JP3383349B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3383349B2
JP3383349B2 JP09555393A JP9555393A JP3383349B2 JP 3383349 B2 JP3383349 B2 JP 3383349B2 JP 09555393 A JP09555393 A JP 09555393A JP 9555393 A JP9555393 A JP 9555393A JP 3383349 B2 JP3383349 B2 JP 3383349B2
Authority
JP
Japan
Prior art keywords
bearing
steel
repeated stress
fatigue life
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09555393A
Other languages
Japanese (ja)
Other versions
JPH06287697A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09555393A priority Critical patent/JP3383349B2/en
Publication of JPH06287697A publication Critical patent/JPH06287697A/en
Application granted granted Critical
Publication of JP3383349B2 publication Critical patent/JP3383349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly to a delay for a microstructure change (deterioration) which occurs under a rolling contact surface due to repeated stress loads. We propose a bearing steel with excellent characteristics.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are techniques for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、鋼中酸素量の低
減が不可欠であるところ、これも既に限界に達してお
り、高価な溶製設備の設置あるいは従来設備の大幅な改
良が必要であり、経済的な負担が大きいという問題があ
った。また、本発明者らが行った最近の研究によれば、
転動寿命を決めている要因としては、従来から一般に論
じられてきた現象;すなわち、熱処理時に生じる“脱炭
層”(低C濃度領域)や上述した“非金属介在物”の存
在以外の要因もあるということが判った。というのは、
従来技術の下で単に脱炭層や非金属介在物を減少させて
も、軸受の転動疲労寿命、特に、高負荷あるいは高温と
いった過酷な条件下での軸受寿命の向上には大きな効果
が得られないことを多く経験したからである。このこと
から、特有の軸受寿命を律する他の要因の存在を確信し
たのである。
However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is essential to reduce the amount of oxygen in the steel, but this has already reached the limit, and expensive melting There is a problem in that it requires a large amount of financial burden because it requires installation of equipment or significant improvement of conventional equipment. Further, according to the recent research conducted by the present inventors,
The factors that determine the rolling life are phenomena that have been generally discussed in the past; that is, factors other than the presence of the “decarburized layer” (low C concentration region) and the above-mentioned “non-metallic inclusions” that occur during heat treatment. It turns out that there is. I mean,
Even if the decarburization layer and non-metallic inclusions are simply reduced under the conventional technology, a great effect can be obtained in improving the rolling contact fatigue life of the bearing, especially under severe conditions such as high load or high temperature. Because I experienced a lot of things that didn't happen. From this, we were convinced of the existence of other factors that control the bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体との回転接触時に発生する繰り返し剪断
応力により、転動接触面の下層部分(表層部)に、図1
(a)に示すような、帯状の白色生成物と棒状の析出物か
らなるミクロ組織変化層が発生し、これが転動回数を増
すにつれて次第に成長し、終いにはこのミクロ組織変化
部から疲労剥離(図1(b))が生じて軸受寿命につながる
ということが判った。さらに、軸受使用環境の苛酷化す
なわち,高面圧化(小型化),使用温度の上昇は、これ
らミクロ組織変化が発生するまでの転動回数を短縮し、
従来の軸受鋼SUJ2では著しい軸受寿命の低下となるとい
うことをつきとめた。すなわち、軸受寿命というのは、
従来技術のような、脱炭層や非金属介在物だけの制御で
は不十分であり、例えば、単に非金属介在物の量や大き
さを低減させただけでは、上述した転動接触面下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。
Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, by repeating the shear stress generated during rolling contact between the inner and outer rings and rolling elements of the bearing, the lower layer portion of the rolling contact surface (surface layer portion), FIG. 1
As shown in (a), a microstructure-changed layer consisting of a strip-shaped white product and rod-shaped precipitates is formed, which gradually grows as the number of rolling increases, and at the end fatigue from this microstructure-changed part occurs. It was found that peeling (Fig. 1 (b)) occurs and this leads to bearing life. Furthermore, the harsh bearing operating environment, that is, high surface pressure (miniaturization) and increase in operating temperature, shortens the number of rolling cycles until these microstructural changes occur,
We have found that the conventional bearing steel SUJ2 will significantly reduce the bearing life. In other words, bearing life is
Controlling only the decarburized layer and non-metallic inclusions as in the prior art is not sufficient.For example, if the amount and size of non-metallic inclusions are simply reduced, it will occur under the rolling contact surface described above. It is not possible to delay the time until the microstructure change occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
下における軸受使用中に発生するミクロ組織変化を遅延
させることができると共に、非金属介在物の最大粒径を
小さく抑制することにより、軸受寿命の著しい向上をも
たらすことのできる軸受鋼を提供することにある。
Therefore, an object of the present invention is to delay the microstructure change occurring during the use of the bearing under high load in order to improve the rolling contact fatigue life characteristics under severe operating conditions. The object is to provide a bearing steel capable of significantly improving the bearing life by suppressing the maximum grain size of non-metallic inclusions to be small.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命を律する要因として、新た
に“ミクロ組織変化遅延特性”というものに着目した。
そして、この特性の向上を図るには、当然そのための新
たな合金設計(成分組成)が必要であり、このことの実
現なくして軸受のより一層の寿命向上は図れないという
認識に立って、さらに種々の実験と検討とを行った。そ
の結果、SiとCrとを適正量複合添加すれば、繰り返し応
力負荷による転動接触面下に生成する上述したミクロ組
織変化を著しく遅延できることを見い出し、本発明軸受
鋼に想到した。
Based on the above-mentioned findings, the present inventors have newly focused on the "microstructure change delay characteristic" as a factor that controls the bearing life.
In order to improve these characteristics, of course, a new alloy design (ingredient composition) is necessary for that purpose, and with the recognition that it is impossible to further improve the life of the bearing without realizing this, Various experiments and studies were conducted. As a result, they have found that the addition of an appropriate amount of Si and Cr in combination can significantly delay the above-described microstructural change generated under the rolling contact surface due to repeated stress loading, and have conceived the present invention bearing steel.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.5〜1.5wt%,Si:1.0〜2.5wt%,Cr:2.5超
〜8.0wt%を含み、残部がFeおよび不可避的不純物から
なり、かつ酸化物系非金属介在物の最大粒径が8μm以
下である,繰り返し応力負荷によるミクロ組織変化の遅
延特性に優れた軸受鋼(第1発明)。 (2) C:0.5〜1.5wt%,Si:1.0〜2.5wt%,Cr:2.5超
〜8.0wt%を含有し、さらに、Mn:0.05〜2.0wt%,Ni:
0.05〜1.0wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01
wt%,Al:0.005〜0.07wt%及びN:0.0005〜0.012wt%
のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなり、かつ酸化
物系非金属介在物の最大粒径が8μm以下である,繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼(第2発明)。 (3) C:0.5〜1.5wt%,Si:1.0〜2.5wt%,Cr:2.5超
〜8.0wt%を含有し、さらに、Ni:1.0超〜3.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%及びCo:0.05〜1.5wt%のうちから選ばれるいずれ
か1種または2種以上を含み、残部がFeおよび不可避的
不純物からなり、かつ酸化物系非金属介在物の最大粒径
が8μm以下である,繰り返し応力負荷によるミクロ組
織変化の遅延特性に優れた軸受鋼(第3発明)。 (4) C:0.5〜1.5wt%,Si:1.0〜2.5wt%,Cr:2.5超
〜8.0wt%を含有し、さらに、下記I群の成分のうちか
ら選ばれるいずれか1種または2種以上を含み、さら
、下記II群の成分(ただし、I群で選択されている元
素は除く)のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなり、
かつ酸化物系非金属介在物の最大粒径が8μm以下であ
る,繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼(第4発明)。 I群: Mn:0.05〜2.0wt%,Ni:0.05〜1.0wt%,Cu:0.
05〜1.0wt%,B:0.0005〜0.01wt%,Al:0.005〜0.07
wt%及びN:0.0005〜0.012wt%II群: Ni:1.0超〜3.0wt%,Zr:0.02〜0.5wt%,Ta:
0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜1.5w
t%
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, the balance consisting of Fe and unavoidable impurities, and maximum of oxide-based nonmetallic inclusions A bearing steel having a grain size of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Mn: 0.05 to 2.0 wt%, Ni:
0.05-1.0wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01
wt%, Al: 0.005-0.07 wt% and N: 0.0005-0.012 wt%
A microstructure containing any one or more selected from among them, the balance consisting of Fe and unavoidable impurities, and having a maximum grain size of oxide-based nonmetallic inclusions of 8 μm or less, by repeated stress loading Bearing steel with excellent change delay characteristics (second invention). (3) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni: more than 1.0 to 3.0 wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt% and any one or more selected from the group consisting of Fe and unavoidable impurities and the maximum particle size of oxide-based nonmetallic inclusions is 8 μm. The following bearing steels (third invention) which are excellent in delay characteristics of microstructure change due to repeated stress loading. (4) C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, and any one or two selected from the following group I components In addition to the above, the following Group II components (provided that the elements selected in Group I are
(Excluding element) , and one or more selected from the group consisting of Fe and inevitable impurities.
A bearing steel having a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress load (4th invention). Serial group I: Mn: 0.05~2.0wt%, Ni: 0.05~1.0wt%, Cu: 0.
05-1.0wt%, B: 0.0005-0.01wt%, Al: 0.005-0.07
wt% and N: 0.0005 to 0.012 wt% Group II: Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt%, Ta:
0.02-0.5wt%, Hf: 0.02-0.5wt% and Co: 0.05-1.5w
t%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt%)
と、SiとCrとを複合添加した2種の材料 (C:1.00wt%, Si:1.28wt%, Mn:0.46wt%, C
r:3.51wt%, O:0.0009wt%, N:0.0046wt%) (C:1.02wt%, Si:1.29wt%, Mn:0.48wt%, C
r:3.49wt%, O:0.0037wt%, N:0.0048wt%) (C:1.00wt%, Si:1.32wt%, Mn:0.48wt%, C
r:7.23wt%, O:0.0008wt%, N:0.0052wt%) (C:1.02wt%, Si:1.32wt%, Mn:0.50wt%, C
r:7.21wt%, O:0.0014wt%, N:0.0050wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35 wt%, N: 0.0040 wt%, O: 0.0012 wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt%)
And two kinds of materials in which Si and Cr are added in combination (C: 1.00 wt%, Si: 1.28 wt%, Mn: 0.46 wt%, C
r: 3.51wt%, O: 0.0009wt%, N: 0.0046wt%) (C: 1.02wt%, Si: 1.29wt%, Mn: 0.48wt%, C
r: 3.49wt%, O: 0.0037wt%, N: 0.0048wt%) (C: 1.00wt%, Si: 1.32wt%, Mn: 0.48wt%, C
r: 7.23wt%, O: 0.0008wt%, N: 0.0052wt%) (C: 1.02wt%, Si: 1.32wt%, Mn: 0.50wt%, C
r: 7.21 wt%, O: 0.0014 wt%, N: 0.0050 wt%) was prepared. Then, these test materials were subjected to normalizing treatment, spheroidizing normalizing treatment, quenching and tempering treatment, and 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
0kgf/mm2 ,繰り返し応力数 46500 cpmの負荷条件の下で
転動疲労寿命の試験を行った。試験結果は、ワイブル分
布確立紙上にプロットし、非金属介在物の制御によって
影響される材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と、高負
荷転動時の繰り返し応力負荷によるミクロ組織変化発生
を遅延させることによる転動疲労寿命の向上を示す数値
と見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was carried out under a load condition of 0 kgf / mm 2 and a cyclic stress number of 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and B 10 (10% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life due to the increase of material strength affected by the control of non-metallic inclusions, B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change due to repeated stress load during high load rolling, was determined.

【0011】その結果、表1に示すように、介在物制御
をすることなく、Crを多量に添加し、かつSiを含有させ
たものについては、前記B10値についての改善は小さい
ものの、B50値についてはかなり高い数値を示して著し
く改善されていることが判る。即ち、軸受寿命はSUJ 2
に比べてB10値で約2倍、B50値で約30倍もの改善効果
を示していた。これに対し、Siと多量のCrの添加ととも
に非金属介在物の最大粒径を制御したものでは、高負荷
転動中に生成するミクロ組織変化の遅延特性に対して顕
著な改善効果を示すと共に、さらにB10値に表れている
ように非金属介在物を原因とする剥離に対する改善効果
が認められた。なかでもは、鋼中酸素量が高いにもか
かわらず介在物制御によってB10値は約38倍も優れてお
り、ミクロ組織変化の遅延と介在物の微細化がこのB10
値の向上に作用していることが判る。
As a result, as shown in Table 1, in the case where Cr is added in a large amount and Si is contained without controlling inclusions, the improvement in B 10 value is small, but As for the 50 value, it shows a considerably high value, and it can be seen that the value is significantly improved. That is, the bearing life is SUJ 2
Compared with the above, the improvement effect was about twice as much as the B 10 value and about 30 times as much as the B 50 value. On the other hand, when the maximum grain size of non-metallic inclusions is controlled together with the addition of Si and a large amount of Cr, a significant improvement effect is shown for the retardation property of the microstructure change generated during high load rolling. Further, as shown in the B 10 value, the effect of improving peeling caused by non-metallic inclusions was recognized. Among them, the 10 value B by high despite inclusions control in the steel oxygen content is excellent also about 38 times, finer delay the inclusion of microstructure change this B 10
It can be seen that it is working to improve the value.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物粒径に起因する軸受寿命とミクロ組
織変化に起因する寿命との関係を示す模式図である。こ
の図に明らかなように、従来のように累積破損確率10%
のB10値で示される軸受寿命(以下、これを「B10転動
疲労寿命」という)は、Crを多量に添加しかつSiを含有
するということだけでは大きな効果は期待し得ないが、
非金属介在物制御をも併せて行ったものの方が顕著な改
善効果を示している。一方、累積破損確率50%のB50
で示される軸受寿命 (以下、これを「B50高負荷転動疲
労寿命」という)でみると、非金属介在物制御とは関係
なくCr−Siの複合添加のみによっても改善の効果が極め
て顕著なものとなり、ミクロ組織変化生成環境の下での
軸受寿命を著しく向上させるのに有効なことが判る。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the bearing life due to the particle size of non-metallic inclusions and the life due to microstructural changes. As is clear from this figure, the cumulative damage probability is 10% as in the past.
The bearing life indicated by the B 10 value (hereinafter referred to as “B 10 rolling contact fatigue life”) cannot be expected to have a great effect only by adding a large amount of Cr and containing Si.
The one in which non-metallic inclusion control is also performed shows a remarkable improvement effect. On the other hand, looking at the bearing life indicated by the B 50 value with a cumulative damage probability of 50% (hereinafter referred to as “B 50 high load rolling contact fatigue life”), Cr-Si has no relation to non-metallic inclusion control. It can be seen that the effect of the improvement becomes extremely remarkable only by adding the compound, and it is effective for significantly improving the bearing life under the microstructure change generation environment.

【0014】そこで、本発明においては、主として繰り
返し応力負荷によるミクロ組織変化遅延特性の改善を図
るという観点から、以下に説明するような成分組成の範
囲を決定した。
Therefore, in the present invention, the range of the composition of components as described below is determined mainly from the viewpoint of improving the microstructure change retarding property due to the repeated stress load.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen the martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life by it. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, machinability and forgeability will deteriorate, so it is limited to the range of 0.5 to 1.5 wt%.

【0016】Si:1.0〜2.5wt% Siは、基本的には鋼の溶製時の脱酸剤として用いられる
他、基地に固溶して焼もどし軟化抵抗の増大により焼入
れ,焼もどし後の強度を高めて転動疲労寿命を向上させ
る元素として有効である。ただし、本発明において、こ
のSiの役割重要であって、1.0wt%以上添加すると、
繰り返し応力負荷の下でのミクロ組織変化の遅延をもた
らして転動疲労寿命を向上させる効果がある。しかし、
その含有量が2.5wt%を超えると、その効果が飽和する
一方で加工性や靱性を低下させるので、ミクロ組織変化
遅延特性のより一層の向上のためには、1.0〜2.5wt%を
添加することが有効である。
Si: 1.0 to 2.5wt% Si is basically used as a deoxidizer during the melting of steel
In addition, quenching due to an increase in tempering softening resistance as a solid solution in the base
To improve the rolling fatigue life by increasing the strength after tempering.
Is effective as an element. However, in the present invention, this
Role of SiIsIt is important that if 1.0 wt% or more is added,
Has a delay in microstructural evolution under cyclic stress loading
This has the effect of improving rolling fatigue life. But,
If its content exceeds 2.5wt%, its effect will be saturated.
On the other hand, it reduces the workability and toughness, so the microstructure changes.
1.0 to 2.5 wt% is required to further improve the delay characteristics.
It is effective to add.

【0017】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。こうした目
的のためにMnを、0.05〜2.0 wt%の範囲内で添加する。
Mn: 0.05 to 2.0 wt% Mn is an element that acts as a deoxidizer during the melting of steel and is effective in reducing the oxygen content of steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. For this purpose, Mn is added within the range of 0.05 to 2.0 wt%.

【0018】Cr: 2.5超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、 2.5wt%の添加は必要である。即ち、Crは、 2.5
wt%を超えて添加した場合には、繰返し応力負荷によっ
て発生するミクロ組織変化を遅延せしめて、この面での
転動疲労寿命を向上させるのに有効な元素である。そし
て、この目的のためのCr添加の効果は、 8.0wt%を超え
ると飽和するのみならず、却って焼入れ時の固溶C量の
低下を招いて強度が低下する。従って、Crは、 2.5超〜
8.0 wt%の範囲内で添加する。
Cr: More than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 2.5 wt% is necessary . That is, Cr is 2.5
when added pressure beyond the wt% is allowed delays microstructure change caused by repeated stress load is an element effective for improving the rolling contact fatigue life in this area. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, Cr exceeds 2.5
Add within the range of 8.0 wt%.

【0019】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安定性を害することになる他、
コストアップになるため、この作用効果を期待する場合
には、1.0 超〜3.0 wt%の範囲内で添加することが必要
である。
Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to enhance the strength after quenching and tempering, improve the toughness, and improve the rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be deposited, resulting in a decrease in strength and a loss of dimensional stability.
If this effect is expected, it is necessary to add it in the range of more than 1.0 to 3.0 wt% because it increases the cost.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
めることにより、転動疲労寿命を向上させる。この作用
効果は0.05wt%の添加で顕著となり、1.0 wt%を超える
と飽和するので、0.05〜1.0 wt%の範囲で添加する。
Cu: 0.05-1.0 wt% Cu improves rolling fatigue life by increasing quenching and strengthening after quenching and tempering. This effect becomes remarkable when 0.05 wt% is added, and becomes saturated when it exceeds 1.0 wt%, so it is added in the range of 0.05 to 1.0 wt%.

【0021】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0022】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労寿命の向上にも有効に作用する。このよ
うな作用のためにAlは、0.005 〜0.07wt%添加すること
が有効である。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it also effectively works to improve the rolling contact fatigue life by increasing the strength after quenching and tempering. For such an effect, it is effective to add 0.005 to 0.07 wt% of Al.

【0023】N:0.0005〜0.012 wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。このためにNは、0.0005〜
0.012 wt%の範囲内で添加する。
N: 0.0005 to 0.012 wt% N combines with the nitride-forming element to refine the crystal grains, and forms a solid solution in the matrix to increase the strength after quenching and tempering.
Improves rolling fatigue life. For this reason, N is 0.0005-
Add within 0.012 wt%.

【0024】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling contact fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.

【0025】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0026】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(CrおよびSiそれからMn, Ni, Cu, Al, B,
N)およびC,P,Sの限定理由について説明したが、
本発明ではさらに、Zr, Ta, HfおよびCoのうちから選ば
れるいずれか1種または2種以上を添加することによ
り、高負荷時の転動疲労寿命を改善させるようにしても
よい。
As described above, the main components (Cr and Si, and then Mn, Ni, and Mn, Ni, to improve the rolling fatigue life by increasing the strength as well as to improve the rolling fatigue life by delaying the microstructural change due to repeated stress loading. Cu, Al, B,
N) and the reason for limiting C, P, S is explained,
In the present invention, one or more selected from Zr, Ta, Hf and Co may be added to improve the rolling fatigue life under high load.

【0027】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.

【表2】 [Table 2]

【0028】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0029】次に、本発明においては、上記成分組成の
限定に加え、鋼中の酸化物系非金属介在物の形態(大き
さ)制御を行うことよって、主として上述したB10転動
疲労寿命の一層の向上を図ることにした。
Next, in the present invention, in addition to the above-mentioned compositional limitation, the morphology (size) of the oxide-based nonmetallic inclusions in the steel is controlled, so that the above-mentioned B 10 rolling contact fatigue life is mainly obtained. It was decided to further improve.

【0030】そこでまず、発明者らは、酸化物系非金属
介在物量ならびに成分組成が異なる2種の材料:即ち、
高炭素クロム軸受鋼(JIS-SUJ2)(A)と、上記適合範囲
内組成の軸受鋼(B)とを用いて、鋼中の酸化物系非金
属介在物最大径とB10転動疲労寿命との関係を調査し
た。その結果、図3に示すように、鋼中の酸化物系非金
属介在物量あるいは組成に関係なく、該非金属介在物の
最大径が8μmを越えると、B10転動疲労寿命は目立っ
て低下することが判り、このことから、本発明軸受鋼と
しては、最大粒径が8μm以下になるようにすることが
必要である。
Therefore, first of all, the present inventors have made two kinds of materials having different amounts of oxide-based non-metallic inclusions and component compositions:
Using a high carbon chromium bearing steel (JIS-SUJ2) (A) and a bearing steel (B) with a composition within the above applicable range, the maximum diameter of oxide non-metallic inclusions in the steel and B 10 rolling contact fatigue life I investigated the relationship with. As a result, as shown in FIG. 3, regardless of the amount or composition of oxide nonmetallic inclusions in the steel, when the maximum diameter of the nonmetallic inclusions exceeds 8 μm, the B 10 rolling contact fatigue life is markedly reduced. From this, it is necessary for the bearing steel of the present invention to have a maximum grain size of 8 μm or less.

【0031】[0031]

【実施例】表3, 表4に示す成分組成の鋼を常法にて溶
製し、得られた鋼材につき1240℃で30h の拡散焼鈍の後
に65mmφの棒鋼に圧延した。次いで、焼ならし−球状化
焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラッ
ピング仕上げにより12mmφ×22mmの円筒型転動疲労寿命
試験片を作製した。非金属介在物の試験は、 400倍で 8
00視野の酸化物系非金属介在物を測定し、各視野での介
在物最大径をGumbel確率紙上にまとめ、50000 mm2 相当
の極値を算出し、鋼中に存在する酸化物系非金属介在物
最大粒径とした。また、転動疲労寿命試験は、ラジアル
タイプの転動疲労寿命試験機を用いて、ヘルツ最大接触
応力:600 kgf/mm2 , 繰り返し応力数約46500 cpm の条
件で行った。試験結果は、ワイブル分布に従うものとし
て確率紙上にまとめ、鋼材No.1 (従来鋼であるJIS- SuJ
2) の平均寿命 (累積破損確率:10%および50%におけ
る、剥離発生までの総負荷回数) を1として、その他の
鋼種のものを対比して評価したものである。その評価結
果を、表3、表4にそれぞれ併せて示した。
[Examples] Steels having the compositions shown in Tables 3 and 4 were melted by a conventional method, and the obtained steel materials were diffusion annealed at 1240 ° C for 30 hours and then rolled into steel bars of 65 mmφ. Then, heat treatment was performed in the order of normalizing-spheroidizing annealing-quenching-tempering, and a 12 mmφ x 22 mm cylindrical rolling fatigue life test piece was prepared by lapping finish. The test for non-metallic inclusions is 400 times 8
The oxide-based non-metallic inclusions in the field of view of 00 were measured, the maximum diameter of the inclusions in each field of view was summarized on the Gumbel probability paper, and the extreme value equivalent to 50,000 mm 2 was calculated. The maximum particle size of inclusions was used. The rolling fatigue life test was conducted using a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and repeated stress number of about 46500 cpm. The test results are summarized on the probability paper as being in accordance with the Weibull distribution and the steel material No. 1 (JIS-SuJ
The average life of (2) (cumulative damage probability: total load count until peeling at 10% and 50%) was set to 1 and evaluated in comparison with other steel types. The evaluation results are also shown in Tables 3 and 4, respectively.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.6, 鋼中Cr量が本
発明範囲外である鋼材No.7のB50転動疲労寿命は、従来
鋼(鋼材No.1)と同じかむしろ悪い。また、介在物最大
径が8μm を超えるNo.4では、B10転動疲労寿命が悪い
という結果となった。また、鋼中Si量が本発明範囲外で
ある鋼材No.5もは転動疲労寿命は若干優れているもの
の、その向上はB10寿命で2.5 、B50寿命で2.8 と小さ
い。これに対し、第1発明鋼である鋼材No.8および9の
10値, B50値は、いずれも従来鋼(鋼材No.1) に比較
して25〜40倍も優れている。すなわち、軸受鋼へのSiと
Crの複合添加がミクロ組織変化を著しく遅延し、介在物
最大径の制御によって、軸受のあらゆる転動疲労寿命の
向上に対して有効に作用したことが窺える。
As is clear from the results shown in Tables 3 and 4,
Steel No. 6 having a C content outside the scope of the present invention and steel No. 7 having a Cr content outside the scope of the present invention have the same B 50 rolling contact fatigue life as the conventional steel (steel No. 1). Or rather bad. Further, in No. 4 in which the maximum inclusion diameter exceeds 8 μm, the B 10 rolling contact fatigue life was poor. Further, steel material No. 5 in which the Si content in the steel is out of the range of the present invention also has a slightly better rolling contact fatigue life, but the improvement is small at B 10 life of 2.5 and B 50 life of 2.8. On the other hand, the B 10 value and B 50 value of the steel materials No. 8 and 9, which are the first invention steels, are 25 to 40 times better than those of the conventional steel (steel material No. 1). That is, Si for bearing steel and
It can be seen that the combined addition of Cr significantly retarded the microstructural change and effectively controlled the improvement of all rolling contact fatigue life of the bearing by controlling the maximum diameter of inclusions.

【0035】また、Si, Crに加えて、さらにMn, Ni, C
u, Al, B, Zr, Ta, Hf, Co, N の単独添加およびそれ
らの複合添加例No. 10〜36の場合には、Crの添加量を抑
えても、上記軸受平均寿命(B10, B50転動疲労寿命)
は、かなり高くなることが確かめられた。
In addition to Si and Cr, Mn, Ni and C
In the case of adding u, Al, B, Zr, Ta, Hf, Co, N alone or in combination with No. 10 to 36, even if the amount of Cr added is suppressed, the above-mentioned average bearing life (B 10 , B 50 rolling fatigue life)
Was confirmed to be quite high.

【0036】[0036]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には1.0 〜2.5 wt%のCrをSiとともに含有させた
軸受鋼とすることにより、繰り返し応力負荷に伴うミク
ロ組織変化の遅延をもたらすことによる転動疲労寿命の
向上を達成して、この面において高寿命の軸受用の鋼を
提供することができる。しかも、非金属介在物の粒径制
御を通じて材料強度を高めることによって、この面にお
ける転動疲労寿命の向上をも実現できる。なお、本発明
にかかる軸受鋼の開発によって、転がり軸受の小型化な
らびに軸受使用温度のより以上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using 1.0 to 2.5 wt% of Cr as a bearing steel containing Si, the rolling fatigue life was improved by delaying the microstructural change due to repeated stress loading. In view of the above, it is possible to provide steel for bearings having a long life. Moreover, by increasing the material strength by controlling the particle size of the non-metallic inclusions, it is possible to improve the rolling fatigue life in this aspect. The development of the bearing steel according to the present invention makes it possible to downsize the rolling bearing and further increase the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。
1 (a) and 1 (b) are under cyclic stress loading,
A micrograph of the metal structure showing the appearance of the microstructure change that occurs.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすSi−Crの影響を示す説明
図。
FIG. 2 is an explanatory diagram showing the influence of Si—Cr on the bearing life due to inclusions and the bearing life due to microstructural changes.

【図3】非金属介在物最大径と軸受転動疲労寿命との関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum diameter of non-metallic inclusions and bearing rolling fatigue life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 昭55−145158(JP,A) 特開 平3−122255(JP,A) 特開 平2−156045(JP,A) 特開 平3−56640(JP,A) 特開 昭63−62847(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd. Technical Research Division (56) Reference JP-A-55-145158 (JP, A) Kaihei 3-122255 (JP, A) JP-A 2-156045 (JP, A) JP-A-3-56640 (JP, A) JP-A 63-62847 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.5〜1.5wt%,Si:1.0〜2.5wt%,C
r:2.5超〜8.0wt%を含み、残部がFeおよび不可避的不
純物からなり、かつ酸化物系非金属介在物の最大粒径が
8μm以下である,繰り返し応力負荷によるミクロ組織
変化の遅延特性に優れた軸受鋼。
1. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, C
r: containing more than 2.5 to 8.0 wt%, the balance consisting of Fe and unavoidable impurities, and the maximum grain size of oxide-based non-metallic inclusions is 8 μm or less, for delaying microstructural change due to repeated stress loading Excellent bearing steel.
【請求項2】C:0.5〜1.5wt%,Si:1.0〜2.5wt%,C
r:2.5超〜8.0wt%を含有し、さらに、Mn:0.05〜2.0wt
%,Ni:0.05〜1.0wt%,Cu:0.05〜1.0wt%,B:0.00
05〜0.01wt%,Al:0.005〜0.07wt%及びN:0.0005〜
0.012wt%のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなり、
かつ酸化物系非金属介在物の最大粒径が8μm以下であ
る,繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, C
r: more than 2.5-8.0wt%, Mn: 0.05-2.0wt%
%, Ni: 0.05 to 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.00
05-0.01wt%, Al: 0.005-0.07wt% and N: 0.0005-
0.012 wt% of any one or more selected from the rest, the balance is Fe and inevitable impurities,
A bearing steel having a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less and excellent in retarding microstructural changes due to repeated stress loading.
【請求項3】C:0.5〜1.5wt%,Si:1.0〜2.5wt%,C
r:2.5超〜8.0wt%を含有し、さらに、Ni:1.0超〜3.0w
t%,Zr:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.0
2〜0.5wt%及びCo:0.05〜1.5wt%のうちから選ばれる
いずれか1種または2種以上を含み、残部がFeおよび不
可避的不純物からなり、かつ酸化物系非金属介在物の最
大粒径が8μm以下である,繰り返し応力負荷によるミ
クロ組織変化の遅延特性に優れた軸受鋼。
3. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, C
r: more than 2.5 to 8.0 wt%, and Ni: more than 1.0 to 3.0w
t%, Zr: 0.02-0.5wt%, Ta: 0.02-0.5wt%, Hf: 0.0
2 to 0.5 wt% and Co: 0.05 to 1.5 wt% and one or more selected from the rest, the balance consisting of Fe and inevitable impurities, and the maximum grain size of oxide-based non-metallic inclusions Bearing steel with a diameter of 8 μm or less and excellent in delay characteristics of microstructural changes due to repeated stress loading.
【請求項4】C:0.5〜1.5wt%,Si:1.0〜2.5wt%,C
r:2.5超〜8.0wt%を含有し、さらに、下記I群の成分
のうちから選ばれるいずれか1種または2種以上を含
み、さらに、下記II群の成分(ただし、I群で選択され
ている元素は除く)のうちから選ばれるいずれか1種ま
たは2種以上を含み、残部がFeおよび不可避的不純物か
らなり、かつ酸化物系非金属介在物の最大粒径が8μm
以下である,繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼。 I群: Mn:0.05〜2.0wt%,Ni:0.05〜1.0wt%,Cu:0.
05〜1.0wt%,B:0.0005〜0.01wt%,Al:0.005〜0.07
wt%及びN:0.0005〜0.012wt%II群: Ni:1.0超〜3.0wt%,Zr:0.02〜0.5wt%,Ta:
0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜1.5w
t%
4. C: 0.5 to 1.5 wt%, Si: 1.0 to 2.5 wt%, C
r: more than 2.5 to 8.0 wt% and further contains any one or more selected from the following group I components , and further contains the following group II components (provided that I: Selected in groups
The element has a maximum particle size of 8 μm, and the balance consists of Fe and inevitable impurities, and the oxide-based non-metallic inclusions have a maximum particle size of 8 μm.
The following bearing steels have excellent delay characteristics for microstructural changes due to repeated stress loading. Serial group I: Mn: 0.05~2.0wt%, Ni: 0.05~1.0wt%, Cu: 0.
05-1.0wt%, B: 0.0005-0.01wt%, Al: 0.005-0.07
wt% and N: 0.0005 to 0.012 wt% Group II: Ni: more than 1.0 to 3.0 wt%, Zr: 0.02 to 0.5 wt%, Ta:
0.02-0.5wt%, Hf: 0.02-0.5wt% and Co: 0.05-1.5w
t%
JP09555393A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3383349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09555393A JP3383349B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09555393A JP3383349B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287697A JPH06287697A (en) 1994-10-11
JP3383349B2 true JP3383349B2 (en) 2003-03-04

Family

ID=14140776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09555393A Expired - Fee Related JP3383349B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3383349B2 (en)

Also Published As

Publication number Publication date
JPH06287697A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411087B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06279935A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees