to the rear surface of the cathode electrode 4 to supply the gas. Raw material gas is introduced from the inlet of the supply pipe IO, that is, the gas supply hole 8. The source gas passes through the mesh 4a of the cathode electrode 4,
The raw material gas is configured to flow to a gas outlet 9 formed perpendicularly to the flow direction of the raw material gas, so that most of the raw material gas passes through the plasma decomposition zone. In this plasma CVD apparatus, the high frequency power source 7 is connected to a gas supply pipe 10, and a predetermined high frequency voltage is supplied to the cathode electrode 4 via this gas supply pipe 10.

上記第3図に示す構成のプラズマCVD装置によれば、
ガス利用率は向上するが、カソード電極上にできたパウ
ダーが導入原料ガスによって巻き上げられ、基板3に製
膜されたサンプルにピンホール等を生ぜしめ、サンプル
の品質が低下し、歩留りを悪くするといった欠点があっ
た。
According to the plasma CVD apparatus having the configuration shown in FIG. 3 above,
Although the gas utilization rate is improved, the powder formed on the cathode electrode is rolled up by the introduced raw material gas, causing pinholes etc. in the sample formed on the substrate 3, which deteriorates the quality of the sample and reduces the yield. There were some drawbacks.

このように、従来、のプラズマCVD装置はガス利用率
が低いか、又はガス利用率を向上させたものは品質が低
下し、歩留りが悪いという欠点があり、従ってガス利用
率が高く、かつ高品質で歩留りの良いプラズマCVD装
置が待望されていた。
As described above, conventional plasma CVD apparatuses have the drawbacks of low gas utilization rates, or those with improved gas utilization rates have the disadvantages of poor quality and poor yields. A plasma CVD device with high quality and high yield has been long-awaited.

11立IJ それ故、本発明の目的は、高周波電圧が印加されるカソ
ード電極をステンレス製のメツシュ電極とし、真空反応
槽内に導入される原料ガスをこの方ソード電極を通過さ
せた後で槽外へ排出させ、ガス利用率を向上させるとと
もに品質及び歩留りを高くしたプラズマCVD装置を提
供することである。
Therefore, an object of the present invention is to use a mesh electrode made of stainless steel as the cathode electrode to which a high frequency voltage is applied, so that the raw material gas introduced into the vacuum reaction tank is passed through the cathode electrode and then removed from the tank. It is an object of the present invention to provide a plasma CVD apparatus which improves the gas utilization rate and improves the quality and yield.

。   占           た 上記目的は本発明によって達成される。要約すれば本発
明は、原料ガス供給孔を有する真空反応槽と、該真空反
応槽内に対向配置されたアノード電極及びカソード電極
と、該カソード電極に所定の高周波電圧を印加する高周
波電源とを具備するプラズマCVD装置において、前記
カソード電極を原料ガスが通過し得る導電性金属のメツ
シュで形成し、前記カソード電極の前記アノード電極と
は反対の側に位置したアースシールドに槽外に達するガ
ス排出口を形成し、且つ前記カソード電極と前記アース
シールドとの間に原料ガスが通過し得る多数の細孔を有
した放電防止用のシートを介在させたことを特徴とする
プラズマCVD装置である。
. The above objectives are achieved by the present invention. In summary, the present invention comprises a vacuum reaction tank having a raw material gas supply hole, an anode electrode and a cathode electrode arranged oppositely in the vacuum reaction tank, and a high frequency power source that applies a predetermined high frequency voltage to the cathode electrode. In the plasma CVD apparatus, the cathode electrode is formed of a conductive metal mesh through which the raw material gas can pass, and a ground shield located on the opposite side of the cathode electrode from the anode electrode is used to prevent gas exhaust reaching the outside of the tank. This plasma CVD apparatus is characterized in that a discharge prevention sheet is interposed between the cathode electrode and the earth shield, the sheet forming an outlet and having a large number of pores through which source gas can pass, between the cathode electrode and the earth shield.

本発明の好ましい実施態様によれば、放電防止用シート
は、ステンレスメッシュ・多数の細孔ヲ有した弗素樹脂
シート・ステンレスメッシュの3層サンドインチ構造と
される。
According to a preferred embodiment of the present invention, the discharge prevention sheet has a three-layer sandwich structure consisting of a stainless steel mesh, a fluororesin sheet having a large number of pores, and a stainless steel mesh.

以下1本発明に係るプラズマCVD装置の好ましい一実
施例について図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a plasma CVD apparatus according to the present invention will be described in detail below with reference to the drawings.

第1図に示すように、本発明く係るプラズマCVD装置
は真空反応槽1の一側に原料ガス供給孔8を有し、槽内
部には一対の対向するアノード電極2及びカソード電極
4が上部及び下部の所定位置に設置される。又、上部の
アソード電極2には基板3が取付けられ 下部のカソー
ド電極4には高周波電源7から所定の高周波電圧が供給
される本発明のプラズマCVD装置においては、カソー
ド電極4は原料ガスが通過し得るような細孔を有した多
孔部材、例えばステンレス製のメツシュにて形成し、該
カソード電極4の背面部のアースシールド5には開口1
1が形成される。この開口11には槽外に達する排気管
12を例えば溶接によって取付(すてガス排出口9を形
成せしめる。
As shown in FIG. 1, the plasma CVD apparatus according to the present invention has a raw material gas supply hole 8 on one side of a vacuum reaction tank 1, and inside the tank, a pair of opposing anode electrodes 2 and a cathode electrode 4 are arranged at the top. and installed at a predetermined position at the bottom. In the plasma CVD apparatus of the present invention, a substrate 3 is attached to the upper anode electrode 2 and a predetermined high frequency voltage is supplied from a high frequency power source 7 to the lower cathode electrode 4. The earth shield 5 on the back side of the cathode electrode 4 has an opening 1
1 is formed. An exhaust pipe 12 reaching the outside of the tank is attached to this opening 11 by, for example, welding (to form a waste gas exhaust port 9).

このように構成することにより、真空反応槽1の一側に
設けられた原料ガス供給孔8を介して該真空反応槽内へ
導入された原料ガスはカソード電極4を通って槽外へと
排出される。
With this configuration, the raw material gas introduced into the vacuum reaction tank through the raw material gas supply hole 8 provided on one side of the vacuum reaction tank 1 is discharged to the outside of the tank through the cathode electrode 4. be done.

更に、カソード電極4とアースシールド5との間に異常
放電が起ることを防止するために、カソード電極4とア
ースシールド5との間に原料ガスが通過し得る放電防止
用のシート6を配置するのが好ましい、該放電防止用の
シート6は好ましくは、ステンレス製のメツシュ・多数
の細孔を宥する弗素樹脂シー)−ステンレス製のメツシ
ュの3層サンドインチ構造とされる。カソード電極4及
びシート6のステンレス製メツシュはノくウダーを通さ
ない細孔を有し、開口径は40ルm以下とされるであろ
う0本実施例ではカソード電極4は株式会社フローウェ
ル製(ポアメット:商品名)の開口径20gmのメツシ
ュとされ、シート6は太陽金網株式会社製(MESH−
30:商品名)の開口径30gmのものを使用した。又
、弗素樹脂シートはこれに限定されるものではなく耐熱
性で且つ真空時にガスを発生しない絶縁性のあるシート
なら如何なるものも使用し得る。
Further, in order to prevent abnormal discharge from occurring between the cathode electrode 4 and the earth shield 5, a discharge prevention sheet 6 through which the raw material gas can pass is arranged between the cathode electrode 4 and the earth shield 5. The discharge prevention sheet 6 preferably has a three-layer sandwich structure consisting of a stainless steel mesh, a fluororesin sheet for accommodating a large number of pores, and a stainless steel mesh. The cathode electrode 4 and the stainless steel mesh of the sheet 6 have pores that do not allow the particles to pass through, and the opening diameter will be 40 lm or less. In this example, the cathode electrode 4 is manufactured by Flowwell Co., Ltd. (Poremet: trade name) with an opening diameter of 20 gm, and the sheet 6 is made by Taiyo Wire Mesh Co., Ltd. (MESH-
30 (trade name) with an opening diameter of 30 gm was used. Further, the fluororesin sheet is not limited to this, and any sheet can be used as long as it is heat resistant and has an insulating property that does not generate gas in a vacuum.

1凰1 7752図に示す従来の装置と第1図に示す本発明の装
置を使用して基板3にサンプルを製膜し、再装置の性能
を比較した0両装置とも電極面積は314crrr′、
電極間距離は30mm、高周波電源の周波数は13.5
6MHzであり、基板3としてテンパックスψガラスを
使用し、基板温度は270℃、作製した膜厚は0.40
−0.60.wmであった。
1 凰1 7752A sample was formed on a substrate 3 using the conventional apparatus shown in Fig. 1 and the apparatus of the present invention shown in Fig. 1, and the performance of the re-apparatus was compared.
The distance between the electrodes is 30 mm, and the frequency of the high frequency power source is 13.5.
6MHz, Tempax ψ glass was used as the substrate 3, the substrate temperature was 270°C, and the film thickness produced was 0.40°C.
-0.60. It was wm.

実施例1 原料ガスとして5iH4100%を使用し、流量110
5ec、圧力100ミリトールで一定とし、高周波電源
7からの電力を4W〜40Wと変化させた。まず、投入
電力4Wではガス分解率が低く、反応速度律速域にある
ため、第4図に示すように再装置とも製膜速度に差はな
かった。尚。
Example 1 Using 100% of 5iH4 as the raw material gas, the flow rate was 110
The pressure was kept constant at 5 ec and 100 millitorr, and the power from the high frequency power source 7 was varied from 4 W to 40 W. First, when the input power was 4 W, the gas decomposition rate was low and in the reaction rate-limiting region, so as shown in FIG. 4, there was no difference in the film forming rate with the re-apparatus. still.

第4図においてΔ点を結ぶ点線は本発明の装置の性能を
示し、0点を結ぶ実線は従来の装置の特性を示す、高周
波電力をLOW、40Wと上昇させていくと、流量制限
域になり、本発明装置の方が製膜速度が高くなった。製
膜速度と同時に光及び暗の両電気伝導度、並びに光学的
禁制帯幅を測定したところ、第4図に示す通りであった
。第4図から明瞭なように、再装置によって作製された
サンプル膜とも暗電気伝導度はぼ同じであったが、光電
気伝導度は本発明装置によるものの方が2〜3倍高い値
を示し、高品質の膜が得られることが分った。光学的漿
制帯輻はすべての膜が約1.72エレクトロンボルトで
あり、同じであった。尚、光電気伝導度はHe−Neレ
ーザ、632.8nm、O; 6mW/cゴの光源を使
用して測定した。
In Fig. 4, the dotted line connecting the Δ points shows the performance of the device of the present invention, and the solid line connecting the 0 points shows the characteristics of the conventional device.As the high frequency power is increased to LOW and 40W, it reaches the flow restriction region. Therefore, the film forming rate was higher with the apparatus of the present invention. At the same time as the film forming rate, both light and dark electrical conductivity and optical forbidden band width were measured, and the results were as shown in FIG. As is clear from Fig. 4, the dark electrical conductivity was almost the same with the sample film prepared using the re-apparatus, but the photoelectric conductivity was 2 to 3 times higher for the sample film prepared using the apparatus of the present invention. It was found that a high quality membrane could be obtained. The optical zonal radiation was the same for all membranes at approximately 1.72 electron volts. The photoelectric conductivity was measured using a He-Ne laser, 632.8 nm, O; 6 mW/c light source.

実施例2 原料ガスとして5fzH6(ジシラン)100%を使用
し、流量53CCM、圧力500ミリトールで一定とし
、投入電力40Wにて測定を行なった。他の条件は実施
例1の場合と同じである。
Example 2 100% 5fzH6 (disilane) was used as the raw material gas, the flow rate was kept constant at 53 CCM, the pressure was kept constant at 500 mTorr, and the measurement was performed at an input power of 40 W. Other conditions are the same as in Example 1.

製膜速度は従来の装置の場合が8.2人/秒であるのに
対し本発明の装置では9.2ス/秒とかなりの向上が見
られた。従って、本発明の装置はジシランガスを使用し
た場合にも有効であることが分った。又、従来の装置で
は基板上の膜厚が不均一になる傾向を示したが、本発明
の装置では膜厚が均一であった。
The film forming speed was 8.2 persons/second in the case of the conventional apparatus, whereas it was 9.2 persons/second in the apparatus of the present invention, which was a considerable improvement. Therefore, it was found that the apparatus of the present invention is effective even when disilane gas is used. Further, in the conventional device, the film thickness on the substrate tended to be non-uniform, but in the device of the present invention, the film thickness was uniform.

実施例3 原料ガスとしてS i H4: H2が1:9のガスを
使用し、総流量50SCCM、反応圧力2トールで一定
とし、投入電力40Wで測定を行なった、他の条件は上
記実施例1及び2と同じである。
Example 3 A gas with a ratio of S i H4:H2 of 1:9 was used as the raw material gas, a total flow rate of 50 SCCM, a constant reaction pressure of 2 Torr, and an input power of 40 W were used.Other conditions were the same as in Example 1 above. and 2.

この条件では反応速度律速域であり、製膜速度は最装置
とも4.0ス/秒と同じであった。しかし膜の光電気伝
導度は従来の装置によるものが3.9X10−6/Ω舎
amであったのに対し1本発明の装置によるものは 5
.0X10−6/Ω−cmとかなりの向上が見られ、供
給ガス量が充分である条件下においても本発明の装置が
有効であることが判明した。
Under these conditions, the reaction rate was in the rate-determining region, and the film forming rate was the same at 4.0 s/sec for both devices. However, the photoelectric conductivity of the film was 3.9×10-6/Ω am when using the conventional device, whereas it was 5 when using the device of the present invention.
.. A considerable improvement of 0x10-6/Ω-cm was observed, indicating that the apparatus of the present invention is effective even under conditions where the amount of gas supplied is sufficient.

11立羞J 上述のように、本発明においては、カソード電極4をス
テンレスのメツシュ電極とし、カソード電極4の背面部
のアースシールド5に開口を形成して槽外に達する排出
口を形成し、槽内に導入された原料ガスをカソード電極
4を通過させて槽外へ排出するように構成したため、槽
内に導入された原料ガスは必然的にプラズマ分解域を通
過することになり、上記実施例1及び2に明示されてい
るように製膜速度が一段と向上し、ガス利用率がかなり
高くなる。
11 Standing J As mentioned above, in the present invention, the cathode electrode 4 is a mesh electrode made of stainless steel, and an opening is formed in the earth shield 5 on the back side of the cathode electrode 4 to form a discharge port reaching the outside of the tank. Since the raw material gas introduced into the tank is configured to pass through the cathode electrode 4 and discharged to the outside of the tank, the raw material gas introduced into the tank will inevitably pass through the plasma decomposition zone, and the above implementation As demonstrated in Examples 1 and 2, the deposition rate is further increased and the gas utilization rate is significantly higher.

又、実施例3の場合のように供給ガス量が充分な条件下
においては成膜速度は同じであるが、光電気伝導度が一
段と大きくなり、従来の装置では得られない高品質の膜
が作製される。
In addition, under conditions where the amount of gas supplied is sufficient as in Example 3, the film formation rate is the same, but the photoelectric conductivity becomes even higher, resulting in a high quality film that cannot be obtained with conventional equipment. will be produced.

光電気伝導度に関しては他の実施例においても向上して
おり、本発明の装置の性能が非常にすぐれていることが
分る。従って、歩留りがよくなり、効率よく高品質の多
結晶や等アモルファス半導体等のサンプル膜が製膜でき
る顕著な利点がある更に、カソード電極の背面部のアー
スシールドに排気口を形成したことによるカソード電極
とアースシールド間の異常放電の可能性はステンレスメ
ッシュ・多数の細孔を有する弗素樹脂シート・ステンレ
スメッシュの3暦すンドインチ構造のシート6により筒
単に防止できるので、装置全体の構造が複雑になること
はなく、コスト及び製造の両面においても同等問題jよ
生じない。
The photoelectric conductivity was improved in other examples as well, and it can be seen that the performance of the device of the present invention is very excellent. Therefore, there is a remarkable advantage that the yield is improved and that sample films of high quality polycrystalline and equiamorphous semiconductors can be efficiently formed. The possibility of abnormal discharge between the electrode and the earth shield can be easily prevented by using the stainless steel mesh, the fluororesin sheet with many pores, and the stainless steel mesh sheet 6, which has a 3-inch structure, so the overall structure of the device is not complicated. There is no equivalent problem in both cost and manufacturing.

上記実施例は本発明の単なる例示にすぎず、必要に応じ
て種々の変形及び変更がなし得ることはいうまでもない
0例えばカソード電極は全体をステンレス性のメツシュ
で構成しても或はステンレス以外の他の導電性金属のメ
ツシュでもよく、また放電防止用のシートは放電を防止
し且つ原料ガスを通過し得るものであれば実施例の構造
に限定されない。
The above embodiments are merely illustrative of the present invention, and it goes without saying that various modifications and changes can be made as necessary.For example, the cathode electrode may be entirely made of stainless steel mesh or may be made of stainless steel. A mesh made of other conductive metals may also be used, and the discharge prevention sheet is not limited to the structure of the embodiment as long as it can prevent discharge and allow raw material gas to pass through.

又、原料ガスとしてシラン100%、ジシラン100%
及びシラン対水素が1:9のガスを使用した例を示した
が、プラズマCVD法によって基板に製膜される他の原
料ガスに対しても本発明の装置が使用でき、同様の作用
効果が得られることはいうまでもない。
In addition, 100% silane and 100% disilane are used as raw material gas.
Although an example is shown in which a gas with a ratio of silane to hydrogen of 1:9 is used, the apparatus of the present invention can also be used with other raw material gases for forming a film on a substrate by the plasma CVD method, and similar effects can be obtained. Needless to say, you can get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明によるプラズマCVD装置の一実施例
を示す概略構成図である。 第2図及び第3図は、従来のプラズマCVD装置をそれ
ぞれ例示する概略構成図である。 第4図は本発明による装置と第2図に示す従来の装置の
性能を比較する特性図である。 l:真空反応槽 2ニアソード電極 3:基板 4:カソード電極 5:アースシールド 6:放電防止用シート 7:高周波電源 8:原料ガス供給孔 9:ガス排出口
FIG. 1 is a schematic diagram showing an embodiment of a plasma CVD apparatus according to the present invention. FIGS. 2 and 3 are schematic configuration diagrams illustrating conventional plasma CVD apparatuses, respectively. FIG. 4 is a characteristic diagram comparing the performance of the device according to the present invention and the conventional device shown in FIG. l: Vacuum reaction tank 2 Near-sode electrode 3: Substrate 4: Cathode electrode 5: Earth shield 6: Discharge prevention sheet 7: High-frequency power supply 8: Raw material gas supply hole 9: Gas discharge port

Claims (6)

【特許請求の範囲】[Claims] (1)原料ガス供給孔を有する真空反応槽と、該真空反
応槽内に対向配置されたアノード電極及びカソード電極
と、該カソード電極に所定の高周波電圧を印加する高周
波電源とを具備するプラズマCVD装置において、前記
カソード電極を原料ガスが通過し得る導電性金属のメッ
シュで形成し、前記カソード電極の前記アノード電極と
は反対の側に位置したアースシールドに槽外に達するガ
ス排出口を形成し、且つ前記カソード電極と前記アース
シールドとの間に原料ガスが通過し得る多数の細孔を有
した放電防止用のシートを介在させたことを特徴とする
プラズマCVD装置。
(1) Plasma CVD comprising a vacuum reaction tank having a raw material gas supply hole, an anode electrode and a cathode electrode arranged oppositely in the vacuum reaction tank, and a high frequency power source that applies a predetermined high frequency voltage to the cathode electrode. In the apparatus, the cathode electrode is formed of a conductive metal mesh through which the raw material gas can pass, and a gas discharge port reaching the outside of the tank is formed in the earth shield located on the opposite side of the cathode electrode from the anode electrode. A plasma CVD apparatus characterized in that a discharge prevention sheet having a large number of pores through which source gas can pass is interposed between the cathode electrode and the earth shield.
(2)カソード電極のメッシュは開口径40μm以下の
ステンレス製メッシュである特許請求の範囲第1項記載
のプラズマCVD装置。
(2) The plasma CVD apparatus according to claim 1, wherein the mesh of the cathode electrode is a stainless steel mesh with an opening diameter of 40 μm or less.
(3)放電防止用シートは、ステンレスメッシュ・多数
の細孔を有した弗素樹脂シート・ステンレスメッシュの
3層サンドイッチ構造である特許請求の範囲第1項又は
第2項記載のプラズマCVD装置。
(3) The plasma CVD apparatus according to claim 1 or 2, wherein the discharge prevention sheet has a three-layer sandwich structure of a stainless steel mesh, a fluororesin sheet having many pores, and a stainless steel mesh.
(4)原料ガスはシラン(SiH_4)である特許請求
の範囲第1項記載のプラズマCVD装置。
(4) The plasma CVD apparatus according to claim 1, wherein the source gas is silane (SiH_4).
(5)原料ガスはジシラン(Si_2H_6)である特
許請求の範囲第1項記載のプラズマCVD装置。
(5) The plasma CVD apparatus according to claim 1, wherein the source gas is disilane (Si_2H_6).
(6)原料ガスはシラン(SiH_4)1:水素(H_
2)9の混合ガスである特許請求の範囲第1項記載のプ
ラズマCVD装置。
(6) Raw material gas is silane (SiH_4) 1: hydrogen (H_
2) The plasma CVD apparatus according to claim 1, wherein the mixed gas is 9.
JP23860984A 1984-11-14 1984-11-14 Plasma cvd apparatus Pending JPS61117823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23860984A JPS61117823A (en) 1984-11-14 1984-11-14 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23860984A JPS61117823A (en) 1984-11-14 1984-11-14 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS61117823A true JPS61117823A (en) 1986-06-05

Family

ID=17032716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23860984A Pending JPS61117823A (en) 1984-11-14 1984-11-14 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS61117823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035227A (en) * 2009-08-04 2011-02-17 Fuji Electric Holdings Co Ltd Plasma processing apparatus and plasma processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035227A (en) * 2009-08-04 2011-02-17 Fuji Electric Holdings Co Ltd Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
US4634601A (en) Method for production of semiconductor by glow discharge decomposition of silane
US4642243A (en) Method and apparatus for forming non-single-crystal layer
US4438188A (en) Method for producing photosensitive film for electrophotography
JP5101029B2 (en) Photoelectric conversion element manufacturing apparatus and photoelectric conversion element manufacturing method
EP0117980B1 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
JP3249356B2 (en) Plasma chemical vapor deposition equipment
JP2001332749A (en) Method for forming semiconductor thin film and amorphous silicon solar cell element
JP2001214277A (en) Deposited film deposition system and deposited film deposition method
JPS61117823A (en) Plasma cvd apparatus
JP3310875B2 (en) Plasma CVD equipment
JP3426788B2 (en) Plasma CVD equipment
JPS6293924A (en) Plasma cvd device
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JPH0568097B2 (en)
JPS6151629B2 (en)
JP2798225B2 (en) High frequency plasma CVD equipment
JP2630089B2 (en) Microwave plasma processing equipment
JPS59219927A (en) Plasma cvd device
JPS6037119A (en) Plasma vapor phase reaction device
JPH0250969A (en) Thin film forming device
JPH08330235A (en) Plasma cvd apparatus
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPS61216318A (en) Photo chemical vapor deposition device
Wadayama et al. In situ infrared and mass spectroscopic study of the reaction of WF6 with hydrogenated amorphous silicon
JPS57153436A (en) Semiconductor device