WO2000028100A1 - Bearing steel excellent in rolling fatigue life - Google Patents

Bearing steel excellent in rolling fatigue life Download PDF

Info

Publication number
WO2000028100A1
WO2000028100A1 PCT/JP1999/005986 JP9905986W WO0028100A1 WO 2000028100 A1 WO2000028100 A1 WO 2000028100A1 JP 9905986 W JP9905986 W JP 9905986W WO 0028100 A1 WO0028100 A1 WO 0028100A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
fatigue life
rolling fatigue
steel
Prior art date
Application number
PCT/JP1999/005986
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Atsumi
Toshiyuki Hoshino
Keniti Amano
Satoshi Yasumoto
Masao Gotoh
Original Assignee
Kawasaki Steel Corporation
Koyo Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation, Koyo Seiko Co., Ltd. filed Critical Kawasaki Steel Corporation
Priority to CA002317658A priority Critical patent/CA2317658A1/en
Priority to EP99951124A priority patent/EP1048744A4/en
Priority to KR10-2000-7007005A priority patent/KR100508463B1/en
Publication of WO2000028100A1 publication Critical patent/WO2000028100A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the present invention relates to bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing.
  • a rolling bearing such as a roller bearing or a ball bearing.
  • it is a bearing steel for providing bearing members with excellent rolling fatigue life.
  • Bearing steel used for rolling bearings and the like is required to have a long rolling fatigue life.
  • hard oxide nonmetallic inclusions present in steel have an adverse effect on the rolling contact fatigue life of bearings.
  • JP-A-3-126839 discloses a method of adjusting the number of oxide-based nonmetallic inclusions in a unit area or a unit volume, that is, a method of adjusting their distribution.
  • extreme value statistics A method of adjusting the predicted maximum diameter of oxide-based nonmetallic inclusions estimated by the above, that is, a method of adjusting these forms is disclosed. In each case, the distribution or form other than the amount of the oxide-based nonmetallic inclusions is adjusted to reduce the influence of the oxide-based nonmetallic inclusions.
  • JP-A-10-68047 JP-A-10-158790, JP-A-10-168547 and the like.
  • a method for controlling sulfide-based nonmetallic inclusions, which are hard nonmetallic inclusions other than oxides is disclosed in Japanese Patent Application Laid-Open No. 9-291340 (PCT / JP97 / 00549).
  • PCT / JP97 / 00549 Japanese Patent Application Laid-Open No. 9-291340
  • the aim is to reduce substances that can cause fatigue fracture.
  • steel containing Si or A1 as a deoxidizing agent is targeted, and the formation of Si or A1 oxide is inevitable, and the rolling fatigue life varies, and its improvement is limited.
  • a main object of the present invention is to provide a bearing steel that can be manufactured only by adjusting the component composition, is advantageous in terms of productivity, and has an excellent rolling fatigue life. Disclosure of the invention
  • the present invention has been made to achieve the above in view of the above-mentioned objects.
  • Most According to recent steelmaking technology even when Si and A1 are not added as deoxidizers, when C is included at about 1 mass%, O can be reduced to about 0.0010 mass%.
  • the improvement of hardenability and the improvement of rolling fatigue life by adding Si or A1 can be replaced by adding a large amount of Cr. Therefore, the inventors examined the effect of impurity elements using a material containing about lmass% of C, not containing Si and A1, reducing ⁇ to about lOppm, and using a material containing a large amount of Cr. As a result, they found that the presence of Sb as an impurity element in steel had an adverse effect on rolling fatigue life.
  • the gist configuration of the present invention developed based on the above knowledge is as follows.
  • C 0.95 to 1.10 mass%, Cr: more than 1.60 to 3.5 mass%, O: less than 0.0015 mass% and Sb: less than 0.0010 mass%, balance Fe and unavoidable impurities
  • It is a bearing steel excellent in rolling fatigue life characterized by comprising: In addition, Si: 2.5 mass% or less, Mn: 2.5 mass% or less, Mo: 2.5 mass% or less, i: 3.0 mass% or less, Nb: 1.5 mass% or less, V: One or two selected from 1.5 mass% or less, Cu: 2. mass% or less and A1: 0.08 mass% or less More than one species may be included.
  • C is an element that forms a solid solution in the matrix and effectively acts to strengthen martensite. It is included to secure the strength after quenching and tempering and to improve the rolling fatigue life due to it. If the content is less than 0.95 mass ° / o, these effects cannot be obtained. On the other hand, if the C content exceeds 1.10raass%, giant carbides will be generated during fabrication, reducing workability and rolling fatigue life. Therefore, the range is 0.95 to 1.10 mass%.
  • the Cr content is set to be more than 1.60 to 3.50 raass%, preferably more than 1.60 to 2.50 mass%. O: 0.0015 mass% or less
  • O is desirably low because it forms hard oxide-based nonmetallic inclusions and reduces the rolling fatigue life, but is allowable up to 0.0015 mass ° / o. Therefore, the O content is 0.0015 mass% or less, and preferably 0.0010 mass% or less. Sb: 0.0001 mass% or less
  • Sb is a particularly important element in the present invention. This is preferable in that it has the effect of suppressing the formation of a decarburized layer and improving the heat treatment productivity. However, it reduces the hot workability and toughness and significantly reduces the rolling fatigue life. Therefore, Sb The amount must be limited to 0.000010 mass% or less. Further, one or more of the following elements can be contained.
  • Si is an element that increases tempering softening resistance. As a result, the strength after quenching and tempering is increased, and the rolling fatigue life is improved. It is also an element that contributes to the reduction of oxygen in steel as a deoxidizing agent during smelting. However, if added in excess of 2.5 mass%, workability and toughness decrease. For this reason, Si is added at 2.5 ma ss% or less. Preferably, it is added in the range of 0.15 to 2.0 mass%. Mn: 2.5 mass% or less
  • Mn is an element that improves the hardenability of steel. As a result, the toughness and strength of the base martensite are improved, and the rolling fatigue life is improved. However, when added in excess of 2.5 mass%, machinability and toughness decrease. For this reason, Mn is added at 2.5 mass% or less. Preferably, it is added in the range of 0.10 to 2.0 mass%.
  • Mo is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, adding more than 2.5 mass% stabilizes the carbides. As a result, the strength is reduced and the rolling fatigue life is reduced. Mo is also an expensive element. Therefore, Mo is added at 2.5 mass% or less. Preferably, it is added in the range of 0.10 to 1.5 mass%.
  • Ni is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, the effect of adding over 3.0 mass% Saturated. Ni is also an expensive element. Therefore, Ni is added in an amount of not more than 3.0 mass% in consideration of the obtained effect and cost. Preferably, it is added in the range of 0.1 to 2.0 mass%.
  • Nb is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 1.5 mass%, the carbohydrate is stabilized. As a result, the strength is reduced and the rolling fatigue life is reduced. Nb is also an expensive element. Therefore, Nb is added at 1.5 mass% or less. Preferably, it is added in the range of 0.05 to 1.0 mass%.
  • V is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 1.5 mass%, the carbohydrate is stabilized. As a result, the strength is reduced and the rolling fatigue life is reduced. V is also an expensive element. Therefore, V is added at 1.5 mass% or less. Preferably, it is added in the range of 0.05 to 1.0 mass%.
  • Cu is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 2.0 raass%, the forgeability decreases. Therefore, Cu is added at 2.0 mass% or less. Preferably, it is added in the range of 0.10 to 1.5 mass%.
  • A1 0.08 mass ° / o or less
  • A1 is an element that increases tempering softening resistance. As a result, the strength after quenching and tempering is increased, and the rolling life is improved. It is also an element that contributes to the reduction of oxygen in steel as a deoxidizer during smelting. On the other hand, if added in excess of 0.08 mass ° / o , workability and toughness are reduced. Therefore, A1 is 0.08mass% Add below. Preferably, it is added in the range of 0.005 to 0.05 mass%. Although the present invention is constituted by each of the above elements, as a more preferred embodiment, it is desirable that P, S, Ti and N as the impurity elements be suppressed to the following ranges.
  • the allowable upper limit is 0.025 mass%, preferably 0.015 mass%.
  • the allowable upper limit is 0.025 mass%, preferably 0.010 mass%.
  • Ti forms hard nitrides and reduces the rolling fatigue life. Therefore, it is desirable to be as low as possible.
  • the allowable upper limit is 0.001 raass%, preferably 0.005 raass%.
  • N forms hard nitrides and reduces the rolling fatigue life. Therefore, it is desirable to be as low as possible.
  • the allowable upper limit is 0.015 mass%, preferably 0.008 raass%.
  • FIG. 1 is a graph showing the effect of the amount of Sb on the B10 life.
  • the rolling fatigue test was carried out using a forest-type thrust rolling fatigue tester under the following conditions: Hertz maximum contact stress: 5260 MPa, cyclic stress number: 30 Hz, and lubricating oil: # 68 turbine oil.
  • the test results were summarized on a probability paper according to the Weibull distribution, and the B10 life (cumulative failure probability: the total number of loads until peeling occurred at 10%) was determined.
  • the life ratio of steel 1 JIS steel type: SUJ2
  • SUJ2 which is a conventional steel
  • the steel 4 as the comparative steel has C and the steel 5 has O, which is out of the range of the present invention, and the B10 life ratio is inferior to the conventional steel.
  • steel 3 as the comparative steel does not differ much from steel 2 as the invention steel except for the chemical composition of Sb. Nevertheless, the B10 life ratio of steel 3 is 1.1, which is inferior to 3.2 of steel 2. Clearly, the effect of reducing the amount of Sb is apparent. Chemical composition of test material (mass%) B,. Life ratio
  • a bearing steel having significantly superior rolling fatigue life can be obtained only by adjusting the composition by adding a large amount of Cr and suppressing the amount of Sb in the steel to 0.0010 mass% or less. be able to. Limiting the amount of Sb can be easily achieved by managing scrap, which is favorable in terms of productivity and greatly contributes to the industry.

Abstract

A bearing steel excellent in rolling fatigue life which can provide a bearing member used for a rolling bearing (roller bearing and ball bearing) element member and particularly excellent in rolling fatigue life, characterized by containing 0.95 to 1.10 mass% of C, over 1.60 to 3.50 mass% of Cr, up to 0.0015 mass% of O, up to 0.0010 mass% of Sb and the remaining components of Fe and unavoidable impurities, one or at least two components selected from a group consisting of up to 2.5 mass% of Si, up to 2.5 mass% of Mn, up to 2.5 mass% of Mo, up to 3.0 mass% of Ni, up to 1.5 mass% of Nb, up to 1.5 mass% of V, up to 2.0 mass% of Cu and up to 0.08 mass% of Al being permitted to be contained.

Description

明 細 書 労赫に優れる!^鋼 嫌俯  The excellence of labor ^ Steel
本発明は、 ころ軸受あるいは玉軸受といった転がり軸受の要素部材とし て用いられる軸受用鋼に関する。 とくに転動疲労寿命に優れた軸受用部材 を提供するための軸受用鋼である。 背景技術  The present invention relates to bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing. In particular, it is a bearing steel for providing bearing members with excellent rolling fatigue life. Background art
転がり軸受などに用いられる軸受用鋼は、 転動疲労寿命の長いことが求 められる。 一般に、 軸受の転動疲労寿命には、 鋼中に存在する硬質の酸化 物系非金属介在物が悪影響をおよぼすことはよく知られている。  Bearing steel used for rolling bearings and the like is required to have a long rolling fatigue life. In general, it is well known that hard oxide nonmetallic inclusions present in steel have an adverse effect on the rolling contact fatigue life of bearings.
そこで、 かかる非金属介在物量の低減により、 転動疲労寿命の向上を図 るために、 従来、 主として鋼中酸素量を低減する努力がなされてきた。 製 鋼技術の進歩により、 Siまたは A1を脱酸材として添加した鋼では、 鋼中酸 素量を 0. 0010mass 以下にまで低減することができるようになった。 その 結果、鋼中に存在する硬質の酸化物系非金属介在物の量は大幅に削減され、 転動疲労寿命は向上した。  Therefore, in order to improve the rolling contact fatigue life by reducing the amount of nonmetallic inclusions, efforts have been made mainly to reduce the oxygen content in steel in the past. Advances in steelmaking technology have made it possible to reduce the oxygen content of steel to 0.0010 mass or less in steels containing Si or A1 as a deoxidizing agent. As a result, the amount of hard oxide-based nonmetallic inclusions present in the steel was significantly reduced, and the rolling fatigue life was improved.
しかし、 こうした低酸素化による転動疲労寿命の向上は、 既に限界に達 しているのが実情である。  However, the improvement in rolling fatigue life due to such low oxygen has already reached its limit.
ところが最近では、転動疲労寿命のより一層の向上を目指す動きがある。 例えば、 特開平 3—126839号公報では、 単位面積あるいは単位体積中の酸 化物系非金属介在物個数を調整すること、 すなわち、 これらの分布を調整 する方法が開示されている。 また特開平 5— 25587 号公報では、 極値統計 によって推定される酸化物系非金属介在物の予測最大径を調整すること、 すなわち、 これらの形態を調整する方法が開示されている。 いずれも、 酸 化物系非金属介在物量以外の分布または形態を調整して、 酸化物系非金属 介在物の影響を少なくする方法である。 However, recently, there has been a movement to further improve the rolling fatigue life. For example, JP-A-3-126839 discloses a method of adjusting the number of oxide-based nonmetallic inclusions in a unit area or a unit volume, that is, a method of adjusting their distribution. Also, in JP-A-5-25587, extreme value statistics A method of adjusting the predicted maximum diameter of oxide-based nonmetallic inclusions estimated by the above, that is, a method of adjusting these forms is disclosed. In each case, the distribution or form other than the amount of the oxide-based nonmetallic inclusions is adjusted to reduce the influence of the oxide-based nonmetallic inclusions.
しかしながら、 上記既知技術に従い、 単位面積あたりの酸化物系非金属 介在物の個数や最大径をより低減させるためには、 さらなる製鋼設備の改 善あるいは製造プロセスの改造が必要となる。 したがって、 これらを実現 するためには、 巨額の投資が必要となり、 製造コス 卜の上昇を招くことが 避けられなくなる。 そのうえ、 転動疲労寿命を保証するためには、 非金属 介在物についての詳細な評価が必要となるので、 生産性の低下も不可避と なる。  However, in order to further reduce the number and the maximum diameter of the oxide-based nonmetallic inclusions per unit area in accordance with the above-mentioned known technology, it is necessary to further improve steelmaking equipment or remodel the manufacturing process. Therefore, in order to achieve these, a huge investment is required, which inevitably leads to an increase in manufacturing costs. In addition, in order to guarantee the rolling fatigue life, a detailed evaluation of non-metallic inclusions is required, and a reduction in productivity is inevitable.
一方、 不純物の低減により、 転動疲労寿命を改善する技術が、 特開平 10 -68047, 特開平 10- 158790, 特開平 10- 168547などに開示されている。 ま た、 酸化物系以外の硬質の非金属介在物である硫化物系非金属介在物を制 御する方法も特開平 9-291340 (PCT/JP97/00549)公報に開示されている。 い ずれも、 疲労破断の起点となり うる物質を減少させることを狙いとしてい る。 しかしながら、 いずれも Siまたは A1を脱酸材として添加した鋼を対象 としており、 Siまたは A1酸化物の形成は不可避であり、 転動疲労寿命にば らつきがあり、 その向上にも限界があった。  On the other hand, techniques for improving the rolling fatigue life by reducing impurities are disclosed in JP-A-10-68047, JP-A-10-158790, JP-A-10-168547 and the like. Also, a method for controlling sulfide-based nonmetallic inclusions, which are hard nonmetallic inclusions other than oxides, is disclosed in Japanese Patent Application Laid-Open No. 9-291340 (PCT / JP97 / 00549). In both cases, the aim is to reduce substances that can cause fatigue fracture. However, in each case, steel containing Si or A1 as a deoxidizing agent is targeted, and the formation of Si or A1 oxide is inevitable, and the rolling fatigue life varies, and its improvement is limited. Was.
そこで本発明の主たる目的は、 成分組成の調整のみで製造可能で、 生産 性の面で有利であり、 さらに優れた転動疲労寿命を有する軸受用鋼を提供 することにある。 発明の開示  Therefore, a main object of the present invention is to provide a bearing steel that can be manufactured only by adjusting the component composition, is advantageous in terms of productivity, and has an excellent rolling fatigue life. Disclosure of the invention
本発明は、 上掲の目的に鑑みその実現のためになされたものである。 最 近の製鋼技術によれば、 脱酸材として Siおよび A1を添加しないでも、 Cを 1 mass%程度含む場合には、 Oを 0. 0010mass%程度まで低減することは可能と なった。 また、 Siまたは A1添加による焼き入れ性の改善や転動疲労寿命の 向上は、 Crを多量に添加することで代替できる。 そこで、 発明者らは、 C を lmass%程度含み、 Siおよび A1を含有せず、 ◦を lOppm程度に低減し、 Cr を多量に含有する素材を用いて、不純物元素の影響を検討した。その結果、 不純物元素として鋼中に混入する Sbの存在が転動疲労寿命に悪影響を及ぼ すことを見いだしたのである。 The present invention has been made to achieve the above in view of the above-mentioned objects. Most According to recent steelmaking technology, even when Si and A1 are not added as deoxidizers, when C is included at about 1 mass%, O can be reduced to about 0.0010 mass%. In addition, the improvement of hardenability and the improvement of rolling fatigue life by adding Si or A1 can be replaced by adding a large amount of Cr. Therefore, the inventors examined the effect of impurity elements using a material containing about lmass% of C, not containing Si and A1, reducing ◦ to about lOppm, and using a material containing a large amount of Cr. As a result, they found that the presence of Sb as an impurity element in steel had an adverse effect on rolling fatigue life.
C: 0. 98-1. 05 mass%, Cr: 1· 65-3. 45 mass%, Ο : 0. 0008-0. 0012 mass0ん Sb : 0. 000 1-0. 0100 mass%を含有し、 残部実質的に Feからなる試料にて、 転動疲労寿命を 調べた。 なお、 酸化物系非金属介在物個数は 100〜200個/ ^SOmm で、 その 最大径は被検面積 320 mm のときに 8〜12 /z mであった。 図 1に転動疲労 寿命におよぼす鋼中 Sb量の影響を示す。 鋼中 Sb量を 0. 0015mass%以下まで 低減すると転動疲労寿命が向上した。 0. 0010mass°/o程度になるとこの改善 効果は飽和した。 このような現象の理由は必ずしも明らかではないが、 鋼 中 Sb量が一定限度を超えると、 過剰な Sbが結晶粒界に偏析して、 疲労亀裂 の進展を助長し、 破壊の発生を早めるからであると考えられる。 C: 0.998-1.05 mass%, Cr: 1.65-3.45 mass%, Ο: 0.0008-0.0012 mass 0 Sb: 0.000 1-0. 0100 mass% Then, the rolling fatigue life of the sample substantially consisting of Fe was examined. The number of oxide-based nonmetallic inclusions was 100 to 200 / ^ SOmm, and the maximum diameter was 8 to 12 / zm when the test area was 320 mm. Figure 1 shows the effect of Sb content in steel on rolling fatigue life. When the Sb content in steel was reduced to less than 0.0015 mass%, the rolling fatigue life was improved. This improvement effect was saturated at about 0.10010 mass ° / o . The reason for such a phenomenon is not always clear, but if the amount of Sb in steel exceeds a certain limit, excess Sb segregates at the grain boundaries, promoting the growth of fatigue cracks and accelerating fracture. It is considered to be.
上記知見のもとに開発した本発明の要旨構成は次のとおりである。  The gist configuration of the present invention developed based on the above knowledge is as follows.
C : 0. 95〜1. 10mass%、 Cr: 1. 60超〜 3. 50mass%、 O : 0. 0015mass%以 下および Sb: 0. 0010mass%以下を含有し、 残部が Feおよび不可避的不純物 よりなることを特徴とする転動疲労寿命に優れる軸受用鋼である。 また、 さらに Si: 2. 5 mass%以下、 Mn: 2. 5 mass%以下、 Mo: 2. 5 mass%以下、 i: 3. 0 mass%以下、 Nb: 1. 5 mass%以下、 V : 1. 5 mass%以下、 Cu: 2. mass%以下および A1: 0. 08mass%以下のうちから選ばれる 1種または 2 種以上を含有させてもよい。 C: 0.95 to 1.10 mass%, Cr: more than 1.60 to 3.5 mass%, O: less than 0.0015 mass% and Sb: less than 0.0010 mass%, balance Fe and unavoidable impurities It is a bearing steel excellent in rolling fatigue life characterized by comprising: In addition, Si: 2.5 mass% or less, Mn: 2.5 mass% or less, Mo: 2.5 mass% or less, i: 3.0 mass% or less, Nb: 1.5 mass% or less, V: One or two selected from 1.5 mass% or less, Cu: 2. mass% or less and A1: 0.08 mass% or less More than one species may be included.
以下に、 本発明における成分の限定理由を示す。  The reasons for limiting the components in the present invention are shown below.
C : 0. 95〜1. 10raass%  C: 0.95 to 1.10raass%
Cは、 基地に固溶して、 マルテンサイ トの強化に有効に作用する元素で ある。 焼入れ焼もどし後の強度確保とそれによる転動疲労寿命を向上させ るために含有させる。 含有量が 0. 95mass°/o未満ではこれらの効果が得られ ない。一方、 C量が 1. 10raass%を超えると铸造時に巨大炭化物が生成され、 加工性ならびに転動疲労寿命を低下させる。したがって、 0. 95〜1. 10mass% を範囲とする。  C is an element that forms a solid solution in the matrix and effectively acts to strengthen martensite. It is included to secure the strength after quenching and tempering and to improve the rolling fatigue life due to it. If the content is less than 0.95 mass ° / o, these effects cannot be obtained. On the other hand, if the C content exceeds 1.10raass%, giant carbides will be generated during fabrication, reducing workability and rolling fatigue life. Therefore, the range is 0.95 to 1.10 mass%.
Cr: 1. 60超え〜 3. 50mass% Cr: 1.60 ~ 3.50mass%
Crは、 炭化物を安定化させ、 焼き入れ後に炭化物を残留させることによ り耐磨耗性を向上させるために有用である。 また、 焼き入れ性を向上させ るとともに、 球状化組織促進により冷間加工性を向上させる。 Cr添加量が 1. 60mass%以下ではこれらの効果が得られない。 3. 50mass%を超えて添加 すると、 焼入れにより残留する炭化物量が増す。 その結果、 基地に固溶す る C量が低下して、 強度ひいては転動疲労寿命が低下する。 よって、 Cr添 加量は 1. 60超え〜 3. 50raass%、 好ましくは 1. 60超え〜 2. 50mass%とする。 O : 0. 0015mass%以下  Cr is useful for stabilizing carbides and improving wear resistance by leaving carbides after quenching. In addition to improving the hardenability, the cold workability is improved by promoting the spheroidized structure. These effects cannot be obtained if the Cr content is 1.60 mass% or less. 3. If more than 50 mass% is added, the amount of carbide remaining by quenching increases. As a result, the amount of C dissolved in the matrix decreases, and the strength and, consequently, the rolling fatigue life decrease. Therefore, the Cr content is set to be more than 1.60 to 3.50 raass%, preferably more than 1.60 to 2.50 mass%. O: 0.0015 mass% or less
Oは、 硬質な酸化物系非金属介在物を形成して転動疲労寿命を低下させ ることから低いことが望ましいが、 0. 0015mass°/oまでは許容される。 よつ て、 O含有量は 0. 0015mass%以下、 好ましくは 0. 0010mass%以下とする。 Sb: 0. 0010mass%以下  O is desirably low because it forms hard oxide-based nonmetallic inclusions and reduces the rolling fatigue life, but is allowable up to 0.0015 mass ° / o. Therefore, the O content is 0.0015 mass% or less, and preferably 0.0010 mass% or less. Sb: 0.0001 mass% or less
Sbは、 本発明において特に重要な元素である。 脱炭層の生成を抑制して 熱処理生産性を向上させる作用を有する点では好ましい。 しかし、 熱間加 ェ性ゃ靱性を低下させ、 転動疲労寿命を著しく低下させる。 このため、 Sb 量は 0. 0010mass%以下に制限する必要がある。 さらに、 以下に示す元素のうち、 1種または 2種以上を含有することも 可能である。 Sb is a particularly important element in the present invention. This is preferable in that it has the effect of suppressing the formation of a decarburized layer and improving the heat treatment productivity. However, it reduces the hot workability and toughness and significantly reduces the rolling fatigue life. Therefore, Sb The amount must be limited to 0.000010 mass% or less. Further, one or more of the following elements can be contained.
Si: 2. 5 mass%以下 Si: 2.5 mass% or less
Siは、 焼もどし軟化抵抗を増大させる元素である。 その結果、 焼入れ焼 もどし後の強度を高めて、 転動疲労寿命を向上させる。 また、 溶製時の脱 酸剤として鋼の低酸素化にも寄与する元素でもある。 しかし、 2. 5 mass% を超えて添加すると加工性および靱性が低下する。 このため、 S iは 2. 5 ma ss%以下で添加する。 好ましくは 0. 15〜2. 0 mass%の範囲で添加する。 Mn: 2. 5 mass%以下  Si is an element that increases tempering softening resistance. As a result, the strength after quenching and tempering is increased, and the rolling fatigue life is improved. It is also an element that contributes to the reduction of oxygen in steel as a deoxidizing agent during smelting. However, if added in excess of 2.5 mass%, workability and toughness decrease. For this reason, Si is added at 2.5 ma ss% or less. Preferably, it is added in the range of 0.15 to 2.0 mass%. Mn: 2.5 mass% or less
Mnは、 鋼の焼入れ性を向上させる元素である。 その結果、 基地マルテン サイ トの靱性および強度を向上させ、転動疲労寿命を向上させる。 しかし、 2. 5 mass%を超えて添加すると、被削性および靱性が低下する。 このため、 Mnは 2. 5 mass%以下で添加する。 好ましくは 0. 10〜2. 0 mass%の範囲で添 加する。  Mn is an element that improves the hardenability of steel. As a result, the toughness and strength of the base martensite are improved, and the rolling fatigue life is improved. However, when added in excess of 2.5 mass%, machinability and toughness decrease. For this reason, Mn is added at 2.5 mass% or less. Preferably, it is added in the range of 0.10 to 2.0 mass%.
Mo: 2. 5 mass %以下  Mo: 2.5 mass% or less
Moは、 焼入れ性を向上させる元素である。 その結果、 強度を向上させ、 転動疲労寿命を向上させる。 しかし、 2. 5 mass%を超えて添加すると、 炭 化物が安定化される。 その結果、 強度が低下し、 転動疲労寿命は低下する。 また、 Moは高価な元素でもある。 したがって、 Moは 2. 5 mass%以下で添加 する。 好ましくは 0. 10〜1. 5 mass%の範囲で添加する。  Mo is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, adding more than 2.5 mass% stabilizes the carbides. As a result, the strength is reduced and the rolling fatigue life is reduced. Mo is also an expensive element. Therefore, Mo is added at 2.5 mass% or less. Preferably, it is added in the range of 0.10 to 1.5 mass%.
Ni : 3. 0 mass%以下 Ni: 3.0 mass% or less
Niは、 焼入れ性を向上させる元素である。 その結果、 強度を向上させ、 転動疲労寿命を向上させる。 しかし、 3. 0 mass%を超えての添加の効果は 飽和している。 また、 Niは高価な元素でもある。 したがって、 Niは、 得ら れる効果とコストとの兼ね合いから、 3· 0 mass%以下で添加する。 好まし くは 0. 10〜2. 0 mass%の範囲で添加する。 Ni is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, the effect of adding over 3.0 mass% Saturated. Ni is also an expensive element. Therefore, Ni is added in an amount of not more than 3.0 mass% in consideration of the obtained effect and cost. Preferably, it is added in the range of 0.1 to 2.0 mass%.
Nb: 1. 5 mass%以下 Nb: 1.5 mass% or less
Nbは、 焼入れ性を向上させる元素である。 その結果、 強度を向上させ、 転動疲労寿命を向上させる。 しかし、 1. 5 mass%を超えて添加すると、 炭 化物が安定化される。 その結果、 強度が低下し、 転動疲労寿命は低下する。 また、 Nbは高価な元素でもある。 したがって、 Nbは 1. 5 mass%以下で添加 する。 好ましくは 0. 05〜1. 0 mass%の範囲で添加する。  Nb is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 1.5 mass%, the carbohydrate is stabilized. As a result, the strength is reduced and the rolling fatigue life is reduced. Nb is also an expensive element. Therefore, Nb is added at 1.5 mass% or less. Preferably, it is added in the range of 0.05 to 1.0 mass%.
V : 1. 5 mass%以下、 V: 1.5 mass% or less,
Vは、 焼入れ性を向上させる元素である。 その結果、 強度を向上させ、 転動疲労寿命を向上させる。 しかし、 1. 5 mass%を超えて添加すると、 炭 化物が安定化される。 その結果、 強度が低下し、 転動疲労寿命は低下する。 また、 Vは高価な元素でもある。 したがって、 Vは 1. 5 mass%以下で添加 する。 好ましくは 0. 05〜1. 0 mass%の範囲で添加する。  V is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 1.5 mass%, the carbohydrate is stabilized. As a result, the strength is reduced and the rolling fatigue life is reduced. V is also an expensive element. Therefore, V is added at 1.5 mass% or less. Preferably, it is added in the range of 0.05 to 1.0 mass%.
Cu: 2. 0 mass %以下 Cu: 2.0 mass% or less
Cuは、 焼入れ性を向上させる元素である。 その結果、 強度を向上させ、 転動疲労寿命を向上させる。 しかし、 2. 0 raass%を超えて添加すると、 鍛 造性が低下する。 したがって、 Cuは 2. 0 mass%以下で添加する。 好ましく は 0. 10〜1. 5 mass%の範囲で添加する。  Cu is an element that improves hardenability. As a result, the strength is improved and the rolling fatigue life is improved. However, if added in excess of 2.0 raass%, the forgeability decreases. Therefore, Cu is added at 2.0 mass% or less. Preferably, it is added in the range of 0.10 to 1.5 mass%.
A1: 0. 08mass°/o以下 A1: 0.08 mass ° / o or less
A1は、 焼もどし軟化抵抗を増大させる元素である。 その結果、 焼入れ焼 もどし後の強度を高め、 転動 労寿命を向上させる。 また、 溶製時の脱酸 剤として鋼の低酸素化にも寄与する元素でもある。 一方、 0. 08mass°/oを超 えて添加すると、加工性および靱性を低下させる。 よって、 A1は 0. 08mass% 以下で添加する。 好ましくは 0. 005 〜0. 05mass%の範囲で添加する。 上記の各元素により本発明は構成されるが、 より好ましい実施の形態と して、 不純物元素としての P、 S、 Tiおよび Nは下記範囲に抑制すること が望ましい。 A1 is an element that increases tempering softening resistance. As a result, the strength after quenching and tempering is increased, and the rolling life is improved. It is also an element that contributes to the reduction of oxygen in steel as a deoxidizer during smelting. On the other hand, if added in excess of 0.08 mass ° / o , workability and toughness are reduced. Therefore, A1 is 0.08mass% Add below. Preferably, it is added in the range of 0.005 to 0.05 mass%. Although the present invention is constituted by each of the above elements, as a more preferred embodiment, it is desirable that P, S, Ti and N as the impurity elements be suppressed to the following ranges.
P : 0. 025 mass%以下  P: 0.025 mass% or less
Pは、 鋼の靱性ならびに転動疲労寿命を低下させる。 したがって、 可能 なかぎり低いことが望ましい。 その許容上限は 0. 025 mass%であり、 好ま しくは 0. 015 mass%を上限とする。  P decreases the toughness and rolling fatigue life of steel. Therefore, it is desirable to be as low as possible. The allowable upper limit is 0.025 mass%, preferably 0.015 mass%.
S : 0. 025 mass%以下 S: 0.025 mass% or less
Sは、 Mnと結合して Mn Sを形成し、 被削性を向上させる。 しかし、 多量 に含有させると転動疲労寿命を低下させる。 その許容上限は 0. 025 mass % であり、 好ましくは 0. 010 mass%を上限とする。  S combines with Mn to form MnS and improves machinability. However, when contained in a large amount, the rolling fatigue life is reduced. The allowable upper limit is 0.025 mass%, preferably 0.010 mass%.
Ti: 0. 010 mass%以下 Ti: 0.010 mass% or less
Tiは、 硬質な窒化物を形成し、 転動疲労寿命を低下させる。 したがって、 可能なかぎり低いことが望ましい。 その許容上限は 0. 010 raass %であり、 好ましくは 0. 005 raass%を上限とする。  Ti forms hard nitrides and reduces the rolling fatigue life. Therefore, it is desirable to be as low as possible. The allowable upper limit is 0.001 raass%, preferably 0.005 raass%.
N: 0. 015 mass%以下 N: 0.015 mass% or less
Nは、 硬質な窒化物を形成し、 転動疲労寿命を低下させる。 したがって、 可能なかぎり低いことが望ましい。 その許容上限は 0. 015 mass%であり、 好ましくは 0. 008 raass%を上限とする。 図面の簡単な説明  N forms hard nitrides and reduces the rolling fatigue life. Therefore, it is desirable to be as low as possible. The allowable upper limit is 0.015 mass%, preferably 0.008 raass%. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 B 1 0寿命に及ぼす Sb量の影響を示すグラフである。 発明を»するための最良の开態 FIG. 1 is a graph showing the effect of the amount of Sb on the B10 life. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例を示す。 なお、 本発明の実施態様はこの実施例に 限定されるものではない。  Hereinafter, examples of the present invention will be described. The embodiment of the present invention is not limited to this embodiment.
表 1および表 2に示す化学組成を有する鋼を転炉にて溶製し、 その後連 続铸造により 400 X 560 蘭のブルームとした。 該ブルームに 1200°Cで 30時 間の拡散焼なましを施し、 その後、 熱間圧延により 65誦 φの棒鋼とした。 該棒鋼に、 860 °Cの焼ならし、 760 〜800 °Cの球状化焼なましを施し、 さ らに 830 °Cで 30min 保持後油焼入れし、 180 °Cで 2 hの焼もどしを施した。 該焼もどし材を切削およびラッビング仕上げして、 60πιπι φ X 5 mmの円盤型 転動疲労寿命試験片を、 各鋼につき 12枚ずつ得た。  Steels having the chemical compositions shown in Tables 1 and 2 were melted in a converter, and then made into 400 X 560 orchids bloom by continuous casting. The bloom was subjected to diffusion annealing at 1200 ° C. for 30 hours, and then hot rolled to obtain a steel bar having a diameter of 65 mm. The steel bar is subjected to normalizing at 860 ° C, spheroidizing annealing at 760 to 800 ° C, further holding at 830 ° C for 30 minutes, oil quenching, and tempering at 180 ° C for 2 hours. gave. The tempered material was cut and rubbed to obtain 12 disk-type rolling fatigue life test specimens of 60πιπιφX 5mm for each steel.
転動疲労試験は、 森式スラスト型転動疲労試験機を用いて、 ヘルツ最大 接触応力 : 5260MPa 、 繰り返し応力数: 30Hz、 ならびに潤滑油 : # 68ター ビン油の条件で行った。 この試験結果を、 ワイブル分布にしたがうものと して確率紙上にまとめ、 B 1 0寿命 (累積破損確率: 10%における、 剥離 発生までの総負荷回数) を求めた。 従来鋼である鋼 1 ( J I S鋼種: S U J 2 ) の寿命を 1 としたときの相対比で評価した。  The rolling fatigue test was carried out using a forest-type thrust rolling fatigue tester under the following conditions: Hertz maximum contact stress: 5260 MPa, cyclic stress number: 30 Hz, and lubricating oil: # 68 turbine oil. The test results were summarized on a probability paper according to the Weibull distribution, and the B10 life (cumulative failure probability: the total number of loads until peeling occurred at 10%) was determined. The life ratio of steel 1 (JIS steel type: SUJ2), which is a conventional steel, was evaluated by a relative ratio when the life was set to 1.
評価結果は表 1および表 2にあわせて示した。 表 1および表 2に明らか に示されるように、 鋼 2およぴ鋼 6〜鋼 25の発明鋼は、 B 1 0寿命比が従 来鋼 (鋼 1 ) の 1. 7 〜5. 6 倍という優れた値を有している。  The evaluation results are shown in Tables 1 and 2. As clearly shown in Tables 1 and 2, the invention steels of steel 2 and steels 6 to 25 have a B10 life ratio 1.7 to 5.6 times that of the conventional steel (steel 1). It has an excellent value.
これに対し、 比較鋼である鋼 4は Cが、 鋼 5は Oが、 それぞれ本発明範 囲を外れており、 B 1 0寿命比は従来鋼より劣っている。 また、 比較鋼で ある鋼 3は化学組成が Sbを除き発明鋼である鋼 2と大差がない。 それにも かかわらず、 鋼 3の B 1 0寿命比は 1. 1であり、 鋼 2の 3. 2に比較して劣 つている。 明らかに、 Sb量低減の効果があらわれている。 供 試 材 の 化 学 組 成 (mass%) B ,。寿命比On the other hand, the steel 4 as the comparative steel has C and the steel 5 has O, which is out of the range of the present invention, and the B10 life ratio is inferior to the conventional steel. In addition, steel 3 as the comparative steel does not differ much from steel 2 as the invention steel except for the chemical composition of Sb. Nevertheless, the B10 life ratio of steel 3 is 1.1, which is inferior to 3.2 of steel 2. Clearly, the effect of reducing the amount of Sb is apparent. Chemical composition of test material (mass%) B,. Life ratio
No 備 No equipment
Si n S Cr Mo Nb Ni Cu Al Ti Sb N O (鋼 No.1: 1) Si n S Cr Mo Nb Ni Cu Al Ti Sb N O (Steel No. 1: 1)
0.99 0.21 0.46 0.015 0.005 1.34 0.021 0.003 0.0030 0.0052 0.0009 1.0 従0.99 0.21 0.46 0.015 0.005 1.34 0.021 0.003 0.0030 0.0052 0.0009 1.0
01 0.010 0.003 2.46 0.002 0.0008 0.0040 0.0007 3.2 発 し 00 0.015 0.004 2.43 0.004 0.0028 0.0042 0.0009 比01 0.010 0.003 2.46 0.002 0.0008 0.0040 0.0007 3.2 Issue 00 0.015 0.004 2.43 0.004 0.0028 0.0042 0.0009 Ratio
0.40 0.015 0.005 2.20 0.005 0.0008 0.0042 0.0011 0.8 比0.40 0.015 0.005 2.20 0.005 0.0008 0.0042 0.0011 0.8 Ratio
1.02 0.013 0.008 2.21 0.005 0.0009 0.0055 0.0024 0.6 比1.02 0.013 0.008 2.21 0.005 0.0009 0.0055 0.0024 0.6 Ratio
1.02 0.012 0.004 ,68 0.003 0.0008 0.0044 0.0010 1.7 発1.02 0.012 0.004, 68 0.003 0.0008 0.0044 0.0010 1.7
1.02 1.75 0.014 0.003 2.00 0.003 0.0008 0.0041 0.0008 4.6 発1.02 1.75 0.014 0.003 2.00 0.003 0.0008 0.0041 0.0008 4.6
1.06 1.87 0.009 0.004 2.04 0.004 0.0007 0.0037 0.0007 3.9 発1.06 1.87 0.009 0.004 2.04 0.004 0.0007 0.0037 0.0007 3.9
1.04 0.010 0.004 1.99 1.24 0.005 0.0007 0.0048 0.0009 4.6 発1.04 0.010 0.004 1.99 1.24 0.005 0.0007 0.0048 0.0009 4.6
10 1.03 0.010 0.003 1.96 0.83 0.003 0.0008 0.0038 0.0007 3.910 1.03 0.010 0.003 1.96 0.83 0.003 0.0008 0.0038 0.0007 3.9
11 1.03 0.008 0.003 1.97 0.79 0.004 0.0008 0.0043 0.0008 3.2 発11 1.03 0.008 0.003 1.97 0.79 0.004 0.0008 0.0043 0.0008 3.2
12 1.00 0.013 0.008 2.02 1.96 0.003 0.0008 0.0041 0.0006 5.5 発12 1.00 0.013 0.008 2.02 1.96 0.003 0.0008 0.0041 0.0006 5.5
13 1.02 0.012 0.005 2.01 1.32 0.003 0.0007 0.0041 0.0008 4.6 発13 1.02 0.012 0.005 2.01 1.32 0.003 0.0007 0.0041 0.0008 4.6
14 1.00 0.011 0.004 2.01 0.047 0.002 0.0006 0.0036 0.0004 4.2 発14 1.00 0.011 0.004 2.01 0.047 0.002 0.0006 0.0036 0.0004 4.2
15 0.99 0.23 0.42 0.009 0.005 1.97 0.023 0.002 0.0008 0.0038 0.0006 発 15 0.99 0.23 0.42 0.009 0.005 1.97 0.023 0.002 0.0008 0.0038 0.0006
表 2 Table 2
B 1 ()寿命比 B 1 () Life ratio
vm c Si Mn P S Cr Mo V Nb Ni Cu Al Ti Sb N O (鋼 No.1: 1.) vm c Si Mn P S Cr Mo V Nb Ni Cu Al Ti Sb N O (Steel No.1: 1.)
16 0.98 0.79 0.11 0.008 0.004 1.96 0.023 0.005 0.0008 0.0038 0.0006 3.4 発明16 0.98 0.79 0.11 0.008 0.004 1.96 0.023 0.005 0.0008 0.0038 0.0006 3.4 Invention
17 1.03 0.12 1.44 0. Oil 0.003 1.96 0.025 0.002 0.0009 0.0042 0.0007 3.6 発明17 1.03 0.12 1.44 0.Oil 0.003 1.96 0.025 0.002 0.0009 0.0042 0.0007 3.6 Invention
18 0.99 1.01 1.03 0.010 0.003 1.98 0.021 0.003 0.0007 0.0041 0.0008 3.9 発明18 0.99 1.01 1.03 0.010 0.003 1.98 0.021 0.003 0.0007 0.0041 0.0008 3.9 Invention
19 1.05 1.02 0.47 0.010 0.004 2.01 0.47 0.022 0.002 0.0009 0.0038 0.0007 4.5 発明19 1.05 1.02 0.47 0.010 0.004 2.01 0.47 0.022 0.002 0.0009 0.0038 0.0007 4.5 Invention
20 1.07 0.27 0.42 0.008 0.005 1.76 0.26 0.31 0.022 0.004 0.0007 0.0039 0.0007 4.4 発明20 1.07 0.27 0.42 0.008 0.005 1.76 0.26 0.31 0.022 0.004 0.0007 0.0039 0.0007 4.4 Invention
21 1.01 0.27 0.48 0.012 0.002 1.79 0.25 0.028 0.002 0.0006 0.0040 0.0005 3.7 発明21 1.01 0.27 0.48 0.012 0.002 1.79 0.25 0.028 0.002 0.0006 0.0040 0.0005 3.7 Invention
22 0.99 0.25 0.42 0.012 0.003 1.85 0.88 0.48 0.023 0.003 0.0007 0.0039 0.0006 4.2 発明22 0.99 0.25 0.42 0.012 0.003 1.85 0.88 0.48 0.023 0.003 0.0007 0.0039 0.0006 4.2 Invention
23 1.00 0.26 0.38 0.010 0.005 1.82 0.49 0.79 0.37 0.025 0.004 0.0009 0.0042 0.0008 5.4 発明23 1.00 0.26 0.38 0.010 0.005 1.82 0.49 0.79 0.37 0.025 0.004 0.0009 0.0042 0.0008 5.4 Invention
24 1.04 0.26 0.86 0. Oil 0.004 1.77 0.25 0.76 0.41 0.021 0.004 0.0007 0.0042 0.0007 4.3 発明24 1.04 0.26 0.86 0.Oil 0.004 1.77 0.25 0.76 0.41 0.021 0.004 0.0007 0.0042 0.0007 4.3 Invention
25 0.97 0.24 0.42 0.009 0.005 1.64 0.43 0.21 0.18 0.51 0.28 0.024 0.004 0.0007 0.0038 0.0009 5.6 発明 25 0.97 0.24 0.42 0.009 0.005 1.64 0.43 0.21 0.18 0.51 0.28 0.024 0.004 0.0007 0.0038 0.0009 5.6 Invention
産業上の利用可能性 Industrial applicability
本発明によれば、 Crを多量に添加し、特に鋼中 Sb量を 0. 0010mass % 以下に抑制するなどの成分調整のみによ り、 転動疲労寿命が格段に 優れた軸受用鋼を得ることができる。 Sb量の制限は、 スクラップの 管理によ り容易に実現することが可能であり、 生産性の面からも好 ましく、 工業的に寄与するところ大である。  According to the present invention, a bearing steel having significantly superior rolling fatigue life can be obtained only by adjusting the composition by adding a large amount of Cr and suppressing the amount of Sb in the steel to 0.0010 mass% or less. be able to. Limiting the amount of Sb can be easily achieved by managing scrap, which is favorable in terms of productivity and greatly contributes to the industry.

Claims

請 求 の範囲 The scope of the claims
1 . C : 0.95〜1.10mass%、  1. C: 0.95-1.10mass%,
Cr: 1.60超え〜 3.50mass%、  Cr: over 1.60 ~ 3.50mass%,
O : 0.0015mass%以下および  O: 0.0015 mass% or less and
Sb: 0.0010mass%以下  Sb: 0.0010mass% or less
を含有し、 残部が Feおよび不可避的不純物よりなることを特徴と する転動疲労寿命に優れる軸受用鋼。  A bearing steel with excellent rolling fatigue life, characterized by containing Fe and the balance consisting of Fe and unavoidable impurities.
2. C : 0.95〜 1.10mass%、 2. C: 0.95-1.10mass%,
Cr: 1.60超え〜 3.50mass%、  Cr: over 1.60 ~ 3.50mass%,
O : 0.0015mass%以下および  O: 0.0015 mass% or less and
Sb: 0.0010mass%以下  Sb: 0.0010mass% or less
を含み、 さらに  And further
Si : 2.5 mass%以下、  Si: 2.5 mass% or less,
Mn: 1.5 mass%以下、  Mn: 1.5 mass% or less,
Mo: 2.5 raass%以下、  Mo: 2.5 raass% or less,
Ni : 3.0 raass%以下、  Ni: 3.0 raass% or less,
Nb: 1.5 mass° /。以下、  Nb: 1.5 mass ° /. Less than,
V : 1.5 mass0/。以下、 V: 1.5 mass 0 /. Less than,
Cu: 2.0 mass%以下および  Cu: 2.0 mass% or less and
A1 : 0.08mass%以下  A1: 0.08mass% or less
のうちから選ばれる 1種または 2種以上を含有し、 残部は Feおよ び不可避的不純物よ りなることを特徴とする転動疲労寿命に優れ る軸受用鋼  Bearing steel with excellent rolling fatigue life, characterized by containing one or more selected from the group consisting of Fe and unavoidable impurities.
PCT/JP1999/005986 1998-11-10 1999-10-28 Bearing steel excellent in rolling fatigue life WO2000028100A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002317658A CA2317658A1 (en) 1998-11-10 1999-10-28 Bearing steel having superior rolling contact fatigue life
EP99951124A EP1048744A4 (en) 1998-11-10 1999-10-28 Bearing steel excellent in rolling fatigue life
KR10-2000-7007005A KR100508463B1 (en) 1998-11-10 1999-10-28 Bearing steel excellent in rolling fatigue life

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/318795 1998-11-10
JP31879598A JP3779078B2 (en) 1998-11-10 1998-11-10 Bearing steel with excellent rolling fatigue life

Publications (1)

Publication Number Publication Date
WO2000028100A1 true WO2000028100A1 (en) 2000-05-18

Family

ID=18103038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005986 WO2000028100A1 (en) 1998-11-10 1999-10-28 Bearing steel excellent in rolling fatigue life

Country Status (6)

Country Link
EP (1) EP1048744A4 (en)
JP (1) JP3779078B2 (en)
KR (1) KR100508463B1 (en)
CA (1) CA2317658A1 (en)
TW (1) TW454042B (en)
WO (1) WO2000028100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082107A1 (en) * 2007-12-20 2009-07-02 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889931B2 (en) * 2001-01-26 2007-03-07 Jfeスチール株式会社 Bearing material
JP4586313B2 (en) * 2001-07-31 2010-11-24 Jfeスチール株式会社 Manufacturing method of high carbon seamless steel pipe with excellent secondary workability
JP4252837B2 (en) 2003-04-16 2009-04-08 Jfeスチール株式会社 Steel material with excellent rolling fatigue life and method for producing the same
JP5857433B2 (en) * 2011-04-14 2016-02-10 日本精工株式会社 Method for manufacturing rolling guide device
CN102399533A (en) * 2011-09-26 2012-04-04 宁国市东方碾磨材料有限责任公司 Wear-resistant and corrosion-resistant nano-abrasive material and preparation method thereof
JP5810867B2 (en) * 2011-11-25 2015-11-11 新日鐵住金株式会社 Bearing steel
CN104093518A (en) * 2011-12-20 2014-10-08 Skf公司 Method, ring & bearing
EP2794174A4 (en) * 2011-12-20 2016-01-20 Skf Ab Method for manufacturing a steel component by flash butt welding and a component made by using the method
JP6056647B2 (en) * 2012-06-28 2017-01-11 Jfeスチール株式会社 Bearing steel manufacturing method and bearing steel obtained by the manufacturing method
CN103045957B (en) * 2013-01-06 2015-07-22 奉化市金燕钢球有限公司 High-carbon-chromium stainless bearing steel
CN104087866B (en) * 2014-07-31 2016-04-06 宁国市宁武耐磨材料有限公司 A kind of ball mill high heat-resistant and wear-resistant ball
CN104109794B (en) * 2014-08-01 2016-06-01 宁国市宁武耐磨材料有限公司 Chromium complex alloyed resistance to abrading-ball in a kind of
CN105296838A (en) * 2015-10-22 2016-02-03 宁国市南方耐磨材料有限公司 High-hardness and high-toughness abrasion-resisting ball
CN108559913A (en) * 2018-05-16 2018-09-21 浙江健力股份有限公司 A kind of GCr15 Steel Pipe For Bearings and its preparation process
CN115087809A (en) 2020-02-17 2022-09-20 日本精工株式会社 Rolling bearing and method for manufacturing same
CN112111696A (en) * 2020-09-29 2020-12-22 钢铁研究总院 High-carbon bearing steel with high isotropy and long contact fatigue life and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271982A (en) * 1993-03-23 1994-09-27 Kawasaki Steel Corp Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JPH06287693A (en) * 1993-03-30 1994-10-11 Kawasaki Steel Corp Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load
JPH0892689A (en) * 1994-09-21 1996-04-09 Kawasaki Steel Corp Steel for bearing excellent in property for delaying change in microstructure caused by repeated stress load
JPH10158790A (en) * 1996-12-06 1998-06-16 Kawasaki Steel Corp Steel for bearing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649589A (en) * 1992-07-29 1994-02-22 Nkk Corp Bearing steel for cold forming
JP3383347B2 (en) * 1993-03-30 2003-03-04 川崎製鉄株式会社 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3243330B2 (en) * 1993-03-30 2002-01-07 川崎製鉄株式会社 Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JPH0711386A (en) * 1993-06-25 1995-01-13 Nkk Corp Bearing steel for cold forming
JP3411388B2 (en) * 1994-05-27 2003-05-26 川崎製鉄株式会社 Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3338761B2 (en) * 1996-02-29 2002-10-28 川崎製鉄株式会社 Bearing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271982A (en) * 1993-03-23 1994-09-27 Kawasaki Steel Corp Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JPH06287693A (en) * 1993-03-30 1994-10-11 Kawasaki Steel Corp Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load
JPH0892689A (en) * 1994-09-21 1996-04-09 Kawasaki Steel Corp Steel for bearing excellent in property for delaying change in microstructure caused by repeated stress load
JPH10158790A (en) * 1996-12-06 1998-06-16 Kawasaki Steel Corp Steel for bearing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1048744A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082107A1 (en) * 2007-12-20 2009-07-02 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
US9593389B2 (en) 2007-12-20 2017-03-14 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel

Also Published As

Publication number Publication date
TW454042B (en) 2001-09-11
CA2317658A1 (en) 2000-05-18
EP1048744A1 (en) 2000-11-02
KR20010033504A (en) 2001-04-25
JP2000144326A (en) 2000-05-26
KR100508463B1 (en) 2005-08-17
JP3779078B2 (en) 2006-05-24
EP1048744A4 (en) 2001-02-28

Similar Documents

Publication Publication Date Title
JP5432105B2 (en) Case-hardened steel and method for producing the same
WO2000028100A1 (en) Bearing steel excellent in rolling fatigue life
JP2000054069A (en) Carburized material excellent in rolling fatigue characteristic
KR20080035021A (en) Bearing material
JP3538900B2 (en) Rolling member
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP2753998B2 (en) Carburizing steel with few carburized abnormal layers
JP3492550B2 (en) Corrosion resistant steel for induction hardening
JP3317516B2 (en) Bearing steel
JPH07126804A (en) Steel for carburizing bearing
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP2007113034A (en) Bearing steel
JP3488395B2 (en) High hardness corrosion resistant steel with excellent workability
JPH0873991A (en) Steel for carburization
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
KR100262441B1 (en) Carburizing steel having excellent cold forging property
JPS62274056A (en) Steel for rapid carburizing
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP2001234275A (en) Case hardening steel excellent in rolling fatigue life in quasi-high temperature environment
JP3243329B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH0881743A (en) Carburizing steel
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3420331B2 (en) Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007007005

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2317658

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999951124

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09582497

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999951124

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007005

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999951124

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007007005

Country of ref document: KR