JP2564753B2 - Plasma gas phase reaction method - Google Patents

Plasma gas phase reaction method

Info

Publication number
JP2564753B2
JP2564753B2 JP5134140A JP13414093A JP2564753B2 JP 2564753 B2 JP2564753 B2 JP 2564753B2 JP 5134140 A JP5134140 A JP 5134140A JP 13414093 A JP13414093 A JP 13414093A JP 2564753 B2 JP2564753 B2 JP 2564753B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
electrodes
gas phase
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5134140A
Other languages
Japanese (ja)
Other versions
JPH06140347A (en
Inventor
舜平 山崎
克彦 柴田
晃 間瀬
一男 浦田
久人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5134140A priority Critical patent/JP2564753B2/en
Publication of JPH06140347A publication Critical patent/JPH06140347A/en
Application granted granted Critical
Publication of JP2564753B2 publication Critical patent/JP2564753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プラズマ気相反応方
法(以下単にPCVD法という)に関する。この発明はPCVD
法であって、平行平板型の電極方式を用い、さらに、被
形成面を有する基板を陽光柱領域に配設し、多量に被膜
形成を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma gas phase reaction method (hereinafter simply referred to as PCVD method). This invention is PCVD
The present invention relates to a method for forming a large amount of film by using a parallel plate type electrode system, disposing a substrate having a surface to be formed in a positive column region, and forming a large amount of film.

【0002】[0002]

【従来の技術】従来、平行平板型のPCVD法は、その被形
成面を陰極(カソ─ド)または陽極(アノ─ド)上また
はこれらの電極のごく近傍に発生する陰極暗部または陽
極暗部に配設する方式であるとして知られている。
2. Description of the Related Art Conventionally, in the parallel plate type PCVD method, the surface to be formed is formed on a cathode (cathode) or an anode (anode) or in a cathode dark area or an anode dark area which is generated in the vicinity of these electrodes. It is known as a method of arranging.

【0003】かかる従来より公知の方式においては、電
極面積の大きさよりも被形成面の面積を大きく有せしめ
ることができない。このため、大面積の基板上に半導
体、絶縁体また導体被膜を作製することができるという
特長を有しながらも、電極面積の5〜30倍もの被形成面
を有せしめることができない。即ち、多量生産ができな
いという欠点を有していた。
In such a conventionally known method, the area of the surface to be formed cannot be made larger than the area of the electrode. For this reason, the semiconductor, insulator, or conductor coating can be formed on a large-area substrate, but it cannot have a surface to be formed that is 5 to 30 times as large as the electrode area. That is, it had a drawback that mass production was not possible.

【0004】このため、アモルファス・シリコンを含む
非単結晶半導体を作製せんとする時、その基板1cm2
たりの製造価格が1円以上と高価となり、太陽電池等の
単価が安価な製品作製に応用することができないという
大きな欠点を有する。加えて、被膜形成速度も1〜2Å
/秒と十分とはいえず、これらの点より多量生産性を有
し、かつ被膜成長速度が3〜10Å/秒と大きいPCVD法が
求められていた。
Therefore, when a non-single-crystal semiconductor containing amorphous silicon is to be produced, the production cost per 1 cm 2 of the substrate is as high as 1 yen or more, and it is applied to the production of low-priced products such as solar cells. It has the major drawback of not being able to. In addition, the film formation rate is 1-2 Å
Therefore, a PCVD method having a large productivity and a large film growth rate of 3 to 10Å / second has been demanded.

【0005】[0005]

【発明が解決しようとする課題】本発明は、多量生産性
を有し、かつ被膜成長速度が大きいプラズマ気相反応方
法を成就することを目的としたものである。
SUMMARY OF THE INVENTION The present invention aims to achieve a plasma vapor phase reaction method which has high productivity and a high film growth rate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に一対の電極を互いに離間して配設する平行平板型プラ
ズマ・グロー放電を用いて被形成面上に被膜を形成する
気相反応方法において、反応空間と逆方向に曲面を設け
た開孔又は開溝を形成した平板状電極を用いて、前記開
孔又は開溝より反応性気体を前記反応空間に供給し、前
記開孔又は開溝により反応空間に電界を集中させつつプ
ラズマ気相反応せしめることとした。
In order to solve the above problems, a gas phase reaction method for forming a film on a surface to be formed by using a parallel plate type plasma glow discharge in which a pair of electrodes are arranged apart from each other. In, using a flat plate-shaped electrode having a curved surface provided with a curved surface in the opposite direction to the reaction space, a reactive gas is supplied to the reaction space through the opening or the groove, and the opening or the groove is formed. It was decided to cause the plasma gas phase reaction while concentrating the electric field in the reaction space by the groove.

【0007】即ち、本発明方法はプラズマ・グロ─放電
の陽光柱を用いたものである。本発明は、陽光柱領域に
被形成面を有する基板を平行に互いに離間して配設した
ものであり、かかる陽光柱を用いたPCVD法に関しては、
本発明人の出願になる特許願57─163729, 57─163730
(プラズマ気相反応装置)(昭和57年9月20日出願)に
記されている。
That is, the method of the present invention uses a positive column of plasma glow discharge. The present invention is one in which substrates having a surface to be formed in a positive column region are arranged in parallel and spaced apart from each other. Regarding the PCVD method using such a positive column,
Patent application 57-163729, 57-163730 filed by the present inventor
(Plasma gas phase reactor) (filed September 20, 1982).

【0008】本発明はかかる陽光柱にて反応をせしめ、
多量生産を行うものである。しかし陽光柱は一般に大き
く空間に広がるため、被形成面近傍でのプラズマ密度が
減少し、結果として暗部を用いる方式と同じ程度の被膜
成長速度しか得られないという他の欠点を有する。
In the present invention, a reaction is caused by such a positive column,
This is a large-scale production. However, since the positive column generally spreads over a large space, the plasma density in the vicinity of the surface to be formed is reduced, and as a result, there is another drawback that the same film growth rate as in the method using the dark portion can be obtained.

【0009】かかる欠点を除去して、陽光柱を収束(し
まらせる)せしめ、即ち、放電プラズマのひろがりを押
さえ、さらに中央部でのプラズマ密度を増加させ、活性
反応性気体を増加し、ひいては被膜成長速度を2〜3倍
にまで大きくすることを特長としている。
By removing such a defect, the positive column is converged (stuck), that is, the spread of the discharge plasma is suppressed, the plasma density in the central portion is further increased, the active reactive gas is increased, and eventually the active reactive gas is increased. The feature is that the film growth rate is increased to 2 to 3 times.

【0010】図1は従来方法での平行平板型の電極
(2)(3)およびその電気力線(5)、またこの電気
力線に直行する等電位面(15)を示している。そしてこ
れらの電極は減圧下の反応容器(4)内に配設されてお
り、この電極の一方から(7)より供給された反応性気
体(6)が放出され、他方の基板(1)の被形成面上に
被膜形成される。
FIG. 1 shows parallel plate electrodes (2) and (3) and their electric lines of force (5) in the conventional method, and equipotential surfaces (15) perpendicular to these lines of electric force. These electrodes are arranged in the reaction vessel (4) under reduced pressure, and the reactive gas (6) supplied from (7) is discharged from one of the electrodes and the other substrate (1) is discharged. A film is formed on the surface to be formed.

【0011】図2(A)において、電極(2)(3)間
には高周波電源(10)より13.56MHzが加えられる。不要
反応生成物は排気系(8)にてバルブ(11)、圧力調整
バルブ(12)、真空ポンプ(13)より外部に排気され
る。かかる従来の方法においては、電気力線(5)は被
形成面に垂直に加わるため、被形成面をスパッタ(損
傷)してしまうという他の欠点を有する。 図1(B)
は図1(A)の電極の一方(2)に対し針状電極(9)
を互いに離間して配設したものである。ここでは電極
(2)(50cm×50cm)、電極(2)(3)の間隔4cm,針
状電極長さ1cm,間隔5cm とした。かかる針状電極を図1
(A)の装置に配設した時も、電気力線は針状電極より
分散し、ひろがる方向に供給され、基板(1)に垂直に
加えられる。等電位面(15)は電気力線と直行して設け
られるにすぎない。このため、針状電極はそれなりに図
1(A)に装置に配設した場合でも放電開始を容易にす
る等の特長を有しながらも、被膜の膜質、被膜成長速度
を向上させるものではなかった。
In FIG. 2 (A), 13.56 MHz is applied between the electrodes (2) and (3) from the high frequency power source (10). The unnecessary reaction product is exhausted to the outside by the exhaust system (8) through the valve (11), the pressure adjusting valve (12) and the vacuum pump (13). In such a conventional method, since the lines of electric force (5) are applied perpendicularly to the formation surface, there is another drawback that the formation surface is sputtered (damaged). Figure 1 (B)
Is a needle electrode (9) for one of the electrodes (2) in FIG. 1 (A)
Are spaced apart from each other. Here, the electrode (2) (50 cm x 50 cm), the interval between the electrodes (2) and (3) was 4 cm, the needle electrode length was 1 cm, and the interval was 5 cm. Such a needle electrode is shown in FIG.
Even when the device is arranged in the device (A), the lines of electric force are dispersed from the needle-shaped electrode and are supplied in the expanding direction, and are applied vertically to the substrate (1). The equipotential surface (15) is only provided perpendicular to the lines of electric force. Therefore, the needle-shaped electrode does not improve the film quality of the film and the film growth rate, although it has the feature of facilitating the start of discharge even when it is arranged in the device in FIG. 1 (A). It was

【0012】図2は本発明のPCVD法における電極および
その概要を示したものである。この反応炉の他部は前記
した本発明人の特許願に準じる。図面において、この一
対の網状電極(2)(3)および被形成面を有する基板
(1)(1’)を有する。 反応性気体の供給は(23)
より石英フ─ド(21)に至り、網状電極(2)を通って
陽光柱領域(5)に至る。陽光柱領域には裏面を互いに
密接して電気力線(5)に平行に基板(1)(1’)を
配設せしめてある。またこの基板を石英カゴで取り囲む
形状を有せしめてある。反応生成物の排気は下側フ─ド
(22)を経て排気(24)させる。
FIG. 2 shows an electrode in the PCVD method of the present invention and its outline. Other parts of this reactor are in accordance with the above-mentioned patent application of the present inventor. In the drawing, the pair of mesh electrodes (2) and (3) and the substrate (1) (1 ′) having the formation surface are provided. Supply of reactive gas (23)
It reaches the quartz hood (21) through the reticulated electrode (2) to reach the positive column region (5). Substrates (1) and (1 ') are arranged in the positive column region so that their back surfaces are in close contact with each other and parallel to the lines of electric force (5). The substrate is surrounded by a quartz basket. The reaction products are exhausted (24) through the lower hood (22).

【0013】一対を為す電極(2)(3)には外部より
高周波エネルギが供給され、平等電界が形成される領域
(20)に放電がされる。この図面では電極面積は25cmφ
(電極間隔15cm)または70cm×70cm(電極間隔35cm)の
形状を有せしめ、さらにこの電極に開孔または開溝(1
4)を形成することにより、本発明の平等電界領域での
第1のグロ─放電と開孔または開溝(14)に高輝度の第
2のグロ─放電とを同時に発生せしめた。この図面より
明らかなごとく、下側電極(13)は例えば単に開孔また
は開溝(0.5 〜3cm 例えば約1cm φまたは約1cm 巾)で
作ったにすぎない。また他の例では上側電極のごとく、
この開孔または開溝を陽光柱とは逆方向に曲面(16)を
設け、凹状態をしている。
High-frequency energy is externally supplied to the pair of electrodes (2) and (3) and is discharged to a region (20) where a uniform electric field is formed. In this drawing, the electrode area is 25 cmφ
(Electrode spacing 15 cm) or 70 cm x 70 cm (electrode spacing 35 cm), with a hole or groove (1
By forming 4), the first glow discharge in the equal electric field region of the present invention and the high glow second glow discharge in the opening or groove (14) were simultaneously generated. As can be seen from this figure, the lower electrode (13) is, for example, simply made with an aperture or groove (0.5-3 cm, eg about 1 cm φ or about 1 cm wide). In another example, like the upper electrode,
A curved surface (16) is provided in the opening or groove in the direction opposite to the positive column to make it concave.

【0014】図1(B)に示すごとく針状即ち放電面に
凸状態ではなく、逆にこれらを平面または凹状にするこ
とにより、電気力線(5)が領域(17)(18)において
収束し、高密度電束領域が一方の電極より他方の電極に
向かって繊維状に延在して発生することがわかる。かく
のごとくにすることにより、従来より知られた平等電界
により発生する第1のプラズマ放電(27)(28)に加え
て、高密度電束の発生により、高輝度の第2のプラズマ
領域(17)(18)を同時に発生させることができた。そ
の結果、従来、陽光柱(25)では横方向への広がりが大
きく、プラズマが分散していたのが、電極中央部(20)
内に集まる(35)傾向を有せしめることができた。
As shown in FIG. 1 (B), the electric lines of force (5) converge in the regions (17) and (18) by making them not flat, that is, convex on the discharge surface, but conversely by making them flat or concave. However, it can be seen that the high-density electric flux region extends in a fibrous shape from one electrode toward the other electrode. By doing so, in addition to the first plasma discharge (27) (28) generated by the conventionally known uniform electric field, the high-intensity second plasma region ( 17) and (18) could be generated simultaneously. As a result, in the conventional case, the positive column (25) had a large lateral spread and the plasma was dispersed in the central part (20) of the electrode.
We were able to show a tendency to (35) gather within.

【0015】さらにこの高輝度プラズマ放電を行わしめ
ることにより、被膜成長速度を2〜3倍にすることがで
きた。例えば100 %シランを用いて、0.1torr , 30W
(13.56MHz)、電極面を25cmφとし、電極間隔15cmと
した時、基板10cm ,6枚を配設(延べ面積600 cm2
した場合、開孔または開溝(14)を有しない場合には、
被膜成長速度は1〜2Å/秒であったのが、この開孔ま
たは開溝(14)を各電極に数ケ所設けるのみで4〜6Å
/秒と2〜3倍に増加させることが可能になった。この
ことは図1の従来の方式に比べて、5〜20倍も基板の配
設量を大きくすることができるに加えて、被膜形成速度
を2〜3倍も高めることができ、2重に優れたものであ
ることがわかる。
Further, by performing this high-intensity plasma discharge, the film growth rate could be increased 2-3 times. For example, using 100% silane, 0.1torr, 30W
(13.56MHz), when the electrode surface is 25cmφ and the electrode interval is 15cm, the substrate is 10cm and 6 sheets are arranged (total area 600cm 2 ).
If there is no hole or groove (14),
The film growth rate was 1-2 Å / sec, but it is 4-6 Å only by providing several holes or grooves (14) on each electrode.
/ Sec and it became possible to increase it 2-3 times. Compared with the conventional method of FIG. 1, this means that the amount of substrates to be arranged can be increased by 5 to 20 times, and the film forming speed can be increased by 2 to 3 times, resulting in a double layer. It turns out to be excellent.

【0016】さらに加えて、陽光柱が収束することの結
果、この陽光柱が反応炉の内壁をスパッタし、この内壁
に吸着している水、付着物の不純物を活性化して被膜内
に取り込み、その膜質を劣化させる可能性をさらに少な
くすることができるという点を考慮すると、三重にすぐ
れたものであることが判明した。以下にさらに実施例を
加えて本発明を補完する。
In addition, as a result of the positive columns converging, the positive columns sputter the inner wall of the reaction furnace and activate water and adhering impurities adsorbed on the inner wall and take them into the film, Considering that the possibility of degrading the film quality can be further reduced, it was found to be excellent in triplex. The present invention is complemented with the following examples.

【0017】[0017]

【実施例】〔実施例1〕図2を用いたPCVD法において、
さらにその放電プラズマの概要を第3図に示したもので
ある。番号は図2に対応している。図面において、下側
の網状電極(3)に高輝度プラズマ放電領域を3箇所、
上側に4箇所を設けたものである。基板(1)は石英ホ
ルダ内に配設され、この冶具が3〜5回/分で回転して
いる。 反応性気体としてシランにより非単結晶珪素を
作製した。即ち、基板温度210 ℃、圧力0.1torr,シラン
30cc/分、放電出力30Wとし、5000Åの厚さを有せしめ
るのに20分、被膜成長速度は4.1 Å/秒を有している。
[Example] [Example 1] In the PCVD method using FIG.
Further, the outline of the discharge plasma is shown in FIG. The numbers correspond to those in FIG. In the drawing, three high-intensity plasma discharge regions are provided on the lower mesh electrode (3),
It is provided with four places on the upper side. The substrate (1) is arranged in a quartz holder, and this jig is rotated at 3 to 5 times / minute. Non-single-crystal silicon was produced from silane as a reactive gas. That is, substrate temperature 210 ℃, pressure 0.1 torr, silane
It has 30cc / min, discharge output of 30W, and has a thickness of 5000Å for 20 minutes, while the film growth rate is 4.1Å / sec.

【0018】さらに図面より明らかなごとく、基板の配
設されている石英ホルダの外側空間には何等放電が見ら
れず、反応容器のステンレス壁面をスパッタして水等の
不純物を混入させる可能性が少ないことがわかる。基板
に10cm×10cmが6枚配設され、反応性気体の収率(被膜
となる成分/供給される気体等)も図1(A)に示すご
とき形状に加えて8倍近くになった。さらに図2におい
て開孔または開溝(14)を設けない場合に比べて2倍に
高めることができた。なお、第3図において、針状電極
(9)には高輝度放電がおきていないことがわかる。
Further, as is clear from the drawing, no discharge is observed in the outer space of the quartz holder in which the substrate is arranged, and there is a possibility that impurities such as water may be mixed by sputtering the stainless wall surface of the reaction vessel. You can see that there are few. Six pieces of 10 cm × 10 cm were arranged on the substrate, and the yield of the reactive gas (components forming the film / gas to be supplied, etc.) was nearly 8 times in addition to the shape as shown in FIG. Further, in FIG. 2, it was possible to double the height compared with the case where no opening or groove (14) was provided. In FIG. 3, it can be seen that no high-intensity discharge is generated in the needle electrode (9).

【0019】〔実施例2〕メタン(CH4 )とシラン(Si
H4)とを1:1の割合で混入し、SiX 1-x (0<x<
1)の被膜を作製した。本発明により生じる局部放電が
ない場合に比べて、炭化珪素とするSi─C結合が多量に
あり、化学的エッチングが起こっても、固い緻密な膜と
なっていた。その他は実施例1と同様である。
Example 2 Methane (CH 4 ) and silane (Si
H 4 ) and Si x C 1-x (0 <x <
The coating of 1) was prepared. Compared with the case where there is no local discharge caused by the present invention, a large amount of Si—C bonds, which are silicon carbide, were formed, and a hard and dense film was formed even if chemical etching occurred. Others are the same as in the first embodiment.

【0020】以上のごとく、本発明は図2に示されるご
とく、電極に開孔または開溝を設け、この領域で電気力
線を収束せしめ、高輝度放電を発生せしめたものであ
る。かかる方式は図1のごとく、平行平板電極上に基板
を配設した場合、この基板の一部に高い電束反応領域を
有せしめてもよい。しかし、高輝度放電によるスバッタ
効果を考慮する時、この放電に被形成面を配設し、その
スパッタ(損傷)を少なくすることは膜質の向上に有効
であり、結果として本発明方法は陽光柱に基板を電気力
線に平行に配設するPCVD法に特に有効であることがわか
った。
As described above, according to the present invention, as shown in FIG. 2, the electrode is provided with the opening or groove, and the lines of electric force are converged in this region to generate the high-intensity discharge. In this system, when the substrate is arranged on the parallel plate electrodes as shown in FIG. 1, a part of the substrate may have a high flux reaction region. However, when considering the scatter effect due to the high-intensity discharge, it is effective to improve the film quality by disposing a surface to be formed in this discharge to reduce the spatter (damage), and as a result, the method of the present invention uses a positive column. It was found to be particularly effective for the PCVD method in which the substrate is placed parallel to the lines of electric force.

【0021】また本発明の実施例は非単結晶Si, またSi
X 1-x である。しかしシランとゲルマンを用いてSix
Ge(0<x<1)、シランと塩化スズとを用いてSix Sn
1-x(0<x<1)であっても有効である。AlをAlCl3
により、またSi3N4 をSiH4とNH3 とにより、SiO2 をSi
H4とN2O とにより形成する場合等の絶縁膜をPCVD法で作
製する場合にも本発明は有効である。
Further, the embodiment of the present invention is based on non-single crystal Si,
X C 1-x . However, using silane and germane, Si x
Ge (0 <x <1), Si x Sn using silane and tin chloride
Even 1-x (0 <x <1) is effective. Al to AlCl 3
By and by a Si 3 N 4 and SiH 4 and NH 3, a SiO 2 Si
The present invention is also effective when the insulating film is formed by the PCVD method when it is formed of H 4 and N 2 O.

【0022】また、本発明方法によって得られる半導体
膜中に水素またはハロゲン元素に加えてBまたはPを添
加してP型またはN型とすることも可能である。 加え
て、本発明方法に併用して、700nm 以下の紫外光または
8μ以上の赤外光を照射したプラズマ気相法としても本
発明方法は有効である。
It is also possible to add B or P in addition to hydrogen or a halogen element into the semiconductor film obtained by the method of the present invention to obtain a P type or N type. In addition, the method of the present invention is also effective as a plasma vapor phase method in which ultraviolet light of 700 nm or less or infrared light of 8 μm or more is used in combination with the method of the present invention.

【0023】[0023]

【発明の効果】本発明は一対の電極を互いに離間して配
設する平行平板型プラズマ・グロー放電を用いて被形成
面上に被膜を形成する気相反応方法において、反応空間
と逆方向に曲面を設けた開孔又は開溝を形成した平板状
電極を用いて、前記開孔又は開溝より反応性気体を前記
反応空間に供給し、前記開孔又は開溝により反応空間に
電界を集中させつつプラズマ気相反応させたことによ
り、多量生産性を有し、かつ被膜成長速度が大きいプラ
ズマ気相反応方法を成就することができた。
INDUSTRIAL APPLICABILITY The present invention relates to a gas phase reaction method for forming a coating film on a surface to be formed by using a parallel plate type plasma glow discharge in which a pair of electrodes are arranged apart from each other, in a direction opposite to a reaction space. Using a flat plate electrode with a curved surface provided with an opening or groove, a reactive gas is supplied to the reaction space from the opening or groove, and an electric field is concentrated in the reaction space by the opening or groove. By carrying out the plasma vapor phase reaction while performing the plasma vapor phase reaction, it was possible to achieve a plasma vapor phase reaction method having high productivity and a high film growth rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のプラズマ気相反応装置を示す。FIG. 1 shows a conventional plasma gas phase reactor.

【図2】本発明方法のプラズマ気相反応装置の電極基板
近傍の概要である。
FIG. 2 is an outline of the vicinity of an electrode substrate of the plasma vapor phase reaction apparatus of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 電極 14 開孔または開溝 15 等電位面 1 substrate 2 electrode 3 electrode 14 open hole or open groove 15 equipotential surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 久人 神奈川県厚木市長谷398番地 株式会社 半導体エネルギー研究所内 合議体 審判長 倉地 保幸 審判官 左村 義弘 審判官 真々田 忠博 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisato Shinohara 398 Hase, Atsugi City, Kanagawa Prefectural Board of Directors, Semiconductor Energy Laboratory Co., Ltd. Judge, Yasuyuki Kurachi, Yoshihiro Samura, Judge, Tadahiro Sanada

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の電極の少なくとも一方の平板状電
極に、反応空間と逆方向に曲面を有する開孔又は開溝を
設けるとともに、その電極外周辺が反応空間に対して逆
方向に曲面を設け、一対の電極間にプラズマを生じさせ
ることにより、前記反応空間でプラズマ気相反応せしめ
ることを特徴とするプラズマ気相反応方法。
At least one of the planar electrodes of 1. A pair of electrodes, the reaction space and reverse directions provided <br/> an opening or open groove having a curved surface Rutotomoni, its electrodes outside around the reaction space Reverse
A plasma gas phase reaction method characterized in that a plasma gas phase reaction is performed in the reaction space by providing a curved surface in a direction and generating plasma between a pair of electrodes.
JP5134140A 1993-05-13 1993-05-13 Plasma gas phase reaction method Expired - Lifetime JP2564753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5134140A JP2564753B2 (en) 1993-05-13 1993-05-13 Plasma gas phase reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134140A JP2564753B2 (en) 1993-05-13 1993-05-13 Plasma gas phase reaction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58145264A Division JPS6037118A (en) 1983-08-08 1983-08-08 Plasma vapor phase reaction method

Publications (2)

Publication Number Publication Date
JPH06140347A JPH06140347A (en) 1994-05-20
JP2564753B2 true JP2564753B2 (en) 1996-12-18

Family

ID=15121413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134140A Expired - Lifetime JP2564753B2 (en) 1993-05-13 1993-05-13 Plasma gas phase reaction method

Country Status (1)

Country Link
JP (1) JP2564753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058975A (en) * 2017-01-23 2017-08-18 上海大学 Based on parameter region control high throughput chemical gas-phase permeation technique, using and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3046965B1 (en) 1999-02-26 2000-05-29 鐘淵化学工業株式会社 Manufacturing method of amorphous silicon-based thin film photoelectric conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480080A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Etching device
JPS5491048A (en) * 1977-12-05 1979-07-19 Plasma Physics Corp Method of and device for accumulating thin films
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor
JPS6037118A (en) * 1983-08-08 1985-02-26 Semiconductor Energy Lab Co Ltd Plasma vapor phase reaction method
JPS6037119A (en) * 1983-08-08 1985-02-26 Semiconductor Energy Lab Co Ltd Plasma vapor phase reaction device
JPH0561237A (en) * 1991-05-30 1993-03-12 Fuji Xerox Co Ltd Microcapsule and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491048A (en) * 1977-12-05 1979-07-19 Plasma Physics Corp Method of and device for accumulating thin films
JPS5480080A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Etching device
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor
JPS6037118A (en) * 1983-08-08 1985-02-26 Semiconductor Energy Lab Co Ltd Plasma vapor phase reaction method
JPS6037119A (en) * 1983-08-08 1985-02-26 Semiconductor Energy Lab Co Ltd Plasma vapor phase reaction device
JPH0561237A (en) * 1991-05-30 1993-03-12 Fuji Xerox Co Ltd Microcapsule and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058975A (en) * 2017-01-23 2017-08-18 上海大学 Based on parameter region control high throughput chemical gas-phase permeation technique, using and device

Also Published As

Publication number Publication date
JPH06140347A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US8053338B2 (en) Plasma CVD apparatus
JP4557400B2 (en) Method for forming deposited film
JP3146112B2 (en) Plasma CVD equipment
JP2564753B2 (en) Plasma gas phase reaction method
JP2000252218A (en) Plasma cvd system and fabrication of silicon thin film photoelectric converter
JP2002237459A (en) Plasma cvd apparatus
JP2564748B2 (en) Plasma vapor phase reaction apparatus and plasma vapor phase reaction method
JPH07193017A (en) Plasma chemical vapor deposition method
JPH0568097B2 (en)
JPH0855804A (en) Method of manufacturing semiconductor film
JPH0776781A (en) Plasma vapor growth device
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP2805441B2 (en) Plasma gas phase reaction apparatus and plasma etching method
JPH065522A (en) High frequency plasma cvd device
JPH08250486A (en) Semiconductor device
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3615919B2 (en) Plasma CVD equipment
JPH11111622A (en) Plasma chemical vapor deposition apparatus
JPS62205618A (en) Plasma cvd unit
JPH05139883A (en) High frequency plasma cvd device
JP3808339B2 (en) Thin film formation method
KR100370400B1 (en) Substrate of plasma enhanced chemical vapor deposition process
JPH07201764A (en) Plasma vapor phase reaction
JPS63274126A (en) High frequency wave application electrode constituent body