JP3379785B2 - Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading - Google Patents

Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Info

Publication number
JP3379785B2
JP3379785B2 JP07144893A JP7144893A JP3379785B2 JP 3379785 B2 JP3379785 B2 JP 3379785B2 JP 07144893 A JP07144893 A JP 07144893A JP 7144893 A JP7144893 A JP 7144893A JP 3379785 B2 JP3379785 B2 JP 3379785B2
Authority
JP
Japan
Prior art keywords
steel
bearing
heat treatment
rolling
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07144893A
Other languages
Japanese (ja)
Other versions
JPH06279936A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07144893A priority Critical patent/JP3379785B2/en
Publication of JPH06279936A publication Critical patent/JPH06279936A/en
Application granted granted Critical
Publication of JP3379785B2 publication Critical patent/JP3379785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに軸受使用環境の過酷化に伴って生ずる
特有の劣化,すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性と、さらに熱処理時に起こる脱炭層の生成を抑制す
る効果とに優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly to rolling due to a characteristic deterioration caused by the harsh working environment of the bearing, that is, a repeated stress load. We propose a bearing steel that has excellent retardation properties against microstructural changes (deterioration) that occur under the dynamic contact surface, and that has the effect of suppressing the formation of a decarburized layer that occurs during heat treatment.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、高価な溶製設備の設置ある
いは従来設備の大幅な改良が必要であり、経済的な負担
が大きいという問題があった。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel is one of the important properties that long rolling fatigue life is important, but it is considered that the influence of non-metallic inclusions in steel is the most significant factor affecting rolling fatigue life. Was there.
Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel. For example, as those developed with the aim of further improving the rolling contact fatigue life of bearings, there are Japanese Patent Laid-Open Nos. 1-306542 and 3-1268.
There are proposals such as Japanese Patent No. 39, which are technologies for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel. However, in order to manufacture a bearing steel with a small amount of non-metallic inclusions, it is necessary to install expensive melting equipment or drastically improve conventional equipment, and there is a problem that the economical burden is large.

【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制することの研究である。一
般に、上記JIS-SUJ 2 に規定された軸受鋼は、0.95〜1.
10wt%のCを含むことから、非常に硬質であり、それ故
に、球状化焼なましを行って加工性を向上させた後に成
形加工し、その後焼入れ, 焼もどし処理を施すことによ
って、転がり軸受に必要な強度と靱性を得ていた。とこ
ろが、このような特性改善のための熱処理が何回もかさ
なると、素材表面には、Cと雰囲気ガスとの反応によっ
て、脱炭層と呼ばれる“低C濃度領域”が発生すること
が知られている。この脱炭層は、転がり軸受の硬さ低下
のみならず転動疲労寿命劣化の原因となることから、切
削または研削加工により除去するのが普通であった。そ
のために材料歩留り、さらには生産性の低下を余儀なく
されていたのである。これに対して従来、上記脱炭層の
生成を防止する手段として、熱処理時における炉内の雰
囲気ガス中のカーボンポテンシャルをコントロールする
方法や、特開平2−54717 号公報に開示されている, 球
状化焼なましの初期段階に浸炭処理を施す方法などが提
案されている。しかし、上記の各方法はいずれも、熱処
理あるいはその前処理時の雰囲気清浄によるものである
ことから、熱処理コストが嵩むのみならず、材料の組成
や熱処理時間等に応じた適切なガス組成の設定といった
煩雑な操作を必要とするところに問題があった。
Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study on workability, especially suppressing formation of a decarburized layer during heat treatment. In general, the bearing steel specified in JIS-SUJ 2 above is 0.95 to 1.
Since it contains 10 wt% of C, it is very hard. Therefore, rolling bearings can be obtained by performing spheroidizing annealing to improve workability, then forming, and then quenching and tempering. Had the necessary strength and toughness. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, heretofore, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and the spheroidizing method disclosed in JP-A-2-54717 have been disclosed. A method of carburizing at the initial stage of annealing has been proposed. However, since each of the above methods is performed by cleaning the atmosphere during the heat treatment or the pretreatment thereof, not only the heat treatment cost increases but also the setting of an appropriate gas composition according to the composition of the material, the heat treatment time, etc. There was a problem in that a complicated operation was required.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術につ
いて発明者らは最近、種々の研究を行った。その結果、
意外にも転動寿命を決めている要因としては、従来から
一般に論じられてきた上述した現象;すなわち、上述し
た“非金属介在物”の存在や熱処理時に生じる“脱炭
層”(低C濃度領域)の生成以外の要因があるというこ
とを突き止めた。というのは、従来技術の下で単に非金
属介在物や脱炭層を減少させても、軸受の転動疲労寿
命、特に、高負荷あるいは高温といった過酷な条件下で
の軸受寿命の向上に対しては大きな効果が得られないと
いうケースを多く経験したからである。このことから、
軸受寿命を律する他の要因の存在を確信したのである。
DISCLOSURE OF THE INVENTION The inventors have recently conducted various studies on the above-mentioned conventional technique. as a result,
Unexpectedly, the factors that determine the rolling life are the above-mentioned phenomena that have been generally discussed in the past; namely, the presence of the above-mentioned "non-metallic inclusions" and the "decarburization layer" (low C concentration region) that occurs during heat treatment. ). This is because even if the non-metallic inclusions and decarburized layer are simply reduced under the conventional technology, it is possible to improve the rolling contact fatigue life of the bearing, especially the improvement of the bearing life under severe conditions such as high load or high temperature. Because I experienced many cases where I could not get a big effect. From this,
He was convinced that there were other factors that govern bearing life.

【0005】そこで、本発明者らは、最近の軸受使用環
境を考慮した上での軸受寿命、とくに転がり軸受の剥離
の発生原因についての調査を行った。その結果、軸受使
用環境の激化に伴って、軸受の内・外輪と転動体との
触転動時に発生する剪断応力により、転動接触面の下層
部分(表層部)に、図1(a)に示すような、帯状の白色
生成物と棒状の析出物からなるミクロ組織変化層が発生
することが判った。そして、このミクロ組織変化層は転
動回数を増すにつれて次第に成長し、終いにはこのミク
ロ組織変化部から、図1(b)に示すような疲労剥離が生
じて軸受寿命につながることがわかった。さらに、軸受
使用環境の苛酷化すなわち,高面圧化(小型化),使用
温度の上昇は、これらミクロ組織変化が発生するまでの
転動回数を短縮し、著しい軸受寿命の低下につながると
いうことを突き止めた。すなわち、使用環境の過酷化に
伴う軸受寿命というのは、従来技術のような、脱炭層や
非金属介在物の制御だけでは不十分であり、例えば、単
に非金属介在物を低減させただけでは、上述した転動接
触面下で発生するミクロ組織変化が発生するまでの時間
を遅延させることはできない。その結果として、軸受寿
命の今まで以上の向上は図り得ないということを知見し
たのである。
Therefore, the present inventors have investigated the bearing life in consideration of the recent bearing usage environment, in particular, the cause of separation of rolling bearings. As a result, due to the contact stress between the inner and outer races of the bearing and the rolling elements due to the intensifying environment in which the bearing is used, the shear stress generated at the time of rolling causes the lower layer portion (surface layer portion) of the rolling contact surface to It was found that a microstructure change layer composed of a white product in the form of a strip and a precipitate in the form of a rod was generated as shown in FIG. 1 (a). It was found that the microstructure-change layer gradually grows as the number of rolling increases, and finally the microstructure-change portion causes fatigue separation as shown in FIG. 1 (b), which leads to the bearing life. It was Furthermore, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the number of rolling cycles until these microstructural changes occur, leading to a marked reduction in bearing life. I found out. In other words, the bearing life due to the harsh environment of use is not sufficient to control the decarburized layer and non-metallic inclusions as in the conventional technique.For example, simply reducing the non-metallic inclusions is not enough. However, it is not possible to delay the time until the above-mentioned microstructure change occurring under the rolling contact surface occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での軸受使用中に発生が予想されるミクロ組織変化
を遅延させることができ、ひいては軸受寿命の著しい向
上をもたらすと共に、熱処理時の脱炭層の形成を抑えて
熱処理生産性( 加工除去を減少させる)の向上が得られ
る軸受鋼を提供することにある。
[0006] Therefore, an object of the present invention is to delay the microstructural change expected to occur during the use of the bearing under harsh operating conditions, and thereby to significantly improve the life of the bearing, and at the time of heat treatment. (EN) A bearing steel capable of suppressing the formation of a decarburized layer and improving heat treatment productivity (reducing work removal).

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、それの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立ち、さらに、脱炭層の
形成を抑制することを併せ達成する種々の実験と検討と
を行った。その結果、意外にも、MnおよびSbを適正量複
合添加すれば、繰り返し応力負荷による転動接触面下に
生成する上述したミクロ組織変化を著しく遅延できると
共に、さらに熱処理時の脱炭層の発生抑制もできること
を見い出し、本発明軸受鋼を開発した。
The inventors of the present invention focused on a new "microstructure change delay characteristic" as the bearing life based on the above-mentioned knowledge, and of course, it is necessary to improve it. It is necessary to design a new alloy (compositional composition), and it is not possible to further improve the life of the bearing without realizing this. Furthermore, various achievements are also made to suppress the formation of decarburized layer. Experiments and examinations were performed. As a result, surprisingly, by adding an appropriate amount of Mn and Sb in combination, it is possible to significantly delay the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading, and further suppress the occurrence of a decarburized layer during heat treatment. The inventors have found that it is also possible to develop the bearing steel of the invention.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt%,Sb:
0.001〜0.015wt%,O:0.0020wt%以下を含有し、残部
がFeおよび不可避的不純物からなる、熱処理生産性なら
びに繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼(第1発明)。 (2) C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt%,Sb:
0.001〜0.015wt%,O:0.0020wt%以下を含有し、さら
Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Ni:0.05
〜1.0wt%,Mo:0.05〜0.5wt%,Cu:0.05〜1.0wt%,
B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及びN:
0.0005〜0.012wt%のうちから選ばれるいずれか1種ま
たは2種以上を含み、残部がFeおよび不可避的不純物か
らなる、熱処理生産性ならびに繰り返し応力負荷による
ミクロ組織変化の遅延特性に優れた軸受鋼(第2発
明)。 (3) C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt%,Sb:
0.001〜0.015wt%,O:0.0020wt%以下を含有し、さら
Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:1.
0超〜3.0wt%,Mo:0.5超〜2.0wt%,Cu:1.0超〜2.5wt
%,N:0.012超〜0.050wt%,V:0.05〜1.0wt%,N
b:0.05〜1.0wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5
wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:
0.05〜1.5wt%のうちから選ばれるいずれか1種または
2種以上を含み、残部がFeおよび不可避的不純物からな
る、熱処理生産性ならびに繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受鋼(第3発明)。 (4) C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt%,Sb:
0.001〜0.015wt%,O:0.0020wt%以下を含有し、さら
、下記I群の成分のうちから選ばれるいずれか1種ま
たは2種以上を含み、さらに、下記II群の成分(ただ
し、I群で選択されている元素は除く)のうちから選ば
れるいずれか1種または2種以上を含み、残部がFeおよ
び不可避的不純物からなる、熱処理生産性ならびに繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼(第4発明)。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Ni:0.
05〜1.0wt%,Mo:0.05〜0.5wt%,Cu:0.05〜1.0wt
%,B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及び
N:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:
1.0超〜3.0wt%,Mo:0.5超〜2.0wt%,Cu:1.0超〜2.5
wt%,N:0.012超〜0.050wt%,V:0.05〜1.0wt%,N
b:0.05〜1.0wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5
wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:
0.05〜1.5wt%
That is, the bearing steel of the present invention has the following essential constitution. (1) C: over 0.55 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, Sb:
Bearing steel containing 0.001 to 0.015 wt% and O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities and having excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load (first invention) . (2) C: over 0.55 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, Sb:
0.001 to 0.015 wt%, O: 0.0020 wt% or less , Si: 0.05 to 0.5 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05
~ 1.0wt%, Mo: 0.05 ~ 0.5wt%, Cu: 0.05 ~ 1.0wt%,
B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N:
Bearing steel containing one or more selected from 0.0005 to 0.012 wt% and the balance being Fe and unavoidable impurities and having excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading. (Second invention). (3) C: more than 0.55 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%, Sb:
It contains 0.001 to 0.015 wt% and O: 0.0020 wt% or less. Furthermore , Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni: 1.
Over 0 ~ 3.0wt%, Mo: over 0.5 ~ 2.0wt%, Cu: over 1.0 ~ 2.5wt
%, N: more than 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, N
b: 0.05-1.0wt%, W: 0.05-1.0wt%, Zr: 0.02-0.5
wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co:
Bearing steel that contains one or more selected from 0.05 to 1.5 wt% and the balance is Fe and unavoidable impurities, and is excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load. (Third invention). (4) C: over 0.55 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, Sb:
0.001 to 0.015 wt%, O: 0.0020 wt% or less, further containing any one or more selected from the following group I components, and further containing the following group II Ingredient (just
However, the microstructure change due to heat treatment productivity and repeated stress loading, containing one or more selected from the group (excluding elements selected from Group I) , and the balance consisting of Fe and unavoidable impurities. Bearing steel excellent in retardation property (4th invention). Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Ni: 0.
05 ~ 1.0wt%, Mo: 0.05 ~ 0.5wt%, Cu: 0.05 ~ 1.0wt
%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni:
Over 1.0 ~ 3.0wt%, Mo: over 0.5 ~ 2.0wt%, Cu: over 1.0 ~ 2.5
wt%, N: more than 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, N
b: 0.05-1.0wt%, W: 0.05-1.0wt%, Zr: 0.02-0.5
wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co:
0.05-1.5wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, Ni:0.0040wt%, O:0.0012wt%)
と、MnとSbとを添加した2種の材料 (C:1.01wt%, Si:0.21wt%, Mn:2.04wt%, C
r:1.33wt%, O:0.0010wt%, Sb:0.0040wt%, N:
0.0040wt%) (C:0.98wt%, Si:0.25wt%, Mn:4.28wt%, C
r:1.32wt%, O:0.0009wt%, Sb:0.0078wt%, N:
0.0038wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から15mmφ×22mmの
円筒型の試験片と、12mmφ×22mmの転動疲労試験用試験
片とを作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35wt%, Ni: 0.0040wt%, O: 0.0012wt%)
And two materials containing Mn and Sb (C: 1.01 wt%, Si: 0.21 wt%, Mn: 2.04 wt%, C
r: 1.33wt%, O: 0.0010wt%, Sb: 0.0040wt%, N:
0.0040wt%) (C: 0.98wt%, Si: 0.25wt%, Mn: 4.28wt%, C
r: 1.32wt%, O: 0.0009wt%, Sb: 0.0078wt%, N:
0.0038wt%) of the sample steel was prepared. Then, after normalizing these test materials, spheroidizing normalizing, after performing each treatment of quenching and tempering, a cylindrical test piece of 15 mm φ × 22 mm and 12 mm φ × 22 mm of each test material A test piece for rolling fatigue test was prepared.

【0010】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:600kgf/mm2 ,繰り返し応力数
46500 cpmの負荷条件の下で試験したものである。試験
の結果は、ワイブル分布確立紙上にプロットし, 材料強
度の上昇による転動疲労寿命の向上を示す数値と見られ
るB10(10%累積破損確率) と高負荷転動時の繰り返し
応力負荷によるミクロ組織変化発生を遅延させることに
よる転動疲労寿命の向上を示す数値と見られるB50(50
%累積破損確率)とを求めた。また、脱炭層の試験につ
いては、上記の円筒状試験片を10mmの位置で高さ方向に
垂直に切断後、ナイタールにて腐食し、ミクロ組織変化
による円周上の全脱炭層の最大値( 以後、「最大脱炭
層」という)で評価した。
In the rolling fatigue life test, the above-mentioned rolling fatigue test piece was used with a radial type rolling fatigue life tester, and Hertz maximum contact stress: 600 kgf / mm 2 , cyclic stress number.
Tested under a load condition of 46500 cpm. The results of the test are plotted on the Weibull distribution establishment paper, which is considered to be a numerical value showing the improvement of the rolling fatigue life due to the increase of the material strength, B 10 (10% cumulative failure probability) and the cyclic stress load during high load rolling. B 50 (50) which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change.
% Cumulative damage probability) was calculated. Further, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the maximum value of the total decarburized layer on the circumference due to the microstructure change ( Hereinafter, it was evaluated by "the maximum decarburized layer".

【0011】その結果を表1に示す。この表1に示す結
果から判るように、高Mn添加材については、前記B10
についての改善はそれほど大きくないが、B50値につい
ては著しく高い数値を示し、軸受平均寿命はSUJ 2 に比
べてB10値で約4倍、B50値で21倍もの改善を示すこと
が認められた。とくに、Mnの多量添加は高負荷転動中に
生成するミクロ組織変化の遅延特性に対して顕著な効果
を示し、その分破損(寿命)を遅延させることが期待で
きる。また、最大脱炭層に関しては、SUJ 2が0.10mmで
あったが、Sb:0.0040wt%含むものでは0.02mm、Sb:0.
0078wt%含むものでは0.01mmと、適当なSbの含有が脱炭
層の発生抑制に効果のあることも判った。
The results are shown in Table 1. As can be seen from the results shown in Table 1, with respect to the high Mn-added material, the improvement in the B 10 value is not so large, but the B 50 value shows a remarkably high value, and the average bearing life is longer than that of SUJ 2. It was observed that the B 10 value showed an improvement of about 4 times and the B 50 value showed an improvement of 21 times. In particular, the addition of a large amount of Mn has a remarkable effect on the delay characteristic of the microstructure change generated during high-load rolling, and it can be expected that the damage (life) is delayed by that amount. Regarding the maximum decarburized layer, SUJ 2 was 0.10 mm, but the one containing Sb: 0.0040 wt% was 0.02 mm, Sb: 0.
It was also found that when the content of Sb is 0.01 mm, the content of Sb is appropriate for suppressing the generation of the decarburized layer.

【0012】[0012]

【表1】 [Table 1]

【0013】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受寿命とミクロ組織変化に起因する寿命の変化との
関係を示す模式図である。この図に明らかなように、累
積破損確率10%のB10値で示される軸受寿命(以下、こ
れを「B10転動疲労寿命」という)は、単にMnを多量に
添加しただけでは向上しないが、累積破損確率50%のB
50値で示される軸受寿命(以下、これを「B50高負荷転
動疲労寿命」という)でみると、このMn多量添加の効果
は極めて顕著なものとなっている。そこで発明者らは、
こうした知見をもとに、B50高負荷転動疲労寿命を向上
させ、かつ熱処理時の脱炭層の成長の抑制を図るには、
どのような合金設計が有効であるかという観点から、以
下に説明するような成分組成の範囲を決定した。
FIG. 2 is a summary of the results of the above-mentioned bearing rolling fatigue life experiments, showing the relationship between the bearing life due to non-metallic inclusions and the change in life due to microstructural changes. It is a schematic diagram. As is clear from this figure, the bearing life indicated by the B 10 value with a cumulative failure probability of 10% (hereinafter referred to as “B 10 rolling contact fatigue life”) is not improved by simply adding a large amount of Mn. However, B with a cumulative damage probability of 50%
Looking at the bearing life indicated by 50 values (hereinafter referred to as “B 50 high load rolling contact fatigue life”), the effect of adding a large amount of Mn is extremely remarkable. So the inventors
Based on these findings, in order to improve the B 50 high load rolling contact fatigue life and to suppress the growth of the decarburized layer during heat treatment,
From the viewpoint of what kind of alloy design is effective, the range of component composition as described below was determined.

【0014】C:0.55超〜1.5wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.55wt%以下ではこうした効果が得られな
い。一方、1.5wt%超では被削性、鍛造性が低下するの
で、0.55超〜1.5wt%の範囲に限定する。
C: more than 0.55 to 1.5 wt% C is an element that is solid-dissolved in the matrix and effectively acts to strengthen martensite. It improves the strength after the hardening and tempering and the rolling fatigue life. Is included for If the content is 0.55 wt% or less , such an effect cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the machinability and forgeability deteriorate, so it is limited to the range of more than 0.55 to 1.5 wt%.

【0015】Si:0.05〜0.5wt%,0.5超〜2.5wt% Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ,焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5wt%の範囲とする。また、このSiは、
0.5wt%超を添加すると、繰り返し応力負荷の下でのミ
クロ組織変化の遅延をもたらして転動疲労寿命を向上さ
せる効果がある。しかし、その含有量が2.5wt%を超え
ると、その効果が飽和する一方で加工性や靱性を低下さ
せるので、ミクロ組織変化遅延特性のより一層の向上の
ためには、0.5超〜2.5wt%を添加することが有効であ
る。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5wt% Si is used as a deoxidizer during the melting of steel and also as a base material.
Quenching and tempering due to an increase in softening resistance
As an element that increases the strength after rolling and improves rolling contact fatigue life
Is effective. Containing Si added for these purposes
The amount is in the range of 0.05 to 0.5 wt%. Also, this Si is
If more than 0.5 wt% is added, the stress will increase under repeated stress loading.
Improves rolling contact fatigue life by delaying the change in microstructure
Has the effect of However, its content exceeds 2.5 wt%
Then, while the effect is saturated, the workability and toughness decrease.
As a result, it is possible to further improve the microstructure change delay characteristics.
For this reason, it is effective to add more than 0.5 to 2.5 wt%.
It

【0016】Mn: 2.0超〜5.0 wt% Mnは、本発明においてSbとともに重要な役割を担ってい
る元素であり、とくに2.0 wt%を超えて多量の添加する
ことにより、高負荷転動時の繰返し応力の負荷の下で、
上述したミクロ組織変化の遅延を促して、B50転動疲労
寿命を顕著に改善する。しかし、その量が5.0 wt%を超
えるようなあまりに多量の添加では、残留γが多量に発
生して強度ならびに寸法安定性が低下するため、この目
的のためには、2.0 超〜5.0 wt%の範囲で添加する。
Mn: more than 2.0 to 5.0 wt% Mn is an element that plays an important role together with Sb in the present invention. Particularly, by adding a large amount exceeding 2.0 wt%, Mn can be Under cyclic stress loading,
It accelerates the delay of the microstructure change described above, and significantly improves the B 50 rolling contact fatigue life. However, if the amount added exceeds 5.0 wt%, a large amount of residual γ is generated and the strength and dimensional stability are reduced. Add in range.

【0017】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によるミクロ組織変化を遅延せしめて、こ
の面での転動疲労寿命を向上させるのに有効である。そ
して、この目的のためのCr添加の効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、この目的のた
めに添加するときは、 2.5超〜8.0 wt%としなければな
らない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when it is added for this purpose, it must be more than 2.5 to 8.0 wt%.

【0018】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安定性を害することになる他、
コストアップになるため、この作用効果を期待する場合
には、1.0 超〜3.0 wt%の範囲内で添加することが必要
である。
Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to increase the strength after quenching and tempering, improve toughness, and improve rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be deposited, resulting in a decrease in strength and a loss of dimensional stability.
If this effect is expected, it is necessary to add it in the range of more than 1.0 to 3.0 wt% because it increases the cost.

【0019】Mo:0.05〜0.5 wt%, 0.5 超〜2.0 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。さらにこのMoは、0.5 wt%超とい
う多量を添加すると、転動時のミクロ組織変化を遅らせ
る効果が著しくなり、この面での転動疲労寿命を向上さ
せる。しかし、その量が 2.0wt%を超えると、切削性,
鍛造性を低下させ、コストアップの因ともなるため、こ
の目的のためには 0.5超〜2.0 wt%の範囲内で添加する
ことが必要である。
Mo: 0.05-0.5 wt%, more than 0.5-2.0 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life. Furthermore, when Mo is added in a large amount of more than 0.5 wt%, the effect of delaying the microstructure change during rolling becomes remarkable, and the rolling fatigue life in this aspect is improved. However, if the amount exceeds 2.0 wt%, machinability,
Forgeability is deteriorated and it causes a cost increase. Therefore, for this purpose, it is necessary to add it in the range of more than 0.5 to 2.0 wt%.

【0020】Cu:0.05〜1.0 wt%, 1.0超〜2.5 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。一方、このCuはまた、上記の目的とは別に
1.0%を超えて多量に添加した場合には、繰り返し応力
負荷によるミクロ組織変化を遅らすことによって、転動
転動疲労寿命を著しく向上させることになる。ただし、
その量が 2.5wt%を超えるとこの添加効果が飽和すると
ともに、却って鍛造性の低下を招くことになるため、こ
の目的のためには 1.0超〜2.5 wt%の範囲で添加するこ
とが必要である。
Cu: 0.05 to 1.0 wt%, more than 1.0 to 2.5 wt% Cu is added to enhance the strength after quenching and tempering by increasing quenching and to improve the rolling fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient. On the other hand, this Cu is also different from the above purpose.
When it is added in a large amount exceeding 1.0%, the microstructural change due to repeated stress loading is delayed to significantly improve the rolling and rolling contact fatigue life. However,
If the amount exceeds 2.5 wt%, this addition effect saturates, and rather the forgeability decreases, so for this purpose it is necessary to add in the range of more than 1.0 to 2.5 wt%. is there.

【0021】Sb:0.001 〜0.015 wt% このSbは、この発明においてAlとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Alとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.001 wt%以上で顕著なもの
となるが、0.015 wt%を超えて添加してもその効果は飽
和することに加え、却って熱間加工性および靱性の劣化
を招くようになる。従って、Sbは 0.001〜0.015 wt%の
範囲で含有させることとした。
Sb: 0.001 to 0.015 wt% This Sb is an element that plays an important role together with Al in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, since the combined addition with Al has an effect on the retardation of the microstructure change as well as the suppression of the decarburized layer, it is positively added. These two effects become remarkable when the Sb content is 0.001 wt% or more, but even if the Sb content exceeds 0.015 wt%, the effect saturates, and conversely, hot workability and It causes deterioration of toughness. Therefore, Sb was included in the range of 0.001 to 0.015 wt%.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability to increase the strength after quenching and tempering and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0023】Al:0.005 〜0.07 wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靭性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労性の向上にも有効に作用する。このよう
な作用のためにAlは、0.005 〜0.07 wt%添加すること
が有効である。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it also effectively acts to improve rolling fatigue by increasing the strength after quenching and tempering. Due to this effect, it is effective to add 0.005 to 0.07 wt% of Al.

【0024】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0025】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.

【0026】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0027】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if a delay in microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0028】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、V, Nb, W, Zr, T
a, HfおよびCoのうちから選ばれるいずれか1種または
2種以上を添加して軸受寿命をさらに改善するようにし
てもよい。上記各元素の好適添加範囲と添加の目的、上
限値、下限値限定の理由につき、表2にまとめて示す。
As described above, a component for improving rolling contact fatigue life by delaying microstructure change due to repeated stress loading, a component for improving rolling contact fatigue life by increasing strength, and a bearing for suppressing generation of a decarburized layer The reason for limiting the components for improving the processability and productivity of was explained. By the way, in the present invention, further, V, Nb, W, Zr, T
The bearing life may be further improved by adding one or more selected from a, Hf and Co. Table 2 shows the preferable addition range of each of the above elements, the purpose of addition, and the reasons for limiting the upper limit value and the lower limit value.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0031】[0031]

【実施例】表3, 4, 5に示す化学組成を有する鋼材を
転炉で溶製したのち連続鋳造し、得られた鋼材を1240℃
で30h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次い
で、切削加工により棒鋼D/4部から15mmφ×20mmの円
筒状試験片ならびに転動疲労用試験片を採取した。その
後、これらの試験片について、雰囲気制御なしに(大気
雰囲気中で) 、焼ならし・球状化焼なまし・焼入れ・焼
もどしの順で試験を行った。さらに、転動疲労用試験片
は、脱炭層を完全に除去する目的で1mm以上の研磨およ
びラッピング仕上を行い、試験片寸法を12mmφ×22mmと
した。熱処理後の脱炭層深さは、15mmφ×20mmの円筒状
試験片を10mmの位置で高さ方向と垂直に切断し、ナイタ
ールにて腐食後、ミクロ組織観察による円周上の全脱炭
層の最大値 (以下、「最大脱炭層」と称する) で評価し
た。転動疲労寿命試験は、ラジアルタイプの転動疲労寿
命試験機によりヘルツ最大接触応力:600 kgf/mm2 , 繰
り返し応力数:約46500 cpm の条件で行ったものであ
る。試験結果は、ワイブル分布に従うものとして確率紙
上にまとめ、鋼材No.1の平均寿命 (累積破損確率:50%
における、剥離発生までの総負荷回数) を1として評価
した。その評価結果を、表3, 4, 5にあわせて示す。
[Example] Steels having the chemical compositions shown in Tables 3, 4, and 5 were melted in a converter and continuously cast, and the obtained steels were heated to 1240 ° C.
After diffusion annealing for 30 h, it was rolled into a steel bar of 65 mmφ. Then, a cylindrical test piece of 15 mmφ × 20 mm and a test piece for rolling fatigue were collected from the D / 4 part of the steel bar by cutting. Thereafter, these test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Further, the rolling fatigue test piece was ground and lapped to a size of 1 mm or more for the purpose of completely removing the decarburized layer, and the size of the test piece was 12 mmφ × 22 mm. The depth of the decarburized layer after heat treatment is the maximum of the total decarburized layer on the circumference measured by microstructure observation after cutting a 15 mmφ × 20 mm cylindrical test piece at a position of 10 mm perpendicular to the height direction and corroding with Nital. The value (hereinafter referred to as "maximum decarburized layer") was evaluated. The rolling fatigue life test was performed by a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and cyclic stress number: about 46500 cpm. The test results are summarized on the probability paper assuming that they follow the Weibull distribution, and the average life of steel material No. 1 (cumulative failure probability: 50%
Was evaluated as 1. The evaluation results are also shown in Tables 3, 4 and 5.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】表3, 4, 5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.3, 鋼中Mn量
が本発明鋼の範囲外である鋼材No. 4 ならびに鋼中O量
が本発明鋼範囲外である鋼材No.5は、最大脱炭層が0.01
〜0.11mmと従来鋼(鋼材No.1) の0.12mmに比べて若干は
改善されているものの、軸受平均寿命(B50寿命比)
は、いずれも従来鋼(鋼材No.1)に比べて低い結果とな
った。一方、鋼中Sb量が本発明鋼範囲外である鋼材No.2
のB50平均寿命は、従来鋼 (鋼材No.1) の約4倍も優れ
ているものの、最大脱炭層は0.11mmと従来例(SUJ 2)と
比較してそれほど改善されていない。これに対し、本発
明鋼である鋼材No. 6のB50転動疲労寿命で示す軸受寿
命は、従来鋼(鋼材No.1) に比較して約5倍も優れてお
り、Mnの添加がミクロ組織変化を著しく遅延し、その結
果転動疲労寿命(B50)の向上に有効に作用したことが
窺える。しかも、最大脱炭層深さも0.01mmであり、従来
鋼No.1に比べてはるかに少なく、Sbが本発明適正範囲を
外れている鋼No. 3 と比べても約1/10と改善効果が顕著
である。
As is clear from the results shown in Tables 3, 4, and 5, steel material No. 3 having a C content in the steel outside the range of the present invention, and steel material No. having a Mn content in the steel outside the range of the present invention steel. 4 and steel No. 5 in which the amount of O in the steel is outside the range of the present invention, the maximum decarburized layer is 0.01
~ 0.11mm, which is a slight improvement over the conventional steel (steel material No. 1) 0.12mm, but the average bearing life (B 50 life ratio)
In each case, the result was lower than that of the conventional steel (steel material No. 1). On the other hand, the steel material No. 2 whose Sb content in the steel is out of the steel range of the present invention
Although the B 50 average life of the steel is superior to the conventional steel (steel material No. 1) by about 4 times, the maximum decarburized layer is 0.11 mm, which is not so much improved as compared with the conventional example (SUJ 2). On the other hand, the bearing life of the steel material No. 6 of the present invention, which is represented by B 50 rolling contact fatigue life, is about 5 times better than that of the conventional steel (steel material No. 1), and the addition of Mn is It can be seen that the microstructure change was significantly delayed, and as a result, it effectively acted to improve the rolling fatigue life (B 50 ). Moreover, the maximum decarburized layer depth is 0.01 mm, which is much smaller than that of conventional steel No. 1, and the improvement effect is about 1/10 compared to steel No. 3 in which Sb is outside the proper range of the present invention. It is remarkable.

【0036】また、Mn, Sbに加えて、Si, Cr, Mo, Ni,
Cu, Al, B, Nのいずれか1種以上を添加してなる鋼N
o.8〜18の平均寿命は、軸受寿命を決めるB50転動疲労
寿命特性の改善のみならず、最大脱炭層深さも0.02mm以
下と著しく改善されていることが判った。
In addition to Mn and Sb, Si, Cr, Mo, Ni,
Steel N made by adding at least one of Cu, Al, B and N
It was found that the average life of 8 to 18 is not only the improvement of the B 50 rolling contact fatigue life characteristic that determines the bearing life, but also the maximum decarburized layer depth is 0.02 mm or less.

【0037】さらに、Mn, Sbに加えてSi, Cr, Mo, W,
V, Nb, Zr, Ta, Hf, Ni, Cu, Co,およびNのいずれか1
つ異常の転動疲労寿命改善成分を、所定の量以上を積
極的に加えた鋼No.19 〜32の場合には、熱処理生産性の
向上にあわせ上記平均寿命 (B50転動疲労寿命) もより
一層向上することが確かめられた。これは、本発明で推
奨する上記各改善成分のすべてを選択的に添加してなる
鋼No.33 〜45の場合も同様であって、軸受鋼寿命および
熱処理生産性の向上の両方に効果のあることが判った。
Further, in addition to Mn and Sb, Si, Cr, Mo, W,
Any one of V, Nb, Zr, Ta, Hf, Ni, Cu, Co, and N
In the case of Steel Nos. 19 to 32 in which a certain amount of abnormal rolling fatigue life improving component is positively added, the above average life (B 50 rolling fatigue life) is adjusted in accordance with the improvement of heat treatment productivity. It has been confirmed that it will be further improved. This is the same in the case of Steel No. 33 to 45 which is obtained by selectively adding all of the above-mentioned improving components recommended in the present invention, and is effective in both improving the bearing steel life and the heat treatment productivity. I knew it was.

【0038】[0038]

【発明の効果】以上説明したとおり、本発明によれば、
基本的にはSbの添加と共に2.0 %超のMnを複合添加軸受
鋼とすることにより、熱処理時の加工負荷を軽減でき
(Sbの添加効果) 、しかも、高負荷転動疲労寿命時の繰
り返し応力負荷に伴うミクロ組織変化の遅延をもたらし
(高Mn含有効果) 、所謂B50高負荷転動疲労寿命の向上
を達成して、高寿命の熱処理生産性の高い軸受用の鋼を
提供することができる。従って、従来技術の下では不可
欠とされていた、より一層の鋼中酸素量の低減あるいは
鋼中に存在する酸化物系非金属介在物の組成, 形状, な
らびにその分布状態をコントロールするために必要とな
る製鋼設備の改良あるいは建設が不必要である。また、
本発明にかかる軸受鋼の開発によって、転がり軸受の小
型化ならびに軸受使用温度のより以上の上昇が可能とな
る。
As described above, according to the present invention,
Basically, the processing load during heat treatment can be reduced by adding Sb and using Mn of more than 2.0% as a composite additive bearing steel.
(Additional effect of Sb) In addition, it causes a delay in microstructure change due to repeated stress loading during high load rolling fatigue life.
(High Mn content effect) The so-called B 50 high load rolling contact fatigue life can be improved to provide a bearing steel with a long life and high productivity in heat treatment. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. Also,
The development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真。
1 (a) and 1 (b) are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.

【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすMnとSb添加の影響を
示す説明図。
FIG. 2 is an explanatory diagram showing the effects of addition of Mn and Sb on the bearing life due to non-metallic inclusions and the bearing life due to microstructural changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平4−337048(JP,A) 特開 平4−235251(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Ltd. Technical Research Division (56) Reference JP-A-4-337048 (JP, A) Special Features Kaihei 4-235251 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt
%,Sb:0.001〜0.015wt%,O:0.0020wt%以下を含有
し、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼。
1. C: over 0.55 to 1.5 wt%, Mn: over 2.0 to 5.0 wt.
%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and is excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load.
【請求項2】C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt
%,Sb:0.001〜0.015wt%,O:0.0020wt%以下を含有
し、さらにSi:0.05〜0.5wt%,Cr:0.05〜2.5wt%,
Ni:0.05〜1.0wt%,Mo:0.05〜0.5wt%,Cu:0.05〜1.
0wt%,B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及
びN:0.0005〜0.012wt%のうちから選ばれるいずれか
1種または2種以上を含み、残部がFeおよび不可避的不
純物からなる、熱処理生産性ならびに繰り返し応力負荷
によるミクロ組織変化の遅延特性に優れた軸受鋼。
2. C: more than 0.55 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%
%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less , Si: 0.05 to 0.5 wt%, Cr: 0.05 to 2.5 wt%,
Ni: 0.05 to 1.0 wt%, Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.
0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%, and any one or more selected from the rest, and the balance from Fe and inevitable impurities. A bearing steel with excellent heat treatment productivity and excellent delay characteristics for microstructural changes due to repeated stress loading.
【請求項3】C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt
%,Sb:0.001〜0.015wt%,O:0.0020wt%以下を含有
し、さらにSi:0.5超〜2.5wt%,Cr:2.5超〜8.0wt
%,Ni:1.0超〜3.0wt%,Mo:0.5超〜2.0wt%,Cu:1.
0超〜2.5wt%,N:0.012超〜0.050wt%,V:0.05〜1.
0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,Zr:
0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5wt
%及びCo:0.05〜1.5wt%のうちから選ばれるいずれか
1種または2種以上を含み、残部がFeおよび不可避的不
純物からなる、熱処理生産性ならびに繰り返し応力負荷
によるミクロ組織変化の遅延特性に優れた軸受鋼。
3. C: more than 0.55 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt.
%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less , Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt
%, Ni: over 1.0 to 3.0 wt%, Mo: over 0.5 to 2.0 wt%, Cu: 1.
0 to 2.5 wt%, N: 0.012 to 0.050 wt%, V: 0.05 to 1.
0wt%, Nb: 0.05-1.0wt%, W: 0.05-1.0wt%, Zr:
0.02-0.5wt%, Ta: 0.02-0.5wt%, Hf: 0.02-0.5wt
% And Co: 0.05 to 1.5 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, and the balance of Fe and unavoidable impurities. Excellent bearing steel.
【請求項4】C:0.55超〜1.5wt%,Mn:2.0超〜5.0wt
%,Sb:0.001〜0.015wt%,O:0.0020wt%以下を含有
し、さらに、下記I群の成分のうちから選ばれるいずれ
か1種または2種以上を含み、さらに、下記II群の成分
(ただし、I群で選択されている元素は除く)のうちか
ら選ばれるいずれか1種または2種以上を含み、残部が
Feおよび不可避的不純物からなる、熱処理生産性ならび
に繰り返し応力負荷によるミクロ組織変化の遅延特性に
優れた軸受鋼。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Ni:0.
05〜1.0wt%,Mo:0.05〜0.5wt%,Cu:0.05〜1.0wt
%,B:0.0005〜0.01wt%,Al:0.005〜0.07wt%及び
N:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Ni:
1.0超〜3.0wt%,Mo:0.5超〜2.0wt%,Cu:1.0超〜2.5
wt%,N:0.012超〜0.050wt%,V:0.05〜1.0wt%,N
b:0.05〜1.0wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5
wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:
0.05〜1.5wt%
4. C: more than 0.55 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt.
%, Sb: 0.001 to 0.015 wt%, O: 0.0020 wt% or less, further containing any one or more selected from the following group I components, and further the following group II components
(However, excluding the elements selected in Group I) , any one or more selected from the group
Bearing steel consisting of Fe and unavoidable impurities, which has excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading. Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Ni: 0.
05 ~ 1.0wt%, Mo: 0.05 ~ 0.5wt%, Cu: 0.05 ~ 1.0wt
%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni:
Over 1.0 ~ 3.0wt%, Mo: over 0.5 ~ 2.0wt%, Cu: over 1.0 ~ 2.5
wt%, N: more than 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, N
b: 0.05-1.0wt%, W: 0.05-1.0wt%, Zr: 0.02-0.5
wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co:
0.05-1.5wt%
JP07144893A 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading Expired - Fee Related JP3379785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07144893A JP3379785B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07144893A JP3379785B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06279936A JPH06279936A (en) 1994-10-04
JP3379785B2 true JP3379785B2 (en) 2003-02-24

Family

ID=13460853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07144893A Expired - Fee Related JP3379785B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3379785B2 (en)

Also Published As

Publication number Publication date
JPH06279936A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233674B2 (en) Bearing steel
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3411387B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3243330B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3233728B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3243329B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233792B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411386B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411389B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3420331B2 (en) Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading
JP3411090B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271981A (en) Bearing steel excellent in heat treatment productivity and property of retarding change in microstructure due to repeated stress load

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees