JPH0568097B2 - - Google Patents

Info

Publication number
JPH0568097B2
JPH0568097B2 JP58145264A JP14526483A JPH0568097B2 JP H0568097 B2 JPH0568097 B2 JP H0568097B2 JP 58145264 A JP58145264 A JP 58145264A JP 14526483 A JP14526483 A JP 14526483A JP H0568097 B2 JPH0568097 B2 JP H0568097B2
Authority
JP
Japan
Prior art keywords
electrode
film
plasma
present
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58145264A
Other languages
Japanese (ja)
Other versions
JPS6037118A (en
Inventor
Shunpei Yamazaki
Katsuhiko Shibata
Akira Mase
Kazuo Urata
Hisato Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58145264A priority Critical patent/JPS6037118A/en
Publication of JPS6037118A publication Critical patent/JPS6037118A/en
Publication of JPH0568097B2 publication Critical patent/JPH0568097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、プラズマ気相反応方法(以下単に
PCVD法という)に関する。
[Detailed Description of the Invention] This invention relates to a plasma gas phase reaction method (hereinafter simply referred to as
(referred to as PCVD method).

この発明はPCVD法であつて、平行平板型の電
極方式を用い、この電極に凹状の開孔又は開溝を
設けたものである。
The present invention is a PCVD method, which uses a parallel plate type electrode system and has concave holes or grooves in the electrodes.

さらに、被形成面を有する基板を陽光柱領域に
配設し、多量に被膜形成を行う方法に関する。
Furthermore, the present invention relates to a method of arranging a substrate having a surface to be formed in a positive column region and forming a large amount of film.

従来、平行平板型のPCVD法は、その被形成面
を陰極(カソード)または陽極(アノード)上ま
たはこれらの電極のごく近傍に発生する陰極暗部
または陽極暗部に配設する方式であるとして知ら
れている。
Conventionally, the parallel plate type PCVD method is known as a method in which the surface to be formed is placed on the cathode or anode, or in the dark area of the cathode or dark area of the anode that occurs in the close vicinity of these electrodes. ing.

かかる従来より公知の方式においては、電極面
積の大きさよりも被形成面の面積を大きく有せし
めることができない。このため、大面積の基板上
に半導体、絶縁体または導体被膜を作製すること
ができるという特長を有しながらも、電極面積の
5〜30倍もの被形成面を有せしめることができな
い。即ち、多量生産ができないという欠点を有し
ていた。
In such conventionally known methods, the area of the surface to be formed cannot be made larger than the area of the electrode. For this reason, although it has the advantage of being able to produce a semiconductor, insulator, or conductor film on a large-area substrate, it is not possible to provide a surface that is 5 to 30 times larger than the electrode area. That is, it has the disadvantage that it cannot be mass produced.

このため、アモルフアス・シリコンを含む非単
結晶半導体を作製せんとする時、その基板1cm2
たりの製造価格が1円以上と高価となり、太陽電
池等の単価が安価な製品作製に応用することがで
きないという大きな欠点を有する。
For this reason, when trying to fabricate a non-single-crystal semiconductor containing amorphous silicon, the manufacturing cost per cm 2 of substrate is expensive, at more than 1 yen, making it difficult to apply it to the fabrication of inexpensive products such as solar cells. The major drawback is that it cannot be done.

加えて、被膜形成速度も1〜2Å/秒と十分と
はいえず、これらの点より多量生産性を有し、か
つ被膜成長速度が3〜10Å/秒と大きいPCVD法
が求められていた。
In addition, the film formation rate is 1 to 2 Å/sec, which cannot be said to be sufficient, and from these points, there has been a demand for a PCVD method that is capable of mass productivity and has a high film growth rate of 3 to 10 Å/sec.

本発明はかかる目的を成就するためになされた
ものである。
The present invention has been made to achieve this object.

即ち、本発明方法はプラズマ・グロー放電の陽
光柱を用いたものである。本発明は、陽光柱領域
に被形成面を有する基板を平行に互いに離間して
配設したものであり、かかる陽光柱を用いた
PCVD法に関しては、本発明人の出願になる特許
願57−163279、57−163730(プラズマ気相反応装
置)(昭和57年9月20日出願)に記されている。
That is, the method of the present invention uses a positive column of plasma glow discharge. The present invention is one in which substrates having formation surfaces in a positive column region are arranged in parallel and spaced apart from each other, and using such a positive column.
The PCVD method is described in patent applications 57-163279 and 57-163730 (plasma gas phase reactor) (filed on September 20, 1988) filed by the present inventor.

本発明はかかる陽光柱にて反応をせしめ、多量
生産を行うものである。しかし陽光柱は一般に大
きく空間が広がるため、被形成面近傍でのプラズ
マ密度が減少し、結果として暗部を用いる方式と
同じ程度の被膜成長速度しか得られないという他
の欠点を有する。
The present invention allows the reaction to take place in such a positive light column, thereby achieving mass production. However, since the positive column generally has a large space, the plasma density near the surface to be formed decreases, and as a result, the method has another drawback in that the film growth rate is only about the same as that of a method using a dark region.

かかる欠点を除去して、陽光柱を収束(しまら
せる)せしめ、即ち、放電プラズマのひろがりを
押さえ、さらに中央部でのプラズマ密度を増加さ
せ、活性反応性気体を増加し、ひいては被膜成長
速度を2〜3倍にまで大きくすることを特長とし
ている。
By removing such defects, the positive column can be converged, that is, the spread of the discharge plasma can be suppressed, and the plasma density in the center can be increased, the active reactive gas can be increased, and the film growth rate can be improved. It is characterized by increasing the size by 2 to 3 times.

第1図は従来方法での平行平板型の電極2,3
およびその電気力線5、またこの電気力線に直行
する等電位面15を示している。そしてこれらの
電極は減圧下の反応容器4内に配設されており、
この電極の一方から7より供給された反応性気体
6が放出され、他方の基板1の被形成面上に被膜
形成される。
Figure 1 shows parallel plate type electrodes 2 and 3 in the conventional method.
, the lines of electric force 5, and the equipotential surface 15 that is perpendicular to the lines of electric force. These electrodes are placed in a reaction vessel 4 under reduced pressure,
The reactive gas 6 supplied from the electrode 7 is released from one of the electrodes, and a film is formed on the surface of the other substrate 1 to be formed.

第1図Aにおいて、電極2,3間には高周波電
源10より13.56MHzが加えられる。不要反応生
成物は排気系8にてバルブ11、圧力調整バル
ブ、12真空ポンプ、13より外部に排気され
る。
In FIG. 1A, 13.56 MHz is applied between electrodes 2 and 3 from a high frequency power source 10. Unnecessary reaction products are exhausted to the outside through a valve 11, a pressure adjustment valve, a vacuum pump 12, and a vacuum pump 13 in an exhaust system 8.

かかる従来の方法においては、電気力線5は被
形成面に垂直に加わるため、被形成面をスパツタ
(損傷)してしまうという他の欠点を有する。
This conventional method has another drawback in that the electric lines of force 5 are applied perpendicularly to the surface to be formed, causing spatter (damage) to the surface to be formed.

第1図Bは第1図Aの電極の一方2に対し針状
電極9を互いに離間して配設したものである。こ
こでは電極2(50cm×50cm)、電極2,3の間隔
4cm、針状電極長さ1cm、間隔5cmとした。かか
る針状電極を第1図Aの装置に配設した時も、電
気力線は針状電極より分散し、ひろがる方向に供
給され、基板1に垂直に加えられる。等電位面1
5は電気力線と直行して設けられるにすぎない。
このため、針状電極はそれなりに第1図Aに装置
に配設した場合でも放電開始を容易にする等の特
長を有しながらも、被膜の膜質、被膜成長速度を
向上させるものではなかつた。
FIG. 1B shows an arrangement in which needle-shaped electrodes 9 are arranged spaced apart from one another of the electrodes 2 in FIG. 1A. Here, the electrode 2 (50 cm x 50 cm), the interval between electrodes 2 and 3 was 4 cm, the length of the needle electrode was 1 cm, and the interval was 5 cm. When such a needle-shaped electrode is arranged in the apparatus shown in FIG. Equipotential surface 1
5 is simply provided perpendicular to the lines of electric force.
For this reason, although the needle electrode has certain features such as facilitating discharge initiation when arranged in the apparatus shown in Figure 1A, it does not improve the quality of the film or the growth rate of the film. .

第2図は本発明のPCVD法における電極および
その概要を示したものである。この反応炉の他部
は前記した本発明人の特許願に準じる。
FIG. 2 shows an electrode and its outline in the PCVD method of the present invention. The other parts of this reactor are based on the patent application of the present inventor mentioned above.

図面において、この一対の網状電極2,3およ
び被形成面を有する基板1,1′を有する。反応
性気体の供給は23より石英フード21に至り、
電極2を通つて陽光柱領域25に至る。陽光柱領
域には裏面を互いに密接して電気力線5に平行に
基板1,1′を配設せしめてある。またこの基板
を石英カゴで取り囲む形状を有せしめてある。反
応生成物の排気は下側フード22を経て排気24
させる。一対を成す電極2,3には外部より高周
波エネルギが供給され、平等電界が形成される領
域20に放電がされる。
In the drawing, a pair of mesh electrodes 2 and 3 and substrates 1 and 1' having surfaces on which they are formed are shown. The reactive gas is supplied from 23 to the quartz hood 21,
It passes through the electrode 2 and reaches the positive column region 25. In the positive column area, substrates 1 and 1' are disposed parallel to the electric lines of force 5 with their back surfaces in close contact with each other. Further, this substrate is surrounded by a quartz cage. The reaction product is exhausted through the lower hood 22 and into the exhaust 24.
let High frequency energy is supplied from the outside to the pair of electrodes 2 and 3, and a discharge is generated in a region 20 where an equal electric field is formed.

この図面では電極面積は25cmφ(電極間隔15cm)
または70cm×70cm(電極間隔35cm)の形状を有せ
しめ、さらにこの電極に開孔または開溝14を形
成することにより、本発明の平等電界領域での第
1のグロー放電と開孔または開溝14に高輝度の
第2のグロー放電とを同時に発生せしめた。
In this drawing, the electrode area is 25cmφ (electrode spacing 15cm)
Alternatively, by forming the electrode in a shape of 70 cm x 70 cm (electrode spacing 35 cm) and further forming an opening or an opening 14 in the electrode, the first glow discharge and the opening or opening in the uniform electric field region of the present invention can be achieved. 14 and a high-intensity second glow discharge were simultaneously generated.

この図面より明らかなごとく、下側電極3は例
えば単に開孔または開溝(0.5〜3cm例えば約1
cmφまたは約1cm巾)で作つたにすぎない。また
他の例では上側電極のごとく、この開孔または開
溝を陽光柱とは逆方向に曲面16を設け、凹状態
をしている。
As is clear from this drawing, the lower electrode 3 is, for example, simply a hole or groove (0.5 to 3 cm, e.g.
cmφ or approximately 1 cm width). In other examples, as in the case of the upper electrode, this opening or groove is provided with a curved surface 16 in the direction opposite to the positive column, and is in a concave state.

第1図Bに示すごとく針状即ち放電面に凸状態
ではなく、逆にこれらを反応空間に対して図面に
示す如くなめらかな曲面を有して凹状にすること
により、電気力線5が領域17,18において収
束し、高密度電束領域が一方の電極より他方の電
極に向かつて繊維状に延在して発生することがわ
かる。すなわち従来の凸状(針状)の電界集中領
域を生ぜしめると、その端部(コーナ部)に極端
な電界集中箇所ができる。そのためこの凸部で反
応性気体が反応し「つらら」の如き反応生成物が
できてしまう。そしてこの「つらら」の如き固体
はある大きさとなると離れ被形成面上に付着し、
均一な膜厚の被膜を作るために大きな障害とな
る。
As shown in FIG. 1B, the lines of electric force 5 are not shaped like needles, that is, convex on the discharge surface, but are concave with a smooth curved surface relative to the reaction space, as shown in the drawing, so that the lines of electric force 5 are 17 and 18, and it can be seen that a high-density electric flux region is generated extending like a fiber from one electrode toward the other electrode. That is, when the conventional convex (acicular) electric field concentration region is produced, extreme electric field concentration points are created at the ends (corners). Therefore, the reactive gas reacts at this convex portion, resulting in the formation of reaction products such as "icicles." When these solid objects like icicles reach a certain size, they separate and adhere to the surface on which they are formed.
This is a major obstacle to creating a film with uniform thickness.

他方本発明は第2図の上側電極に示す如く、反
応空間に対し凹状の開孔または開溝を設けた。す
るとその部分の電界は集中させつつも、極端な電
界集中箇所が反応空間側にない。(この構造では
コーナ部は電極内部になり、実質的に除去でき
る)このため、ここから反応性気体を反応空間に
放出した時、この開孔または開溝での反応性気体
が反応し、反応生成物が「つらら」のように発生
することがない。
On the other hand, in the present invention, as shown in the upper electrode of FIG. 2, a concave hole or groove is provided in the reaction space. Then, although the electric field in that area is concentrated, there is no place on the reaction space side where the electric field is extremely concentrated. (With this structure, the corner part becomes inside the electrode and can be virtually removed.) Therefore, when reactive gas is released from here into the reaction space, the reactive gas in this opening or groove reacts, and the reaction occurs. Products do not form like ``icicles''.

即ち反応性気体を活性化させるが、反応は反応
空間で行なわしめ得る。膜厚として、被膜成長速
度を従来の第1図Aに示す如く平行平板方式に比
べて2〜3倍も高め得る。また本発明の電極構造
を陽光柱方式の電極に配置することにより1バツ
チ当たりの成膜面積を著しく大きくできる。かく
のごとくにすることにより、従来より知られた平
等電界により発生する第1のプラズマ放電27,
28に加えて、高密度電束の発生により、高輝度
の第2のプラズマ領域17,18を同時に発生さ
せることができた。
That is, the reactive gas is activated, but the reaction can take place in the reaction space. In terms of film thickness, the film growth rate can be increased by two to three times compared to the conventional parallel plate method as shown in FIG. 1A. Further, by arranging the electrode structure of the present invention in a positive column type electrode, the area of film formation per batch can be significantly increased. By doing this, the first plasma discharge 27, which is generated by the conventionally known uniform electric field,
28, high-intensity second plasma regions 17 and 18 could be generated simultaneously by generating high-density electric flux.

その結果、従来、陽光柱25では横方向への広
がりが大きく、プラズマが分散していたのが、電
極中央部20内に集まる35傾向を有せしめるこ
とができた。
As a result, the plasma, which had conventionally spread widely in the lateral direction and dispersed in the positive column 25, now has a tendency to gather within the electrode central portion 20.

さらにこの高輝度プラズマ放電を行わしめるこ
とにより、被膜成長速度を2〜3倍にすることが
できた。
Furthermore, by performing this high-intensity plasma discharge, the film growth rate could be doubled or tripled.

例えば100%シランを用いて、0.1torr、30W
(13.56MHz)、電極面を25cmφとし、電極間隔15
cmとした時、基板10cm、6枚を配設(延べ面積
600cm2)した場合、開孔または開溝14を有しな
い場合には、被膜成長速度1〜2Å/秒であつた
のが、この開孔または開溝14を各電極に数ケ所
設けるのみで4〜6Å/秒と2〜3倍に増加させ
ることが可能になつた。
For example, using 100% silane, 0.1torr, 30W
(13.56MHz), electrode surface is 25cmφ, electrode spacing is 15
cm, 6 boards of 10cm are arranged (total area
600 cm 2 ), the film growth rate was 1 to 2 Å/sec when there were no holes or grooves 14, but by providing only a few holes or grooves 14 on each electrode, the film growth rate was 1 to 2 Å/sec. It became possible to increase the speed by 2 to 3 times to ~6 Å/sec.

このことは第1図の従来の方式に比べて、5〜
20倍も基板の配設量を大きくすることができるに
加えて、被膜形成速度を2〜3倍も高めることが
でき、2重に優れたものであることがわかる。
This means that compared to the conventional method shown in Figure 1,
It can be seen that in addition to being able to increase the amount of substrate disposed 20 times, the film formation rate can also be increased by 2 to 3 times, making it doubly superior.

さらに加えて、陽光柱が収束することの結果、
この陽光柱が反応炉の内壁をスパツタし、この内
壁に吸着している水、付着物の不純物を活性化し
て被膜内に取り込み、その膜質を劣化させる可能
性をさらに少なくすることができるという点を考
慮すると、三重にすぐれたものであることが判明
した。
In addition, as a result of the convergence of the positive column,
This positive light column spatters the inner wall of the reactor, activating the water adsorbed on the inner wall and impurities attached to it and incorporating it into the film, further reducing the possibility of deteriorating the film quality. Considering this, it turned out to be Mie's superior product.

以下にさらに実施例を加えて本発明を補完する 実施例 1 第2図を用いたPCVD法において、下側の電極
3に反応空間に対してなめらかな曲面を有して凹
状の反応性気体を供給するための高輝度プラズマ
放電領域を3箇所、上側に4箇所を設けたもので
ある。基板1は石英ホルダ内に配設され、この治
具が3〜5回/分で回転している。反応性気体と
してシランにより非単結晶珪素を作製した。即
ち、基板温度210℃、圧力0.1torr、シラン30c.c./
分、放電出力30Wとし、5000Åの厚さを有せしめ
るのに20分、被膜成長速度は4.1Å/秒を有して
いる。
Example 1 to supplement the present invention by adding further examples below: In the PCVD method using FIG. Three high-intensity plasma discharge regions are provided for supplying high-intensity plasma, and four regions are provided on the upper side. The substrate 1 is placed in a quartz holder, and this jig is rotated at a rate of 3 to 5 times per minute. Non-single crystal silicon was prepared using silane as a reactive gas. That is, substrate temperature 210℃, pressure 0.1torr, silane 30c.c./
The discharge power was 30 W, and the film growth rate was 4.1 Å/sec for 20 minutes to reach a thickness of 5000 Å.

さらに、基板の配設されている石英ホルダの外
側空間には何等放電が見られず、反応容器のステ
ンレス壁面をスパツタして水等の不純物を混入さ
せる可能性が少ないことがわかる。
Further, no discharge was observed in the outer space of the quartz holder where the substrate was placed, indicating that there is little possibility of spatter on the stainless steel wall of the reaction vessel and contamination of impurities such as water.

基板に10cm×10cmが8枚配設され、反応性気体
の収率(被膜となる成分/供給される気体等)も
第1図Aに示すごとき形状に加えて8倍近くにな
つた。さらに第2図において開孔または開溝14
を設けない場合に比べて2倍に高めることができ
た。
Eight 10 cm x 10 cm substrates were arranged, and the yield of reactive gas (components forming the film/supplied gas, etc.) was nearly eight times that of the shape shown in Figure 1A. Furthermore, in FIG.
We were able to double the amount compared to the case without it.

実施例 2 この実施例はメタン(CH4)とシラン(SiH4
とを1:1の割合で混入し、SixC1-x(0<x<
1)の被膜を作製したものである。
Example 2 This example uses methane (CH 4 ) and silane (SiH 4 ).
and Si x C 1-x (0<x<
1) was prepared.

図面に高輝度プラズマ放電が開溝部に観察され
た。そしてかかる局部放電がない場合に比べて、
炭化珪素とするSi−C結合が多量にあり、化学的
エツチングが起こつても、固い緻密な膜となつて
いた。その他は実施例1と同様である。
In the drawing, a high-intensity plasma discharge was observed in the open groove. And compared to the case where there is no such local discharge,
There are a lot of Si-C bonds that make up silicon carbide, and even when chemical etching occurs, it remains a hard and dense film. The rest is the same as in Example 1.

以上のごとく、本発明は第2図に示されるごと
く、電極に開孔または開溝を設け、この領域で電
気力線を収束せしめ、高輝度放電を発生せしめた
ものである。かかる方式は第1図のごとく、平行
平板電極上に基板を配設した場合、この基板の一
部に高い電束反応領域を有せしめてもよい。しか
し、高輝度放電によるスパツタ効果を考慮する
時、この放電に被形成面を配設し、そのスパツタ
(損傷)を少なくすることは膜質の向上に有効で
あり、結果として本発明方法は陽光柱に基板を電
気力線に平行に配設するPCVD法に特に有効であ
ることがわかつた。
As described above, in the present invention, as shown in FIG. 2, holes or grooves are provided in the electrode, lines of electric force are converged in these regions, and a high-intensity discharge is generated. In this method, as shown in FIG. 1, when a substrate is disposed on parallel plate electrodes, a part of the substrate may have a high electric flux reaction region. However, when considering the spatter effect caused by high-intensity discharge, it is effective to reduce the spatter (damage) by arranging the formation surface in this discharge and to reduce the spatter (damage).As a result, the method of the present invention It was found that this method is particularly effective for the PCVD method, in which the substrate is placed parallel to the lines of electric force.

また本発明の実施例は非単結晶Si、またはSix
C1-xである。しかしシランとゲルマンを用いて
SixGe1-x(0<x<1)シランと塩化スズとを用
いてSixSn1-x(0<x<1)シランであつても有
効である。また、AlをAlCl3により、またSi3N4
をSiH4とNH3とにより、SiO2をSiH4とN2Oとに
より形成する場合等の絶縁膜をPCVD法で作製す
る場合にも本発明は有効である。
Further, the embodiments of the present invention are non-single crystal Si or Si x
C 1-x . However, using silane and germane
Even if SixGe 1-x (0<x<1) silane and tin chloride are used, Si x Sn 1-x (0<x<1) silane is also effective. Also, Al can be replaced by AlCl 3 and Si 3 N 4
The present invention is also effective when an insulating film is formed by the PCVD method, such as when SiO 2 is formed from SiH 4 and NH 3 and SiO 2 is formed from SiH 4 and N 2 O.

また、本発明方法によつて得られる半導体膜中
に水素またはハロゲン元素に加えてBまたはPを
添加してP型またはN型とすることも可能であ
る。
It is also possible to add B or P in addition to hydrogen or a halogen element to the semiconductor film obtained by the method of the present invention to make it P-type or N-type.

加えて、本発明方法に併用して、400nm以下
の紫外光または8μm以下の赤外光を照射したプ
ラズマ気相法としても本発明方法は有効である。
In addition, the method of the present invention is also effective as a plasma vapor phase method in which ultraviolet light of 400 nm or less or infrared light of 8 μm or less is irradiated in combination with the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマ気相反応装置を示す。
第2図は本発明方法のプラズマ気相反応装置の電
極基板近傍の概要である。
FIG. 1 shows a conventional plasma vapor phase reactor.
FIG. 2 is an outline of the vicinity of the electrode substrate of the plasma vapor phase reactor according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極を互いに離間して配設する平行平
板型プラズマ・グロー放電を用いて被形成面上に
被膜を形成する気相反応方法において、反応空間
と逆方向に曲面を設けた開孔又は開溝を形成した
平板状電極を用いて、前記開孔又は開溝により反
応空間に電界を集中させつつプラズマ気相反応せ
しめることを特徴とするプラズマ気相反応方法。
1 In a gas phase reaction method in which a film is formed on a surface to be formed using a parallel plate type plasma glow discharge in which a pair of electrodes are arranged spaced apart from each other, an opening or A plasma vapor phase reaction method characterized in that a plasma vapor phase reaction is carried out using a flat plate electrode with an opening groove formed therein, while concentrating an electric field in a reaction space through the opening or groove.
JP58145264A 1983-08-08 1983-08-08 Plasma vapor phase reaction method Granted JPS6037118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145264A JPS6037118A (en) 1983-08-08 1983-08-08 Plasma vapor phase reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145264A JPS6037118A (en) 1983-08-08 1983-08-08 Plasma vapor phase reaction method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5134140A Division JP2564753B2 (en) 1993-05-13 1993-05-13 Plasma gas phase reaction method
JP6284147A Division JP2816943B2 (en) 1994-10-25 1994-10-25 Plasma gas phase reaction method

Publications (2)

Publication Number Publication Date
JPS6037118A JPS6037118A (en) 1985-02-26
JPH0568097B2 true JPH0568097B2 (en) 1993-09-28

Family

ID=15381105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145264A Granted JPS6037118A (en) 1983-08-08 1983-08-08 Plasma vapor phase reaction method

Country Status (1)

Country Link
JP (1) JPS6037118A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037119A (en) * 1983-08-08 1985-02-26 Semiconductor Energy Lab Co Ltd Plasma vapor phase reaction device
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
JP2523070B2 (en) * 1991-11-22 1996-08-07 株式会社半導体エネルギー研究所 Plasma processing device
JP2564753B2 (en) * 1993-05-13 1996-12-18 株式会社 半導体エネルギー研究所 Plasma gas phase reaction method
KR20110021654A (en) 2009-08-25 2011-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491048A (en) * 1977-12-05 1979-07-19 Plasma Physics Corp Method of and device for accumulating thin films
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491048A (en) * 1977-12-05 1979-07-19 Plasma Physics Corp Method of and device for accumulating thin films
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor

Also Published As

Publication number Publication date
JPS6037118A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JPH0568097B2 (en)
JP4496401B2 (en) Plasma CVD apparatus and method for manufacturing solar cell
JP2564748B2 (en) Plasma vapor phase reaction apparatus and plasma vapor phase reaction method
JPS6331110A (en) Manufacture of semiconductor device
JP2564753B2 (en) Plasma gas phase reaction method
JP2989055B2 (en) Solar cell manufacturing method
JP2540684B2 (en) Method for manufacturing semiconductor film containing silicon as main component
JPH07193017A (en) Plasma chemical vapor deposition method
JP3274099B2 (en) Solar cell manufacturing method
JP2802747B2 (en) Plasma processing method
JPS6039822A (en) Thin film forming device
JP2649331B2 (en) Plasma processing method
JPH0578933B2 (en)
JPH0244141B2 (en)
JPS58143589A (en) Silicon base semiconductor
JPS62283899A (en) Production of inp single crystal thin film
JPH07147252A (en) Device and method for plasma vapor reaction
JPS61115354A (en) Amorphous semiconductor solar cell
JP2739336B2 (en) Thin film formation method
JP2649330B2 (en) Plasma processing method
JPS62205618A (en) Plasma cvd unit
JPH05343713A (en) Manufacture of amorphous solar cell
JPH0586645B2 (en)
JPS6050974A (en) Manufacture of amorphous solar battery