JPS63274126A - High frequency wave application electrode constituent body - Google Patents

High frequency wave application electrode constituent body

Info

Publication number
JPS63274126A
JPS63274126A JP10895887A JP10895887A JPS63274126A JP S63274126 A JPS63274126 A JP S63274126A JP 10895887 A JP10895887 A JP 10895887A JP 10895887 A JP10895887 A JP 10895887A JP S63274126 A JPS63274126 A JP S63274126A
Authority
JP
Japan
Prior art keywords
high frequency
application electrode
frequency wave
wave application
frequency current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10895887A
Other languages
Japanese (ja)
Inventor
Yoshinori Ashida
芦田 芳徳
Nobuhiro Fukuda
福田 信弘
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10895887A priority Critical patent/JPS63274126A/en
Publication of JPS63274126A publication Critical patent/JPS63274126A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To uniformly generate plasma in the space between a high frequency wave application electrode and a grounding electrode in an electrically effective manner by a method wherein a plurality of high-frequency current circuits are formed on the high-frequency wave application electrode provided for the purpose of generating glow discharge. CONSTITUTION:The path, with which a surface electrode plate 11 emitting high frequency waves into a vacuum vessel and a high frequency wave introducing axis 10 to be used to supply high frequency waves to vacuum side through the matching circuit located on the side of the atmospheric air are connected, is composed of a plurality of metal spaces 13. A plurality of high frequency current paths are designed, namely, a plurality of current circuits are formed and the structure, in which the metal surface where the high frequency current passes is expanded, is formed. Thus, the high frequency wave application electrode, provided for generation of glow discharge, constitutes the high frequency wave application electrode constituent body having a plurality of high frequency current paths. Consequently, as the high frequency current can be made to flow the surface uniformly, a homogenous film of large area can be deposited at high speed in a highly efficient manner.

Description

【発明の詳細な説明】 [技術分野] 本発明は、グロー放電により、高性能の半導体薄膜を形
成する製造装置における高周波印加電極に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a high frequency application electrode in a manufacturing apparatus for forming a high performance semiconductor thin film by glow discharge.

[従来技術] シリコン化合物をグロー放電法などのプラズマ分解によ
り得られる非晶質シリコン系の半導体薄膜は、光−電気
エネルギーの変換能力に優れ、光起電力素子(すなわち
、非晶質シリコン系太陽電池)に好適に利用されている
。しかして、産業や住活に利用される、いわゆる大電力
用太陽電池としては大面積の太陽電池を製造する必要が
あり、この点においても、非晶質シリコン系太陽電池は
、面積の拡充が比較的容易であり、大面積化の研究が行
われている。
[Prior art] Amorphous silicon-based semiconductor thin films obtained by plasma decomposition of silicon compounds such as glow discharge method have excellent light-electrical energy conversion ability, and are useful for photovoltaic devices (i.e., amorphous silicon-based solar cells). batteries). However, it is necessary to manufacture large-area solar cells for so-called high-power solar cells used in industry and living, and in this respect as well, amorphous silicon-based solar cells are difficult to expand in area. It is relatively easy, and research is being conducted on increasing the area.

しかしながら、通常用いられているグロー放電において
、大面積に非晶質シリコン系の薄膜を均一に、かつ、高
速度で形成するには、いくつかの問題があった。
However, in the commonly used glow discharge, there are several problems in forming an amorphous silicon-based thin film uniformly over a large area at a high speed.

一般に、プラズマCVD製造装置として、生産性に優れ
ているとされている容量結合型の平行平板1を極を用い
た場合、高周波が印加される!極である高周波印加電極
と接地されている電極の間において、グロー放電が高周
波印加電極面内において、均一に生じなければ均一な薄
膜が得られない。
In general, when a capacitively coupled parallel plate 1, which is said to have excellent productivity, is used as a pole in a plasma CVD manufacturing apparatus, a high frequency is applied! A uniform thin film cannot be obtained unless glow discharge occurs uniformly within the surface of the high-frequency application electrode between the high-frequency application electrode, which is a pole, and the grounded electrode.

しかして、高周波印加電極が大面積となると、高周波i
t流独特の表皮効果が生じ、有効に高周波電流を導入す
ることができず、また、電気力線にもとずく端効果およ
び先の表皮効果の結果、高周波印加電極周辺部のグロー
放電が強くなり、得られた薄膜の特性は、不均一となり
、また有効に高周波を導入できない。
However, if the area of the high frequency application electrode becomes large, the high frequency i
A skin effect unique to the T-flow occurs, making it impossible to effectively introduce high-frequency current, and as a result of the edge effect based on electric lines of force and the aforementioned skin effect, glow discharge is strong around the high-frequency application electrode. Therefore, the properties of the obtained thin film are non-uniform, and high frequencies cannot be effectively introduced.

また、高速形成を目的として、グロー放電を発生させる
場合、高周波印加電極周辺部のグローはより強くなり、
条件によっては、異常グロー放電も生じ、一般に高速形
成時には、異常放電が生じ易いという問題があった。
In addition, when generating glow discharge for the purpose of high-speed formation, the glow around the high-frequency application electrode becomes stronger,
Depending on the conditions, abnormal glow discharge may also occur, and in general, there is a problem in that abnormal discharge is likely to occur during high-speed formation.

[発明の目的] 本発明の目的は、高周波印加電極と接地電極間において
、均一なプラズマを有効に生じさせ、被着される基板上
に均一な半導体薄膜を高速に形成することのできる半導
体薄膜製造装置に具備されるべき高周波印加電極構成体
を提供することである。
[Objective of the Invention] An object of the present invention is to provide a semiconductor thin film that can effectively generate uniform plasma between a high frequency application electrode and a grounded electrode, and that can rapidly form a uniform semiconductor thin film on a substrate to which it is deposited. An object of the present invention is to provide a high frequency application electrode structure to be included in a manufacturing device.

[基本的着想1 しかして、本発明者らは、種々のプラズマCVD装置お
よびグロー放電の詳細な検討の結果、上記目的は、高周
波印加t8iと接地電極間の空間におけるプラズマを均
一、かつ電力的に有効に生じさせるためには、高周波印
加電極に印加される高周波電流が高周波印加電極中を均
等に流れることが重要であり、かかる知見に基づくこと
により、上記目的が達成できることを見いだし、本発明
を完成した。
[Basic idea 1] As a result of detailed studies on various plasma CVD devices and glow discharge, the inventors found that the above objective was to uniformly generate plasma in the space between the high frequency application t8i and the ground electrode, and to reduce the power consumption. In order to effectively generate this, it is important that the high-frequency current applied to the high-frequency applying electrode flows uniformly through the high-frequency applying electrode. Based on this knowledge, we have discovered that the above object can be achieved, and have developed the present invention. completed.

[発明の開示] すなわち、本発明は、グロー放電を用いた薄膜半導体形
成装置において、グロー放電を発生させるために設けら
れた高周波印加電極が、複数の高周波電流経路を有して
いることを特徴とする高周波印加電極構成体、である。
[Disclosure of the Invention] That is, the present invention is a thin film semiconductor forming apparatus using glow discharge, in which a high frequency application electrode provided for generating glow discharge has a plurality of high frequency current paths. This is a high frequency application electrode structure.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における高周波印加電極とは、容量結合型の平行
平板電極であり、形状はとくに問わないが、円板状ある
いは四角状が製作の容易性および放電特性の点において
、好ましい形状である。材質については、とくに制限さ
れるものではないが、形成される半導体薄膜に与える不
純物量、電気伝導性、熱的安定性等を考慮するとステン
レス鋼である505316や5US304が好適に用い
られ、アルミニウムも好ましい材料である。
The high frequency application electrode in the present invention is a capacitively coupled parallel plate electrode, and the shape is not particularly limited, but a disk shape or a square shape is preferable in terms of ease of manufacture and discharge characteristics. The material is not particularly limited, but considering the amount of impurities imparted to the formed semiconductor thin film, electrical conductivity, thermal stability, etc., stainless steels such as 505316 and 5US304 are preferably used, and aluminum is also suitable. A preferred material.

咳高周波印加電極の構造は、例えば添付第2図に示され
ているように、基本的には、真空槽内に高周波を放出す
る表面電極プレート11と大気側にある整合回路を経て
高周波を真空側に供給するための高周波導入軸10とを
つなぐ経路が複数の金属スペーサー13により構成され
ており、高周波電流経路が複数に設計され、すなわち、
複数の高周波電流回路を存しており、高周波電流が通過
する金属表面の面積を拡充した構造である。
The structure of the cough high frequency application electrode is, for example, as shown in the attached Figure 2, basically, the high frequency is emitted into the vacuum via a surface electrode plate 11 that emits high frequency into a vacuum chamber and a matching circuit on the atmosphere side. A path connecting the high frequency introduction shaft 10 for supplying the high frequency current to the side is constituted by a plurality of metal spacers 13, and a plurality of high frequency current paths are designed, that is,
It has multiple high-frequency current circuits, and has a structure that expands the area of the metal surface through which the high-frequency current passes.

本発明に用いるプラズマCVD装置、すなわちグロー放
電を用いた薄膜半導体形成装置は、上記した如く、グロ
ー放電を発生させるために設けられた高周波印加電極が
、複数の高周波電流経路を有している高周波印加電極構
成体であることを特徴とするものであるが、その他、装
置を構成するために基本的に必要とされる要素は当然具
備している0例えば、反応ガス導入手段および排気手段
を備えた金属製の反応容器を主体とし、半導体薄膜が形
成される基板を設置固定する治具である基板キャリヤー
、基板を加熱するための加熱手段、および基板キャリヤ
ーを移動させるための搬送手段等である。
As described above, the plasma CVD apparatus used in the present invention, that is, the thin film semiconductor forming apparatus using glow discharge, has a high frequency application electrode provided for generating glow discharge, which has a plurality of high frequency current paths. Although it is characterized by being an application electrode structure, it is naturally equipped with other elements basically required for configuring the device.For example, it is equipped with a reaction gas introduction means and an exhaust means. The substrate carrier is a jig for installing and fixing a substrate on which a semiconductor thin film is to be formed, a heating means for heating the substrate, a transport means for moving the substrate carrier, etc. .

反応容器の材質は、ステンレス、ニッケルおよびその合
金、アルミニウムおよびその合金などであるが、加工性
、耐蝕性および取扱上、ステンレス(例えば、5US3
16.5LI3304 )あるいはアルミニウムが好ま
しい。
The material of the reaction vessel is stainless steel, nickel and its alloys, aluminum and its alloys, etc. However, stainless steel (for example, 5US3
16.5LI3304) or aluminum is preferred.

反応ガス導入手段は、高周波印加電極の表面から、導入
されたガスが吹き出すシャワー・タイプのものが、均一
性、堆積速度および堆積効率の点から、好ましい形態で
あるが、本発明を実施するためには、このタイプのもの
にとくに制限されないことは勿論である。
A shower type reaction gas introduction means in which the introduced gas is blown out from the surface of the high frequency application electrode is preferable from the viewpoint of uniformity, deposition rate, and deposition efficiency; however, in order to carry out the present invention, Of course, there is no particular limitation to this type.

ガス排気手段については、基板に対して、対称に排気さ
れることを考慮した排気口より行われることが望ましい
As for the gas exhaust means, it is preferable to use an exhaust port that takes into consideration the fact that the gas is exhausted symmetrically with respect to the substrate.

基板の設置方向については、本発明の目的を達成するに
、何ら規定されるものではない、一般には、基板は、高
周波印加電極に対して対向させることが好ましい。
The direction in which the substrate is installed is not limited in any way in order to achieve the object of the present invention. Generally, it is preferable that the substrate be opposed to the high frequency application electrode.

用いる基板は、ガラス基板、酸化スズや酸化スズ・イン
ジウムの様な透明導電性膜付きガラス基板、セラミック
ス基板、アルミニウム、クロム、ステンレス(5US3
16.5us304 )などの金属蒸着したセラミック
ス基板やポリエチレンテレフタレートなどの樹脂基板、
ステンレス基板、多結晶および単結晶シリコン基板など
である。
The substrates used include glass substrates, glass substrates with transparent conductive films such as tin oxide and tin oxide/indium oxide, ceramic substrates, aluminum, chromium, stainless steel (5US3
Ceramic substrates with metal vapor deposition such as 16.5us304), resin substrates such as polyethylene terephthalate,
These include stainless steel substrates, polycrystalline and single crystalline silicon substrates, etc.

本発明で使用する反応性ガスは、主にシリコン化合物ガ
スであり、一般式51nHtn*i(ここでnは1,2
.3、・−等の自然数 )で示されるシラン、例えばモ
ノシラン、ジシランである。さらに、一般式SiHgF
4−x(Xは、θ〜4の整数) で余されるフルオロシ
ラン、一般式G’B*Hzn*x (nは、1.2.3
、・−・等の自然数)で示される水素化ゲルマンなどで
ある。また、目的に応じて、フォスフインPl(3、ジ
ボランB!)Ih、 ”’リウムHe。
The reactive gas used in the present invention is mainly a silicon compound gas, and has the general formula 51nHtn*i (where n is 1, 2
.. Silanes represented by natural numbers such as 3, . . . , such as monosilane and disilane. Furthermore, the general formula SiHgF
4-x (X is an integer of θ to 4) Fluorosilane with the general formula G'B*Hzn*x (n is 1.2.3
, . . . , etc.). Also, depending on the purpose, phosphine Pl (3, diborane B!) Ih, "'rium He.

Cy)Izy*!、CJzy −CvHxy−z (3
’は、112.3、−・等の自然数)で示される炭化水
素ガス、モノメチルシランなどの有機けい素ガスなどを
単独ないし添加して用いる。
Cy) Izy*! , CJzy -CvHxy-z (3
' is a natural number such as 112.3, -.), a hydrocarbon gas, an organic silicon gas such as monomethylsilane, etc. are used alone or in combination.

以下、実施例について、詳細に説明する。Examples will be described in detail below.

[実施例] 本発明の高周波印加電極構成体を用い、アモルファスシ
リコン薄膜を成膜した0反応性ガスは、モノシラン、水
素稀釈モノシラン、ジシランおよびヘリウム稀釈ジシラ
ンのいずれかを用いた。まず、基板挿入室に基板キャリ
ヤーを設置し、低真空系と高真空系から1O−6tor
r台まで真空排気した後、反応室内に基板キャリヤーを
搬送手段にて、移送し、高真空排気系にて、10−’t
orr台まで排気し、加熱手段で基板キャリヤーに設置
された基板を所定の温度になるまで加熱する。所定の基
板温度に達した後、反応室内に反応性ガスを流量計を通
して導入し所定の反応圧力に設定し、13.56MHz
の高周波を高周波印加電極に供給し、グロー放電を生じ
させ、成膜した。これらの結果を以下に示した。
[Example] The high-frequency application electrode structure of the present invention was used to form an amorphous silicon thin film using any of monosilane, hydrogen-diluted monosilane, disilane, and helium-diluted disilane as the zero-reactive gas. First, a substrate carrier is installed in the substrate insertion chamber, and 1O-6torr is applied from the low vacuum system and high vacuum system.
After evacuation to the r stage, the substrate carrier was transferred into the reaction chamber using a transport means, and then evacuated for 10-'t using a high vacuum evacuation system.
The air is evacuated to the orr stand, and the substrate placed on the substrate carrier is heated by the heating means until it reaches a predetermined temperature. After reaching a predetermined substrate temperature, a reactive gas was introduced into the reaction chamber through a flow meter, and the predetermined reaction pressure was set to 13.56 MHz.
A high frequency wave was supplied to the high frequency application electrode to generate a glow discharge and form a film. These results are shown below.

5iHa     20  cc/min高周波電力 
30  mW/cm” 基板温度  300“C 反応圧力  1.Q torr 基板寸法  100本1001 底皿猪呆; 堆積速度   15  A/see 堆積速度分布 ±8 χ 代表的な光転4変1.5*10−’  S/cm代表的
な暗伝導度 2.3寧10−”  S/cmまた比較例
として、第1図に示した従来型の高周波印加電極を用い
、成膜した結果を以下に示した。
5iHa 20 cc/min high frequency power
30 mW/cm" Substrate temperature 300"C Reaction pressure 1. Q torr Substrate size 100 pieces 1001 Bottom plate porcelain; Deposition rate 15 A/see Deposition rate distribution ±8 χ Typical phototransformation 4 changes 1.5*10-' S/cm Typical dark conductivity 2.3 As a comparative example, the results of film formation using the conventional high frequency application electrode shown in FIG. 1 are shown below.

成膜条件; 前記と同条件 底皿猜呆; 堆積速度   7  A/sec 堆積速度分布 ±23χ 代表的な光転導度 8.0*10−’  S/cm代表
的な暗伝導度 3.5本10−”  S/cm[発明の
効果] 以上のごとく、本発明の高周波印加電極構成体を用いれ
ば、高周波電流を表面に均一に流すことが可能であるた
め、大面積の均質成膜が、高速堆積で、高堆積効率にて
得られ、得られた薄膜の特性も優れ、膜厚分布の良好な
膜の成膜が可能である。すなわち、本発明の産業上の利
用可能性は、極めて大きいと言わねばならない。
Film-forming conditions: Same conditions as above, bottom plate inflated; Deposition rate: 7 A/sec Deposition rate distribution: ±23χ Typical light conductivity: 8.0*10-' S/cm Typical dark conductivity: 3.5 Book 10-''S/cm [Effects of the Invention] As described above, by using the high-frequency applying electrode structure of the present invention, it is possible to uniformly flow a high-frequency current to the surface, so that a homogeneous film can be formed over a large area. , it is possible to form a film with high deposition rate, high deposition efficiency, excellent properties of the obtained thin film, and good thickness distribution.In other words, the industrial applicability of the present invention is as follows: I must say it is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来、一般に使用されている高周波印加電極
構成体を模式的に示した模式断面図である。 第2図は、本発明による、複数の高周波電流経路を有す
る高周波印加電極構成体の断面を模式的に示した模式断
面図である。 図において、1−・・・・・−・−・・反応性ガス導入
および高周波電流導入軸、2・・・−・・−・・−・表
面ガス拡散板、3・・・・−・・・−中間ガス分散板、
4・・・・−・・・−・高周波シールド板、10・・・
−・・−・−・反応性ガス導入および高周波電流導入軸
、11・・・・・・−・・・−表面ガス拡散板、I2・
−・・・−・・・−中間ガス分散板、13−・・・・−
・・・・・高周波電流経路用スペーサ、14−・・−・
−・・・・・高周波シールド軸、15・・・−・・・−
・・・畜周波シールド板、16・−・・−・・−・・・
絶縁碍子特許出願人   三井東圧化学株式会社図面 第1図 第2図
FIG. 1 is a schematic cross-sectional view schematically showing a conventionally used high frequency application electrode structure. FIG. 2 is a schematic sectional view schematically showing a cross section of a high frequency application electrode structure having a plurality of high frequency current paths according to the present invention. In the figure, 1--...--Reactive gas introduction and high-frequency current introduction axis, 2...--...--Surface gas diffusion plate, 3...--・-intermediate gas distribution plate,
4...--High frequency shield plate, 10...
-------Reactive gas introduction and high frequency current introduction shaft, 11...------Surface gas diffusion plate, I2
-...-...- Intermediate gas distribution plate, 13-...-
...High frequency current path spacer, 14-...
-...High frequency shield axis, 15...-...-
... Frequency shield plate, 16...
Insulator patent applicant Mitsui Toatsu Chemical Co., Ltd. Drawings Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)グロー放電を用いた薄膜半導体形成装置において
、グロー放電を発生させるために設けられた高周波印加
電極が、複数の高周波電流経路を有していることを特徴
とする高周波印加電極構成体。
(1) A high frequency application electrode structure in a thin film semiconductor forming apparatus using glow discharge, characterized in that the high frequency application electrode provided for generating glow discharge has a plurality of high frequency current paths.
JP10895887A 1987-05-06 1987-05-06 High frequency wave application electrode constituent body Pending JPS63274126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10895887A JPS63274126A (en) 1987-05-06 1987-05-06 High frequency wave application electrode constituent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10895887A JPS63274126A (en) 1987-05-06 1987-05-06 High frequency wave application electrode constituent body

Publications (1)

Publication Number Publication Date
JPS63274126A true JPS63274126A (en) 1988-11-11

Family

ID=14497971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10895887A Pending JPS63274126A (en) 1987-05-06 1987-05-06 High frequency wave application electrode constituent body

Country Status (1)

Country Link
JP (1) JPS63274126A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143170A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Condenser type gas plasma treating apparatus
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor
JPS6187872A (en) * 1984-10-05 1986-05-06 Hitachi Ltd Anode electrode in parallel plane sheet type plasma cvd apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143170A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Condenser type gas plasma treating apparatus
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor
JPS6187872A (en) * 1984-10-05 1986-05-06 Hitachi Ltd Anode electrode in parallel plane sheet type plasma cvd apparatus

Similar Documents

Publication Publication Date Title
JP2005005280A (en) Method for passivating semiconductor substrate
JP3146112B2 (en) Plasma CVD equipment
TW202102066A (en) Ground strap assemblies
US20200035456A1 (en) Magnetically enhanced and symmetrical radio frequency discharge apparatus for material processing
JP5329796B2 (en) Plasma processing equipment
JP2008205279A (en) Method and device for depositing silicon-based thin film
JPS63274126A (en) High frequency wave application electrode constituent body
JPS63142627A (en) Manufacture of semiconductor thin film
JP2608456B2 (en) Thin film forming equipment
JPH05343338A (en) Plasma cvd apparatus
JP2018019107A (en) Plasma cvd system, crystal silicon-based solar battery, and plasma cvd method for manufacturing the same
JPS63274125A (en) High frequency application electrode structure
JP2515329B2 (en) Thin film formation method
JP2630089B2 (en) Microwave plasma processing equipment
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
JPH01226148A (en) Film forming apparatus
JP3347383B2 (en) Microwave plasma processing equipment
JP2564753B2 (en) Plasma gas phase reaction method
JP2005244098A (en) Plasma processing unit
JPH07330488A (en) Plasma cvd apparatus
JPH05139883A (en) High frequency plasma cvd device
JPH0199213A (en) Device for formation of film
TW202041708A (en) Substrate processing chamber
JP3069714B2 (en) Hydrogenated amorphous silicon film deposition system