JPS61117248A - Steel for high-strength bolt - Google Patents

Steel for high-strength bolt

Info

Publication number
JPS61117248A
JPS61117248A JP23735084A JP23735084A JPS61117248A JP S61117248 A JPS61117248 A JP S61117248A JP 23735084 A JP23735084 A JP 23735084A JP 23735084 A JP23735084 A JP 23735084A JP S61117248 A JPS61117248 A JP S61117248A
Authority
JP
Japan
Prior art keywords
delayed fracture
steel
strength
less
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23735084A
Other languages
Japanese (ja)
Inventor
Kunio Namiki
並木 邦夫
Kenji Isogawa
礒川 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23735084A priority Critical patent/JPS61117248A/en
Publication of JPS61117248A publication Critical patent/JPS61117248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain the steel for the high-strength bolt of 120-140kgf/mm<2> grade having superior resistance to delayed fracture, by lowering the quantity of Si and Mn each having a strong affinity for oxygen in order to inhibit e oxidation caused by heating at the high temp. at austenitizing, and by reducing intergranular oxidation. CONSTITUTION:The steel or a bolt consists of, by weight, 0.3-0.5% C, <0.1% Si, 0.1-0.5% Mn, <0.015% P, <0.01% S, 0.3-1% Cr. 0.1-0.5% Mo, and the balance Fe with inevitable impurities, with which, if necessary, 1 or >=2 kinds among 0.05-0.15% V, 0.05-0.15% Nb, and 0.05-0.15% Ti may further be combined.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、比較的低合金でしかも耐遅れ破壊特性の優
れた強度120〜140 kgF/smz級の高強度ボ
ルト用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a steel for high-strength bolts having a strength of 120 to 140 kgF/smz class and having a relatively low alloy and excellent delayed fracture resistance.

(従来技術) 近年、橋梁、建築物および機械構造物等の大型化に伴っ
て高強度ボルトが多量に使用されるようになってきてい
る。一般にボルトに対しては、降伏比、耐衝撃性および
遅れ破壊強度等に優れていることが要求されるが、特に
高強度ボルト用鋼においては1強度が120 kgF/
a+m2を越えると耐遅れ破壊性が著しく劣化すること
が知られており。
(Prior Art) In recent years, as bridges, buildings, mechanical structures, etc. have become larger, high-strength bolts have come to be used in large quantities. Bolts are generally required to have excellent yield ratio, impact resistance, delayed fracture strength, etc., but in particular, steel for high-strength bolts has a strength of 120 kgF/1.
It is known that when the value exceeds a+m2, delayed fracture resistance deteriorates significantly.

安定した耐遅れ破壊性を有していることが必須条件であ
る。
It is essential to have stable delayed fracture resistance.

遅れ破壊は、主として湿潤環境で使用された場合、水素
の侵入・拡散によって生ずる水素脆化現象であり、静的
負荷を受けた部材が突然に脆性的に破壊する現象である
。そして、引張強度が120l20−14O/重量2で
あるような焼もどしマルテンサイト鋼においては、旧オ
ーステナイト粒界に沿ってクラックが発生しそれが伝播
することが知られている。これは1粒界がP、S等の不
純物偏析あるいは炭化物の析出によって脆化し、さらに
使用環境中より侵入する水素に起因する脆化が重畳して
発生するとされている。
Delayed fracture is a hydrogen embrittlement phenomenon that occurs due to the intrusion and diffusion of hydrogen, mainly when used in a humid environment, and is a phenomenon in which a member subjected to a static load suddenly breaks brittle. It is known that in tempered martensitic steel having a tensile strength of 120l20-14O/weight2, cracks occur and propagate along prior austenite grain boundaries. This is said to occur when one grain boundary becomes embrittled due to segregation of impurities such as P and S or precipitation of carbides, and embrittlement due to hydrogen penetrating from the usage environment is superimposed.

そこで、従来よりこのような観点から耐遅れ破壊特性を
向上させるために、種々の合金元素を添加したり、製造
方法を俄善したりする試みがなされている。
Therefore, from this point of view, attempts have been made to add various alloying elements or improve the manufacturing method in order to improve the delayed fracture resistance.

(発明の目的) この発明は、このような背景のもとになされたもので、
低合金でありながら、強度120〜140 kgf/m
m2級の高強度であってしかも耐遅れ破壊特性に優れた
高強度ボルト用鋼を得ることを目的として種・々の研究
を積重ね、実用ボルトをさらに詳細に調査した結果、通
常の焼入れ加熱(通常830〜880℃で、炭素ポテン
シャルのみを調整した大気雰囲気)時に、わずかながら
粒界酸化が生じていることがわかった。これは、従来よ
り報告されている肌焼鋼の浸炭時における粒界酸化に比
べて軽微であるが、遅れ破壊は表面から旧オーステナイ
ト粒界を起点とし゛て発生するため、耐遅れ破壊性を劣
化させる重要な要因のひとつであることを見出した。
(Object of the invention) This invention was made against this background,
Although it is a low alloy, it has a strength of 120 to 140 kgf/m
With the aim of obtaining a steel for high-strength bolts that has M2 class high strength and excellent delayed fracture resistance, we have carried out various studies, and as a result of a more detailed investigation of practical bolts, we have found that ordinary quenching and heating ( It was found that a small amount of grain boundary oxidation occurred when the temperature was normally 830 to 880°C (atmospheric atmosphere with only the carbon potential adjusted). Although this is slight compared to the grain boundary oxidation that has been reported in the past during carburization of case hardened steel, delayed fracture occurs from the surface to the prior austenite grain boundaries, which deteriorates delayed fracture resistance. We found that this is one of the important factors.

(発明の構成) この発明は、上記した知見に基いてなされたもので、オ
ーステナイト化時の高温加熱による酸化を防止するため
酸素との親和力の強いSi、Mnを特に低くおさえ、粒
界酸化を減少させて耐遅れ破壊性の向上をはかったもの
である。
(Structure of the Invention) This invention was made based on the above-mentioned knowledge, and in order to prevent oxidation due to high temperature heating during austenitization, Si and Mn, which have a strong affinity with oxygen, are kept particularly low, and grain boundary oxidation is prevented. This is intended to improve delayed fracture resistance.

すなわち、この発明による高強度ボルト用鋼は1重量%
で、C:0.3〜0.5%、Si:0.1%以下、Mn
:0.1〜0.5%、P:0.015%以下、S:0.
010%以下、Cr:0.3〜1.5%、Mo:0.1
〜0.5%、および必要に応じて、V:0.05〜0.
15%、Nb:0.05〜0.15%。
That is, the steel for high-strength bolts according to the present invention contains 1% by weight.
So, C: 0.3 to 0.5%, Si: 0.1% or less, Mn
: 0.1 to 0.5%, P: 0.015% or less, S: 0.
010% or less, Cr: 0.3-1.5%, Mo: 0.1
~0.5%, and if necessary, V:0.05~0.
15%, Nb: 0.05-0.15%.

Ti:0.05〜0.15%のうちの1種または2種以
上、残部Feおよび不純物からなり、耐遅れ破壊性の優
れた120〜140 kgf/m腸2級の高強度ボルト
用鋼であることを特徴としている。
Made of one or more of Ti: 0.05-0.15%, balance Fe and impurities, 120-140 kgf/m class 2 high-strength bolt steel with excellent delayed fracture resistance. It is characterized by certain things.

以下、この発明による高強度ボルト用鋼の成分範囲(重
量%)の限定理由について説明する。
The reason for limiting the composition range (weight %) of the steel for high-strength bolts according to the present invention will be explained below.

C:0.3〜0.5% Cは熱処理によって所要の強度を得るために0.3%以
上含有することが必要であるが、0.5%を超えて含有
すると靭延性が劣化したり、酎遅れ破壊性が劣化したり
するので、0.3〜0.5%の範囲とした。
C: 0.3 to 0.5% C must be contained in an amount of 0.3% or more in order to obtain the required strength through heat treatment, but if it is contained in an amount exceeding 0.5%, toughness and ductility may deteriorate. However, since the delayed fracture properties may deteriorate, the content was set in the range of 0.3 to 0.5%.

Si:0.1%以下 Siはオーステナイト化時の高温加熱による粒界酸化を
助長する元素であり、遅れ破壊の起点となりうるもので
あるため耐遅れ破壊性を劣化させる。そのため、Si量
は低い方が望ましく、特に0.05%以下とすることが
より好ましいが、ここではこの上限を0.1%とした。
Si: 0.1% or less Si is an element that promotes grain boundary oxidation due to high temperature heating during austenitization, and can become a starting point for delayed fracture, so it deteriorates delayed fracture resistance. Therefore, it is desirable that the amount of Si be as low as possible, particularly preferably 0.05% or less, but here the upper limit is set to 0.1%.

Mn:0.1〜0.5% Mnは溶製時の脱酸剤として有効であると共に焼入性の
向上に寄与する元素であって、そのためには0.1%以
上添加する。しかし、MnはSiとともに粒界酸化を助
長し、耐遅れ破壊性を劣化させるので、このような見知
からは低いほど好ましく、特に0.3%以下とすること
がより好ましいが、ここではその上限を0.5%とした
Mn: 0.1 to 0.5% Mn is an element that is effective as a deoxidizing agent during melting and also contributes to improving hardenability, and for this purpose, it is added in an amount of 0.1% or more. However, since Mn promotes grain boundary oxidation together with Si and deteriorates delayed fracture resistance, from this knowledge, the lower the content, the more preferable it is, and in particular, it is more preferable to keep it at 0.3% or less. The upper limit was set at 0.5%.

P:O,015%以下 Pはオーステナイト化時の高温加熱によってオーステナ
イト粒界に偏析を生じ1粒界を脆化させて酎遅れ破壊性
を劣化させるので、0.015%以下とした。
P: O, 0.015% or less P causes segregation at austenite grain boundaries due to high temperature heating during austenitization, embrittles one grain boundary, and deteriorates delayed fracture properties, so P is set to 0.015% or less.

S:0.010%以下 SはPと同様にオーステナイト化時の高7μ加熱によっ
てオーステナイト粒界に偏析を生じ、粒界を脆化させて
耐遅れ破壊性を劣化させると共に、M n Sを形成し
て酎遅れ破壊性を劣化させるので、o、oto%以下と
した。
S: 0.010% or less Similar to P, S causes segregation at austenite grain boundaries due to high 7μ heating during austenitization, embrittles grain boundaries, deteriorates delayed fracture resistance, and forms M n S. Since this causes deterioration of delayed fracture properties, the content was set to 0.0% or less.

Cr:0.3〜1.5% Crは焼入性の向上に寄与する元素であるので、ボルト
の寸法等に応じてその添加量を調整するのが良く、これ
によってボルトの焼入性を確保する。また、Crの添加
によって焼もどし温度400℃以上を確保し、炭化物の
粒界析出領域を避けることが可能となる。そこで、上記
のような観点からCr含有量を0.3%以上とした。し
かし、Crの添加は、強度120〜140 kgf/w
mz級の高強度ボルトを対象とした寸法(例えば最大1
2■S)では、1.5%まで添加することによって焼入
性の向上は十分であり、むしろ添加しすぎるとSiおよ
びMnと同様に粒界酸化を助長して耐遅れ破壊性を劣化
させるので、0.3〜1.5%の範囲とした。
Cr: 0.3-1.5% Cr is an element that contributes to improving hardenability, so it is best to adjust the amount added depending on the dimensions of the bolt, etc. This will improve the hardenability of the bolt. secure. Further, by adding Cr, it is possible to ensure a tempering temperature of 400° C. or higher and avoid grain boundary precipitation regions of carbides. Therefore, from the above point of view, the Cr content was set to 0.3% or more. However, the addition of Cr increases the strength from 120 to 140 kgf/w.
Dimensions for mz class high strength bolts (for example, up to 1
2) Adding up to 1.5% of S) can sufficiently improve hardenability, but adding too much promotes grain boundary oxidation and deteriorates delayed fracture resistance, similar to Si and Mn. Therefore, the content was set in the range of 0.3 to 1.5%.

Mo:0.1〜0.5% MOは焼入性の向上に寄与すると共に、結晶粒の微細化
およびオーステナイト粒界の強度向上に寄与する元素で
あるので、このような効果を得るために0.1%以上と
した。しかし、多く添加しても効果は飽和するので、そ
の上限を0.5%とした。
Mo: 0.1 to 0.5% MO is an element that contributes to improving hardenability, as well as refining crystal grains and improving the strength of austenite grain boundaries. The content was set to 0.1% or more. However, even if a large amount is added, the effect is saturated, so the upper limit was set at 0.5%.

V:0.05〜0.15%、Nb:0.05〜0.15
%、Ti:0.05〜0.15%のうちの工種または2
種以上 V 、 N b 、 T iはいずれも炭化物を形成し
、結晶粒の微細化に効果があり、耐遅れ破壊性の向上に
寄与する元素であるので、必要に応じてこれらの1種ま
たは2種以上を各々0.05%以上添加するのもよい、
しかし、0.15%を超えて添加しても効果の向上は大
きくないので、各々0.15%以下とした。
V: 0.05-0.15%, Nb: 0.05-0.15
%, Ti: type of work from 0.05 to 0.15% or 2
V, Nb, and Ti are all elements that form carbides, are effective in refining crystal grains, and contribute to improving delayed fracture resistance. It is also good to add two or more types at 0.05% or more each.
However, even if it is added in an amount exceeding 0.15%, the effect is not significantly improved, so each content is set at 0.15% or less.

(実施例) 第1表に示す化学成分の鋼A−Fおよび比較鋼(SCM
  440)をそれぞれ溶製したのち造塊し、鍛造によ
って直径20■1φの丸棒に成形したあと900℃X1
hr保持後空冷の焼ならしを施した0次いで、各焼なら
し材から試験片を加工したのち、各試験片に対し、85
0℃×30分保持後油冷の条件で焼入れし、次いで第2
表に示す所定の温度Xi時間保持後空冷の条件で各々焼
もどしを行い、それぞれの引張強度が120〜140k
gf/■膳2となるように調質した。
(Example) Steels A-F and comparative steel (SCM
440), then ingots, forged into a round bar with a diameter of 20 x 1φ, and then heated at 900℃
After hr holding, air-cooled normalization was performed.Next, after processing test pieces from each normalized material, each test piece was
After holding at 0°C for 30 minutes, quenching was performed under oil cooling conditions, and then the second
After holding at the specified temperature Xi time shown in the table, each was tempered under air cooling conditions, and the tensile strength of each was 120 to 140K.
It was tempered to become gf/■zen 2.

その後、各供試材の引張特性、遅れ破壊強度および粒界
酸化層の深さを調べた。このとき、引張試験に際しては
JIS  4号試験片を使用した。
Thereafter, the tensile properties, delayed fracture strength, and depth of the intergranular oxidation layer of each specimen were investigated. At this time, a JIS No. 4 test piece was used for the tensile test.

その結果を第2表に示す、また、遅れ破壊試験は第1図
に示す試験片(立t =20+u、d、=6m層、 d
2 = 4as、 R= 0 、1mm)を使用し、片
持曲げ荷重を負荷して行った。また、試験環境は0 、
IN−80文とし、これを試験片の切欠部に滴下した。
The results are shown in Table 2. Also, the delayed fracture test was performed on the test piece shown in Figure 1 (vertical t = 20 + u, d, = 6 m layer, d
2 = 4as, R = 0, 1mm), and a cantilever bending load was applied. Also, the test environment is 0,
The sample was prepared as IN-80 and was dropped into the notch of the test piece.

そして、各供試材の遅れ破壊特性は、静曲げ応力に対す
る遅れ破壊試験30時間後における強度の比、ナなりも
遅れ破壊強度比σ30hr/σSRで表わした。この結
果を第2表および第2図に示す。
The delayed fracture characteristics of each test material were expressed as the ratio of the strength after 30 hours of the delayed fracture test to the static bending stress, and the delayed fracture strength ratio σ30hr/σSR. The results are shown in Table 2 and FIG.

2、/ 7、−″ 第2表に示すように、本発明鋼は引張強度120〜l 
40kgf/mm2ニ調質したときニオいて、伸びおよ
び絞りが良好な値を示しており、特に30時間強度比は
比較鋼よりも高い値を示している。さらに1粒界酸化層
の深さもかなり小さなものとなっていることが明らかで
ある。
2,/7,-'' As shown in Table 2, the steel of the present invention has a tensile strength of 120 to 1
When tempered to 40 kgf/mm2, the steel exhibits good elongation and reduction of area, and in particular, the 30-hour strength ratio is higher than that of the comparative steel. Furthermore, it is clear that the depth of one grain boundary oxidation layer is also quite small.

(発明の効果) 以上説明してきたように、この発明による高強度ボルト
用鋼は、重量%で、C:0.3%〜0.5%、Si:0
.1%以下、Mn:0.1〜0.5%、P:0.015
%以下、S:0.010%以下、Cr:0.3〜1.5
%。
(Effects of the Invention) As explained above, the steel for high-strength bolts according to the present invention has C: 0.3% to 0.5% and Si: 0% by weight.
.. 1% or less, Mn: 0.1-0.5%, P: 0.015
% or less, S: 0.010% or less, Cr: 0.3 to 1.5
%.

Mo:O,1〜0.5%、および必要に応じて。Mo:O, 1-0.5%, and as needed.

V:0.05〜0.15%、Nb:0.05〜0.15
%、Ti:0.05〜0.15%のうちの1種または2
種以上、残部Feおよび不純物からなるものであるから
、低合金でありながら強度120〜140 kg4/m
m2の高強度が得られ、しかも靭延性が良好であるうえ
に、耐遅れ破壊特性にも著しく優れた高強度ボルト用鋼
であるという非常に優れた効果をもたらしうるものであ
る。
V: 0.05-0.15%, Nb: 0.05-0.15
%, Ti: 1 or 2 of 0.05 to 0.15%
Since it is made of at least one species, the balance is Fe and impurities, it has a strength of 120 to 140 kg4/m even though it is a low alloy.
This is a steel for high-strength bolts that has a high strength of m2, has good toughness and ductility, and has extremely good delayed fracture resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遅れ破壊試験に使用した試験片の説明図、第2
図は遅れ破壊強度比の試験結果を示すグラフである。
Figure 1 is an explanatory diagram of the test piece used in the delayed fracture test, Figure 2
The figure is a graph showing test results of delayed fracture strength ratio.

Claims (1)

【特許請求の範囲】 (1)重量%で、C:0.3%〜0.5%、Si:0.
1%以下、Mn:0.1〜0.5%、P:0.015%
以下、S:0.010%以下、Cr:0.3〜1.5%
、Mo:0.1〜0.5%、残部Feおよび不純物から
なることを特徴とする耐遅れ破壊性の優れた120〜1
40kgf/mm^2級の高強度ボルト用鋼。 (2)重量%で、C:0.3〜0.5%、Si:0.1
%以下、Mn:0.1〜0.5%、P:0.015%以
下、S:0.010%以下、Cr:0.3〜1.5%、
Mo:0.1〜0.5%、およびV:0.05〜0.1
5%、Nb:0.05〜0.15%、Ti:0.05〜 0.15%のうちの1種または2種以上、残部Feおよ
び不純物からなることを特徴とする耐遅れ破壊性の優れ
た120〜140kgf/mm^2級の高強度ボルト用
鋼。
[Claims] (1) In weight %, C: 0.3% to 0.5%, Si: 0.
1% or less, Mn: 0.1-0.5%, P: 0.015%
Below, S: 0.010% or less, Cr: 0.3 to 1.5%
, Mo: 0.1-0.5%, balance Fe and impurities. 120-1 with excellent delayed fracture resistance.
40kgf/mm^2 class high strength steel for bolts. (2) In weight%, C: 0.3-0.5%, Si: 0.1
% or less, Mn: 0.1 to 0.5%, P: 0.015% or less, S: 0.010% or less, Cr: 0.3 to 1.5%,
Mo: 0.1-0.5%, and V: 0.05-0.1
5%, Nb: 0.05 to 0.15%, Ti: 0.05 to 0.15%, and the balance is Fe and impurities. Excellent 120-140kgf/mm^2 class high strength steel for bolts.
JP23735084A 1984-11-09 1984-11-09 Steel for high-strength bolt Pending JPS61117248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23735084A JPS61117248A (en) 1984-11-09 1984-11-09 Steel for high-strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23735084A JPS61117248A (en) 1984-11-09 1984-11-09 Steel for high-strength bolt

Publications (1)

Publication Number Publication Date
JPS61117248A true JPS61117248A (en) 1986-06-04

Family

ID=17014087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23735084A Pending JPS61117248A (en) 1984-11-09 1984-11-09 Steel for high-strength bolt

Country Status (1)

Country Link
JP (1) JPS61117248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411210A (en) * 2020-04-26 2020-07-14 陕西理工大学 Multi-angle grain boundary pure iron material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411210A (en) * 2020-04-26 2020-07-14 陕西理工大学 Multi-angle grain boundary pure iron material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
CN110468341B (en) 1400 MPa-level delayed fracture-resistant high-strength bolt and manufacturing method thereof
JPH0545660B2 (en)
CN109790602B (en) Steel
WO2000028100A1 (en) Bearing steel excellent in rolling fatigue life
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
CN111321346B (en) Ultrahigh-strength spring steel with excellent hydrogen-induced delayed fracture resistance and production method thereof
JPH08209289A (en) Steel for machine structural use excellent in delayed fracture resistance
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JPS61117248A (en) Steel for high-strength bolt
JP3211627B2 (en) Steel for nitriding and method for producing the same
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
KR101867677B1 (en) Steel wire rod having enhanced delayed fracture resistance and method for manufacturing the same
JP3400886B2 (en) High tension bolt steel with excellent hydrogen entry prevention effect
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP3064672B2 (en) High strength spring steel
JP3221309B2 (en) Steel for machine structure and method of manufacturing the same
JPH06248386A (en) Steel for machine structure excellent in delayed fracture resistance
JP2019123921A (en) High strength bolt and manufacturing method therefor
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
JPH05255733A (en) Production of carburized and case hardened steel material having delayed fracture resistance