JP3233727B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3233727B2
JP3233727B2 JP09555293A JP9555293A JP3233727B2 JP 3233727 B2 JP3233727 B2 JP 3233727B2 JP 09555293 A JP09555293 A JP 09555293A JP 9555293 A JP9555293 A JP 9555293A JP 3233727 B2 JP3233727 B2 JP 3233727B2
Authority
JP
Japan
Prior art keywords
steel
bearing
repeated stress
fatigue life
bearing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09555293A
Other languages
Japanese (ja)
Other versions
JPH06287696A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09555293A priority Critical patent/JP3233727B2/en
Publication of JPH06287696A publication Critical patent/JPH06287696A/en
Application granted granted Critical
Publication of JP3233727B2 publication Critical patent/JP3233727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and more particularly to a delay against a microstructural change (deterioration) occurring under a rolling contact surface due to a repeated stress load. We propose a bearing steel with excellent characteristics.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Rolling bearings used in automobiles, industrial machines, and the like are conventionally known as high carbon chromium bearing steel (JI).
S: SUJ 2) is used the most. In general, bearing steel has one of the important properties that the rolling fatigue life is long. One of the factors affecting the rolling fatigue life is that hard non-metallic inclusions in steel have a large effect. Was thought. Therefore, the mainstream of recent research has been to improve the bearing life by controlling the amount and size of nonmetallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, Japanese Unexamined Patent Publication (Kokai) No. 1-306542 has been developed with the aim of further improving the rolling fatigue life of a bearing.
And Japanese Patent Application Laid-Open No. 3-126839, which are techniques for controlling the composition, shape or distribution of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、鋼中酸素量の低
減が不可欠であるところ、これも既に限界に達してお
り、高価な溶製設備の設置あるいは従来設備の大幅な改
良が必要であり、経済的な負担が大きいという問題があ
った。また、本発明者らが行った最近の研究によれば、
転動寿命を決めている要因としては、従来から一般に論
じられてきた現象;すなわち、熱処理時に生じる“脱炭
層”(低C濃度領域)や上述した“非金属介在物”の存
在以外の要因もあるということが判った。というのは、
従来技術の下で単に脱炭層や非金属介在物を減少させて
も、軸受の転動疲労寿命、特に、高負荷あるいは高温と
いった過酷な条件下での軸受寿命の向上には大きな効果
が得られないことを多く経験したからである。このこと
から、特有の軸受寿命を律する他の要因の存在を確信し
たのである。
However, in order to manufacture a bearing steel having a small amount of nonmetallic inclusions, it is essential to reduce the oxygen content in the steel. There is a problem that the installation of the equipment or a significant improvement of the conventional equipment is required, and the economic burden is large. Also, according to a recent study conducted by the present inventors,
Factors that determine the rolling life include phenomena that have been generally discussed in the past; that is, factors other than the presence of the “decarburized layer” (low C concentration region) generated during heat treatment and the aforementioned “non-metallic inclusions”. It turned out that there was. I mean,
Simply reducing the decarburized layer and non-metallic inclusions under the conventional technology has a significant effect on improving the rolling contact fatigue life of bearings, especially under severe conditions such as high loads or high temperatures. Because he has experienced many things that are not. From this, I was convinced that there were other factors that govern the specific bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体と転動体との回転接触時に発生する繰り
返し剪断応力により、転動接触面の下層部分(表層部)
に、図1(a) に示すような、帯状の白色生成物と棒状の
析出物からなるミクロ組織変化層が発生し、これが転動
回数を増すにつれて次第に成長し、終いにはこのミクロ
組織変化部から疲労剥離( 図1(b)) が生じて軸受寿命に
つながるということが判った。さらに、軸受使用環境の
過酷化すなわち, 高面圧化(小型化), 使用温度の上昇
は、これらミクロ組織変化が発生するまでの転動回数を
短縮し、従来の軸受鋼SUJ2では著しい軸受寿命の低下と
なるということをつきとめた。すなわち、軸受寿命とい
うのは、従来技術のような、脱炭層や非金属介在物だけ
の制御では不十分であり、例えば、単に非金属介在物の
量や大きさを低減させただけでは、上述した転動接触面
下で発生するミクロ組織変化が発生するまでの時間を遅
延させることはできない。その結果として、軸受寿命の
今まで以上の向上は図り得ないということを知見したの
である。
Therefore, the present inventors investigated the cause of the occurrence of peeling of the rolling bearing. As a result, due to the repetitive shear stress generated when the inner and outer races of the bearing, the rolling elements, and the rolling elements are in rotational contact, the lower part (surface layer) of the rolling contact surface
Then, as shown in FIG. 1 (a), a microstructure change layer consisting of a band-like white product and a rod-like precipitate is generated, which gradually grows as the number of rollings increases, and finally this microstructure changes. It was found that fatigue exfoliation (Fig. 1 (b)) occurred from the changed part, which led to the life of the bearing. In addition, the harsh operating environment of the bearing, that is, high surface pressure (small size) and an increase in operating temperature, reduce the number of rollings before these microstructure changes occur, and the conventional bearing steel SUJ2 has a remarkable bearing life. Was found to decrease. That is, the bearing life is not enough to control only the decarburized layer and the non-metallic inclusions as in the prior art.For example, simply reducing the amount and size of the non-metallic inclusions is not enough. It is not possible to delay the time until the microstructural change occurs under the rolling contact surface. As a result, they found that the bearing life could not be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
下における軸受使用中に発生するミクロ組織変化を遅延
させることができると共に、非金属介在物の最大粒径を
小さく抑制することにより、軸受寿命の著しい向上をも
たらすことのできる軸受鋼を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the rolling fatigue life under severe operating conditions by delaying the microstructural change occurring during use of the bearing under a high load. Another object of the present invention is to provide a bearing steel that can significantly improve the bearing life by suppressing the maximum particle size of nonmetallic inclusions.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命を律する要因として、新た
に“ミクロ組織変化遅延特性”というものに着目た。そ
して、この特性の向上を図るには、当然そのための新た
な合金設計(成分組成)が必要であり、このことの実現
なくして軸受のより一層の寿命向上は図れないという認
識に立って、さらに種々の実験と検討とを行った。その
結果、多量のMoを適正量含有させれば、繰り返し応力負
荷による転動接触面下に生成する上述したミクロ組織変
化を著しく遅延できることを見い出し、本発明軸受鋼に
想到した。
On the basis of the above findings, the present inventors have newly focused on "microstructure change delay characteristic" as a factor that determines the bearing life. In order to improve these characteristics, it is natural that a new alloy design (composition composition) is necessary, and from the recognition that the life of the bearing cannot be further improved without realizing this, Various experiments and studies were performed. As a result, it has been found that if a large amount of Mo is contained in an appropriate amount, the above-mentioned microstructure change generated below the rolling contact surface due to repeated stress loading can be significantly delayed, and the present inventors have conceived the bearing steel of the present invention.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%を含
み、残部がFeおよび不可避的不純物からなり、かつ酸化
物系非金属介在物の最大粒径が8μm以下である,繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼(第1発明)。 (2) C: 0.5〜1.5 wt%,Mo:0.5 超〜2.0 wt%を含有
し、さらに、Si:0.05〜0.5 wt%, Mn:0.05〜2.0 wt
%, Ni:0.05〜1.0 wt%, Cu:0.05〜1.0 wt%,B:0.0
005〜0.01wt%, Al:0.005 〜0.07wt%及びN:0.0005
〜0.012 wt%のうちから選ばれるいずれか1種または2
種以上を含み、残部がFeおよび不可避的不純物からな
り、かつ酸化物系非金属介在物の最大粒径が8μm以下
である, 繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第2発明)。 (3) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%を含有
し、さらに Si:0.5 超〜2.5 wt%, Ni:1.0 超〜3.0
wt%,N:0.012 超〜0.050 wt%, V:0.05〜1.0wt%,N
b:0.05〜1.0 wt%, W:0.05〜1.0 wt%,Zr:0.02〜0.
5 wt%, Ta:0.02〜0.5 wt%,Hf:0.02〜0.5 wt%, 及
びCo:0.05〜1.5 wt%のうちから選ばれるいずれか1種
または2種以上を含み、残部がFeおよび不可避的不純物
からなり、かつ酸化物系非金属介在物の最大粒径が8μ
m以下である, 繰り返し応力負荷によるミクロ組織変化
の遅延特性に優れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%,Mo:0.5 超〜2.0 wt%を含有
し、さらに下記(I群)の成分のうちから選ばれるいず
れか1種または2種以上を含み、さらにまた、下記(II
群)の成分(ただし、I群で選択されている元素は除
く)のうちから選ばれるいずれか1種または2種以上を
含み、残部がFeおよび不可避的不純物からなり、かつ酸
化物系非金属介在物の最大粒径が8μm以下である, 繰
り返し応力負荷によるミクロ組織変化の遅延特性に優れ
た軸受鋼。 (I群) Si:0.05〜0.5 wt%, Mn:0.05〜2.0 wt%,Ni:0.05〜
1.0 wt%, Cu:0.05〜1.0wt%,B:0.0005〜0.01wt%,
Al:0.005 〜0.07wt%及びN:0.0005〜0.012 wt%(II群) Si:0.5 超〜2.5 wt%, Ni:1.0 超〜3.0 wt%,N:0.0
12 超〜0.050 wt%, V:0.05〜1.0 wt%,Nb:0.05〜1.
0 wt%, W:0.05〜1.0 wt%,Zr:0.02〜0.5 wt%, T
a:0.02〜0.5 wt%,Hf:0.02〜0.5 wt%及びCo:0.05〜
1.5 wt%
That is, the bearing steel of the present invention requires the following
That is, it has a configuration to the effect. (1) C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
And the balance consists of Fe and unavoidable impurities and is oxidized
The maximum particle size of non-metallic inclusions is less than 8 μm.
Excellent in microstructure change delay characteristics due to reverse stress loading
Bearing steel (first invention). (2) C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
And Si: 0.05-0.5 wt%, Mn: 0.05-2.0 wt%
%, Ni: 0.05-1.0 wt%, Cu: 0.05-1.0 wt%, B: 0.0
005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005
Any one or 2 selected from ~ 0.012 wt%
Species and the remainder is made up of Fe and unavoidable impurities.
And the maximum particle size of oxide-based nonmetallic inclusions is 8 μm or less
, Delay of microstructure change due to repeated stress loading
Bearing steel with excellent properties (second invention). (3) C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
Si: more than 0.5 to 2.5 wt%, Ni: more than 1.0 to 3.0
wt%, N: more than 0.012 to 0.050 wt%, V: 0.05 to 1.0 wt%, N
b: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.
5 wt%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%, and
And Co: any one selected from 0.05 to 1.5 wt%
Or two or more, the balance being Fe and unavoidable impurities
And the maximum particle size of the oxide-based nonmetallic inclusions is 8 μm.
m or less, microstructure change due to repeated stress loading
Bearing steel having excellent retardation characteristics (third invention). (4) C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
And thenIngredients of the following (Group I)Which one to choose from
One or more of them, andThe following (II
Group) (excluding the elements selected in group I)
H)Any one or two or more selected from
And the balance consists of Fe and unavoidable impurities and
The maximum particle size of the non-metallic inclusions is 8 μm or less.
Excellent microstructure change delay characteristics due to repeated stress loading
Bearing steel.Record (Group I)  Si: 0.05-0.5 wt%, Mn: 0.05-2.0 wt%, Ni: 0.05-
1.0 wt%, Cu: 0.05-1.0 wt%, B: 0.0005-0.01 wt%,
Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%(Group II) Si: more than 0.5 to 2.5 wt%, Ni: more than 1.0 to 3.0 wt%, N: 0.0
More than 12 to 0.050 wt%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.
0 wt%, W: 0.05-1.0 wt%, Zr: 0.02-0.5 wt%, T
a: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and Co: 0.05-
1.5 wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt%)
と、多量のMoを添加した2種の材料 (C:1.00wt%, Si:0.20wt%, Mn:0.42wt%, M
o:0.80wt%, O:0.0007wt%, N:0.0032wt%) (C:1.00wt%, Si:0.25wt%, Mn:0.43wt%, M
o:0.79wt%, O:0.0042wt%, N:0.0040wt%) (C:1.03wt%, Si:0.21wt%, Mn:0.41wt%, M
o:1.52wt%, O:0.0008wt%, N:0.0035wt%) (C:0.98wt%, Si:0.22wt%, Mn:0.42wt%, M
o:1.48wt%, O:0.0018wt%, N:0.0038wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background that led to the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt%
%, Cr: 1.35wt%, N: 0.0040wt%, O: 0.0012wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt%)
And two materials to which a large amount of Mo was added (C: 1.00 wt%, Si: 0.20 wt%, Mn: 0.42 wt%, M
o: 0.80 wt%, O: 0.0007 wt%, N: 0.0032 wt%) (C: 1.00 wt%, Si: 0.25 wt%, Mn: 0.43 wt%, M
o: 0.79 wt%, O: 0.0042 wt%, N: 0.0040 wt%) (C: 1.03 wt%, Si: 0.21 wt%, Mn: 0.41 wt%, M
o: 1.52 wt%, O: 0.0008 wt%, N: 0.0035 wt%) (C: 0.98 wt%, Si: 0.22 wt%, Mn: 0.42 wt%, M
o: 1.48 wt%, O: 0.0018 wt%, N: 0.0038 wt%). Next, these test materials were subjected to normalizing, spheroidizing normalizing, and quenching and tempering, and cylindrical test pieces of 12 mmφ × 22 mm were prepared from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
0kgf/mm2 ,繰り返し応力数 46500 cpmの負荷条件の下で
転動疲労寿命の試験を行った。試験結果は、ワイブル分
布確立紙上にプロットし、非金属介在物の制御によって
影響される材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と、高負
荷転動時の繰り返し応力負荷によるミクロ組織変化発生
を遅延させることによる転動疲労寿命の向上を示す数値
と見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a rolling contact fatigue life tester of a radial type using a maximum contact stress of 60 Hz.
A rolling fatigue life test was performed under a load condition of 0 kgf / mm 2 and a cyclic stress number of 46,500 cpm. Test results are plotted in Weibull distribution establishment paper, and B 10 that appear to numerical value indicating the improvement in rolling fatigue life due to the increase of the material strength is influenced by the control of the non-metallic inclusions (10% cumulative failure probability), It was determined and B 50 seen a numerical value indicating the improvement in rolling fatigue life by delaying the microstructure change caused by repeated stress load during high-load rolling (50% cumulative failure probability).

【0011】その結果、表1に示すように、介在物制御
をすることなく、単にMoを多量に添加しただけのものに
ついては、前記B10値についての改善は小さいものの、
50値についてはかなり高い数値を示して著しく改善さ
れていることが判る。即ち、軸受平均寿命はSUJ 2 に比
べてB10値で約2倍、B50値で約7倍もの改善効果を示
していた。これに対し、Moの多量添加とともに非金属介
在物の最大粒径を制御したものでは、高負荷転動中に生
成するミクロ組織変化の遅延特性に対して顕著な改善効
果を示すと共に、さらにB10値に表れているように非金
属介在物を原因とする剥離に対する改善効果が認められ
た。なかでもは、鋼中酸素量が高いにもかかわらず介
在物制御によってB10値は約9倍も優れており、ミクロ
組織変化の遅延と介在物の微細化がこのB10値の向上に
作用していることが判る。
[0011] As a result, as shown in Table 1, without the inclusion control, for merely by the addition of Mo in a large amount, although improvement of the B 10 value is small,
The B50 value shows a considerably high value, indicating that the value is significantly improved. That is, the bearing life expectancy showed improvement as about 7 times at about 2-fold, B 50 value B 10 value compared to SUJ 2. On the other hand, when the maximum grain size of the nonmetallic inclusions was controlled together with the addition of a large amount of Mo, the remarkable improvement effect on the delay characteristics of the microstructure change generated during high-load rolling was exhibited, and further, B As shown in the 10 values, an improvement effect on peeling due to nonmetallic inclusions was observed. Among them, the 10 value B by high despite inclusions control in the steel oxygen content is excellent about 9 times, finer delay and inclusions microstructure changes acts on the improvement of the B 10 value You can see that it is.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物粒径に起因する軸受寿命とミクロ組
織変化に起因する寿命との関係を示す模式図である。こ
の図に明らかなように、従来のように累積破損確率10%
のB10値で示される軸受寿命(以下、これを「B10転動
疲労寿命」という)は、Moを多量に添加することだけで
は大きな効果は期待し得ないが、非金属介在物制御をも
併せて行ったものの方が顕著な改善効果を示している。
一方、累積破損確率50%のB50値で示される軸受寿命
(以下、これを「B50高負荷転動疲労寿命」という)で
みると、非金属介在物制御とは関係なくMo多量添加のみ
によっても改善の効果が極めて顕著なものとなり、ミク
ロ組織変化生成環境の下での軸受寿命を著しく向上させ
るのに有効なことが判る。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the life of a bearing caused by the particle size of nonmetallic inclusions and the life caused by a change in microstructure. As is clear from this figure, the cumulative failure probability is 10%
The bearing life represented by B 10 value (hereinafter referred to as "B 10 rolling contact fatigue life"), although large effect can not be expected only by the addition of Mo in a large amount, the nonmetallic inclusions control In addition, the effect of the improvement is more remarkable.
On the other hand, bearing life indicated by the cumulative failure probability of 50% B 50 value
(Hereinafter referred to as "B 50 high load rolling contact fatigue life") Looking at the effect of improvement by only Mo addition of a large amount regardless of the non-metallic inclusions control becomes very prominent, microstructure changes generated It turns out that it is effective in remarkably improving the bearing life under the environment.

【0014】そこで、本発明においては、主として繰り
返し応力負荷によるミクロ組織変化遅延特性の改善を図
るという観点から、以下に説明するような成分組成の範
囲を決定した。
Therefore, in the present invention, the range of the component composition as described below is determined mainly from the viewpoint of improving the microstructure change delay characteristic due to repeated stress load.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5-1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen martensite. To ensure strength after quenching and tempering and to improve the rolling fatigue life due to it. To be contained. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if the content exceeds 1.5 wt%, machinability and forgeability deteriorate, so the content is limited to the range of 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲とする。また、このSiは、
0.5 wt%超を添加すると、繰り返し応力負荷の下でのミ
クロ組織変化の遅延をもたらして転動疲労寿命を向上さ
せる効果がある。しかし、その含有量が 2.5wt%を超え
ると、その効果が飽和する一方で加工性や靱性を低下さ
せるので、ミクロ組織変化遅延特性のより一層の向上の
ためには、 0.5超〜2.5 wt%を添加することが有効であ
る。
Si: 0.05-0.5 wt%, more than 0.5-2.5 wt% or less Si is used as a deoxidizing agent when steel is melted, and is also dissolved in a matrix and tempered due to an increase in tempering resistance. It is effective as an element for increasing the strength after tempering and improving the rolling fatigue life. The content of Si added for such a purpose is in the range of 0.05 to 0.5 wt%. In addition, this Si
Addition of more than 0.5 wt% has an effect of delaying microstructure change under repeated stress load and improving rolling fatigue life. However, if the content exceeds 2.5 wt%, the effect is saturated and the workability and toughness are reduced. Therefore, in order to further improve the microstructure change delay characteristics, it is necessary to use more than 0.5 to 2.5 wt%. Is effective.

【0017】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。こうした目
的のためにMnを、0.05〜2.0 wt%の範囲内で添加する。
Mn: 0.05-2.0 wt% Mn acts as a deoxidizing agent during melting of steel and is an element effective for reducing oxygen in steel. In addition, by improving the hardenability of steel, the toughness and hardness of the base martensite are improved, which effectively works to improve the rolling fatigue life. For this purpose, Mn is added within the range of 0.05 to 2.0 wt%.

【0018】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安定性を害することになる他、
コストアップになるため、この作用効果を期待する場合
には、1.0 超〜3.0 wt%の範囲内で添加することが必要
である。
Ni: 0.05-1.0 wt%, more than 1.0-3.0 wt% Ni is used for the purpose of enhancing the strength after quenching and tempering by increasing the hardenability, improving the toughness, and improving the rolling fatigue life. Is added in the range of 0.05 to 1.0 wt%. Furthermore, when this Ni is added in excess of 1.0 wt%, the microstructure change during rolling is delayed, thereby improving the rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ is precipitated, which lowers strength and impairs dimensional stability.
If this effect is expected, it is necessary to add in a range of more than 1.0 to 3.0 wt% because the cost is increased.

【0019】Mo:0.5 超〜2.0 wt% Moは、基本的には残留炭化物の安定化により耐摩耗性を
向上させる元素であり、とくに、焼入れ性を増大して焼
入れ焼もどし後の強度向上に寄与すると共に、安定炭化
物の析出により、耐摩耗性と転動疲労寿命とを向上させ
る。ただし、本発明においてこのMoは、もっと重要な役
割りを果たしており、特にその添加量が0.5 wt%を超え
るような多量を添加すると、上述した繰返し応力の負荷
によるミクロ組織変化を遅らせる効果が著しくなり、こ
の面での転動疲労寿命を向上させる。しかし、その量が
2.0wt%を超えると、被削性, 鍛造性を低下させ、コス
トアップの因ともなるため、 0.5超〜2.0 wt%の範囲内
で添加することが必要である。
Mo: more than 0.5 to 2.0 wt% Mo is an element which basically improves the wear resistance by stabilizing the residual carbides, and particularly increases the hardenability to improve the strength after quenching and tempering. While contributing, precipitation of stable carbides improves wear resistance and rolling fatigue life. However, in the present invention, Mo plays a more important role, and particularly when a large amount of Mo is added in an amount exceeding 0.5 wt%, the effect of delaying the microstructure change due to the load of the repetitive stress described above is remarkable. This improves the rolling fatigue life in this aspect. But the amount
If the content exceeds 2.0 wt%, the machinability and forgeability are reduced and the cost is increased. Therefore, it is necessary to add the content within the range of more than 0.5 to 2.0 wt%.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
めることにより、転動疲労寿命を向上させる。この作用
効果は0.05wt%の添加で顕著となり、1.0 wt%を超える
と飽和するので、0.05〜1.0 wt%の範囲で添加する。
Cu: 0.05 to 1.0 wt% Cu improves rolling fatigue life by increasing the strength after quenching and tempering by increasing quenching. This effect becomes remarkable when 0.05 wt% is added, and when it exceeds 1.0 wt%, the effect is saturated, so that it is added in the range of 0.05 to 1.0 wt%.

【0021】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because B increases the strength after quenching and tempering due to an increase in hardenability and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability is degraded, so the range is limited to 0.0005 to 0.01 wt%.

【0022】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労寿命の向上にも有効に作用する。このよ
うな作用のためにAlは、0.005 〜0.07wt%添加すること
が有効である。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizing agent at the time of melting steel,
It combines with N in the steel to refine the crystal grains and contribute to improving the toughness of the steel. In addition, it effectively acts to improve the rolling fatigue life by increasing the strength after quenching and tempering. For such an effect, it is effective to add 0.005 to 0.07 wt% of Al.

【0023】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains, and dissolves in the matrix to increase the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
It is added within the range of ~ 0.012 wt%. This N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural changes due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability is reduced, and for this purpose, it exceeds 0.012 to 0.
Add 05 wt%.

【0024】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirably as low as possible from the viewpoint of lowering the toughness and rolling contact fatigue life of steel.
0.025 wt%.

【0025】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves machinability. However, if contained in a large amount, the rolling fatigue life is reduced, so the upper limit must be 0.025 wt%.

【0026】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(MoおよびSi, Mn, Ni, Cu, Al, B, N)お
よびC,P,Sの限定理由について説明したが、本発明
ではさらに、V, Nb, W, Zr, Ta, HfおよびCoのうちか
ら選ばれるいずれか1種または2種以上を添加すること
により、高負荷時の転動疲労寿命を改善させるようにし
てもよい。
As described above, the main components (Mo and Si, Mn, Ni, Ni, and Ni) for improving the rolling fatigue life by delaying the microstructural change due to the repeated stress load and improving the rolling fatigue life by increasing the strength. Although the reasons for limitation of Cu, Al, B, N) and C, P, S have been described, the present invention further provides any one selected from V, Nb, W, Zr, Ta, Hf and Co or By adding two or more kinds, the rolling fatigue life under a high load may be improved.

【0027】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred addition range and purpose of each of the above elements,
Table 2 summarizes the reasons for limiting the upper and lower limits.

【表2】 [Table 2]

【0028】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
Even if Sn, As, etc. are added, the above-mentioned object of the present invention does not hinder the retardation characteristics due to the change in microstructure due to the repeated stress load, and the machinability can be easily improved. You may add according to it.

【0029】次に、本発明においては、上記成分組成の
限定に加え、鋼中の酸化物系非金属介在物の形態(大き
さ)制御を行うことよって、主として上述したB10転動
疲労寿命の一層の向上を図ることにした。
Next, in the present invention, in addition to the limitation of the chemical composition, it'll be done in the form (size) control of oxide-based nonmetallic inclusions in the steel mainly above B 10 rolling fatigue life Has been decided to be further improved.

【0030】そこでまず、発明者らは、酸化物系非金属
介在物量ならびに成分組成が異なる2種の材料:即ち、
高炭素クロム軸受鋼(JIS-SUJ2)(A)と、上記適合範囲
内組成の軸受鋼(B)とを用いて、鋼中の酸化物系非金
属介在物最大径とB10転動疲労寿命との関係を調査し
た。その結果、図3に示すように、鋼中の酸化物系非金
属介在物量あるいは組成に関係なく、該非金属介在物の
最大径が8μmを越えると、B10転動疲労寿命は目立っ
て低下することが判り、このことから、本発明軸受鋼と
しては、最大粒径が8μm以下になるようにすることが
必要である。
Therefore, first, the present inventors have proposed two types of materials having different amounts of oxide-based nonmetallic inclusions and different component compositions:
High carbon chromium bearing steel (JIS-SUJ2) (A) , by using a bearing steel having the composition within the above adaptation range (B), the oxide-based nonmetallic inclusions maximum diameter and B 10 rolling fatigue life of the steel The relationship with was investigated. As a result, as shown in FIG. 3, regardless of the oxide-based nonmetallic inclusions amount or composition of the steel, the maximum diameter of the non-metallic inclusions exceeds 8 [mu] m, B 10 rolling contact fatigue life decreases noticeably From this, it can be seen that it is necessary for the bearing steel of the present invention to have a maximum particle size of 8 μm or less.

【0031】[0031]

【実施例】表3, 表4に示す成分組成の鋼を常法にて溶
製し、得られた鋼材につき1240℃で30h の拡散焼鈍の後
に65mmφの棒鋼に圧延した。次いで、焼ならし−球状化
焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラッ
ピング仕上げにより12mmφ×22mmの円筒型転動疲労寿命
試験片を作製した。非金属介在物の試験は、 400倍で 8
00視野の酸化物系非金属介在物を測定し、各視野での介
在物最大径をGumbel確率紙上にまとめ、50000 mm2 相当
の極値を算出し、鋼中に存在する酸化物系非金属介在物
最大粒径とした。また、転動疲労寿命試験は、ラジアル
タイプの転動疲労寿命試験機を用いて、ヘルツ最大接触
応力:600 kgf/mm2 , 繰り返し応力数約46500 cpm の条
件で行った。試験結果は、ワイブル分布に従うものとし
て確率紙上にまとめ、鋼材No.1 (従来鋼であるJIS- SuJ
2) の平均寿命 (累積破損確率:10%および50%におけ
る、剥離発生までの総負荷回数) を1として、その他の
鋼種のものを対比して評価したものである。その評価結
果を、表3、表4にそれぞれ併せて示した。
EXAMPLES Steels having the component compositions shown in Tables 3 and 4 were melted by a conventional method, and the obtained steel was subjected to diffusion annealing at 1240 ° C. for 30 hours and then rolled into a 65 mmφ steel bar. Next, heat treatment was performed in the order of normalizing, spheroidizing annealing, quenching, and tempering, and a 12 mmφ × 22 mm cylindrical rolling contact fatigue life test piece was prepared by lapping. Testing of non-metallic inclusions at 400x8
00 field oxide-based nonmetallic inclusions was measured, the inclusion maximum diameter of each field are summarized in the paper Gumbel probability, calculates the 50000 mm 2 corresponding extremes, oxide-based nonmetallic present in the steel The maximum inclusion particle size was used. The rolling fatigue life test was performed using a radial type rolling fatigue life tester under the conditions of a Hertz maximum contact stress: 600 kgf / mm 2 and a repetitive stress number of about 46500 cpm. The test results are summarized on a probability paper assuming that they follow the Weibull distribution, and steel No. 1 (JIS-SuJ, a conventional steel)
The average life of 2) (the total number of loads until the occurrence of peeling at 10% and 50% of the cumulative failure probability) is set to 1, and the other steel types are evaluated in comparison. The evaluation results are shown in Tables 3 and 4, respectively.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No. , 鋼中Mo量が本
発明範囲外である鋼材No.6のB50転動疲労寿命は、従来
鋼(鋼材No.1)と同じかむしろ悪い。また、介在物最大
径が8μm を超えるNo.4では、B10転動疲労寿命が悪い
という結果となった。これに対し、第1発明鋼である鋼
材No.6および7のB10値, B50値は、いずれも従来鋼
(鋼材No.1) に比較して5〜7倍も優れている。すなわ
ち、軸受鋼へのMoの多量添加がミクロ組織変化を著しく
遅延し、介在物最大径の制御によって、軸受のあらゆる
転動疲労寿命の向上に対して有効に作用したことが窺え
る。
As apparent from the results shown in Tables 3 and 4,
Steel No. amount in the steel C is outside the range present invention, or B 50 rolling fatigue life of the steel No.6 amount in the steel Mo is outside the present invention is the same as the conventional steels (steel No.1) Rather bad. The maximum diameter inclusions in No.4 exceeds 8 [mu] m, B 10 rolling fatigue life resulted poor. In contrast, B 10 value of the steel No.6 and 7 a first invention steel, B 50 values are all excellent 5-7 times compared with the conventional steels (steel No.1). In other words, it can be seen that the addition of a large amount of Mo to the bearing steel significantly delayed the microstructural change, and effectively controlled the maximum rolling fatigue life of the bearing by controlling the maximum diameter of the inclusions.

【0035】なかでも、Moに加えてSi, W, V, Nb, Zr,
Ta, Hf, Co, N の単独添加およびそれらの複合添加例
(第3発明鋼)No. 18〜28の場合には、上記平均寿命
(B50転動疲労寿命)は、より一層向上することが確か
められた。
Among them, in addition to Mo, Si, W, V, Nb, Zr,
Ta, Hf, Co, when taken alone added and their combined addition example (third invention steels) No. 18 to 28 of the N, said life expectancy (B 50 rolling fatigue life) is to further improve Was confirmed.

【0036】また、介在物粒径制御にあわせ強度上昇に
よる寿命改善成分を単独または複合して添加してなる第
2本発明例(No.9〜17) は、B10軸受寿命の方も極めて
高い改善の程度を示した。さらに、全ての寿命改善成分
を選択的に添加してなる第4発明鋼の場合、寿命改善傾
向は一層顕著となる。
Further, the second invention example in which the addition of improved lifetime components by increasing strength suit inclusion particle diameter control alone or combined to (No.9~17) is very well towards the B 10 bearing life It showed a high degree of improvement. Further, in the case of the fourth invention steel in which all the life improving components are selectively added, the life improving tendency becomes more remarkable.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には0.5 超〜2.0 wt%の高Mo含有軸受鋼とするこ
とにより、繰り返し応力負荷に伴うミクロ組織変化の遅
延をもたらすことによる転動疲労寿命の向上を達成し
て、この面において高寿命の軸受用の鋼を提供すること
ができる。しかも、非金属介在物の粒径制御を通じて材
料強度を高めることによって、この面における転動疲労
寿命の向上をも実現できる。なお、本発明にかかる軸受
鋼の開発によって、転がり軸受の小型化ならびに軸受使
用温度のより以上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using a high Mo content bearing steel of more than 0.5 to 2.0 wt%, the rolling fatigue life can be improved by delaying the microstructure change due to repeated stress loading, and high Long life bearing steel can be provided. In addition, by increasing the material strength by controlling the particle size of the non-metallic inclusions, it is possible to improve the rolling fatigue life on this surface. The development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the operating temperature of the bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。
1 (a) and 1 (b) are views under a repeated stress load.
5 is a micrograph of a metal structure showing a change in the microstructure that occurs.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすMoの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the effect of Mo on bearing life caused by inclusions and bearing life caused by microstructure change.

【図3】非金属介在物最大径と軸受転動疲労寿命との関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum diameter of nonmetallic inclusions and the rolling contact fatigue life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平6−264188(JP,A) 特開 昭63−57749(JP,A) 特開 平2−156045(JP,A) 特開 平5−271866(JP,A) 特開 平5−306432(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Engineering Co., Ltd. Technology Research Division (56) References JP-A-6-264188 JP-A-63-57749 (JP, A) JP-A-2-156045 (JP, A) JP-A-5-271866 (JP, A) JP-A-5-306432 (JP, A) (58) Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt
%を含み、残部がFeおよび不可避的不純物からなり、か
つ酸化物系非金属介在物の最大粒径が8μm以下であ
る, 繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。
C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
%, With the balance consisting of Fe and unavoidable impurities, and having a maximum particle size of oxide-based nonmetallic inclusions of 8 μm or less, and having excellent characteristics of delaying microstructure change due to repeated stress loading.
【請求項2】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%を含有し、さらに、Si:0.05〜0.5 wt%, Mn:0.
05〜2.0 wt%,Ni:0.05〜1.0 wt%, Cu:0.05〜1.0 w
t%,B:0.0005〜0.01wt%, Al:0.005 〜0.07wt%及び
N:0.0005〜0.012 wt%のうちから選ばれるいずれか1
種または2種以上を含み、残部がFeおよび不可避的不純
物からなり、かつ酸化物系非金属介在物の最大粒径が8
μm以下である, 繰り返し応力負荷によるミクロ組織変
化の遅延特性に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0
wt.%, Si: 0.05-0.5 wt%, Mn: 0.
05-2.0 wt%, Ni: 0.05-1.0 wt%, Cu: 0.05-1.0 w
t%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: any one selected from 0.0005 to 0.012 wt%
Or two or more, the balance being Fe and unavoidable impurities, and the maximum particle size of the oxide-based nonmetallic inclusions is 8
Bearing steel excellent in delay characteristics of microstructure change due to repeated stress loading of less than μm.
【請求項3】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%を含有し、さらにSi:0.5 超〜2.5 wt%, Ni:1.0
超〜3.0 wt%,N:0.012 超〜0.050 wt%, V:0.05〜
1.0 wt%,Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%,
Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%,Hf:0.02
〜0.5 wt%, 及びCo:0.05〜1.5 wt%のうちから選ばれ
るいずれか1種または2種以上を含み、残部がFeおよび
不可避的不純物からなり、かつ酸化物系非金属介在物の
最大粒径が8μm以下である, 繰り返し応力負荷による
ミクロ組織変化の遅延特性に優れた軸受鋼。
(3) C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0
wt%, Si: more than 0.5 to 2.5 wt%, Ni: 1.0
Ultra-3.0 wt%, N: 0.012 Ultra-0.050 wt%, V: 0.05-
1.0 wt%, Nb: 0.05-1.0 wt%, W: 0.05-1.0 wt%,
Zr: 0.02-0.5 wt%, Ta: 0.02-0.5 wt%, Hf: 0.02
-0.5 wt%, and Co: one or more selected from 0.05-1.5 wt%, the balance being Fe and unavoidable impurities, and the largest grains of oxide-based nonmetallic inclusions Bearing steel with a diameter of 8 μm or less and excellent in delaying microstructural change due to repeated stress loading.
【請求項4】C: 0.5〜1.5 wt%,Mo:0.5 超〜2.0 wt
%を含有し、さらに下記(I群)の成分のうちから選ば
れるいずれか1種または2種以上を含み、さらにまた、
下記(II群)の成分(ただし、I群で選択されている元
素は除く)のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなり、
かつ酸化物系非金属介在物の最大粒径が8μm以下であ
る, 繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。 (I群) Si:0.05〜0.5 wt%, Mn:0.05〜2.0 wt%,Ni:0.05〜
1.0 wt%, Cu:0.05〜1.0wt%,B:0.0005〜0.01wt%,
Al:0.005 〜0.07wt%及びN:0.0005〜0.012 wt%(II群) Si:0.5 超〜2.5 wt%, Ni:1.0 超〜3.0 wt%,N:0.0
12 超〜0.050 wt%, V:0.05〜1.0 wt%,Nb:0.05〜1.
0 wt%, W:0.05〜1.0 wt%,Zr:0.02〜0.5 wt%, T
a:0.02〜0.5 wt%,Hf:0.02〜0.5 wt%及びCo:0.05〜
1.5 wt%
4. C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0 wt%
%Ingredients of the following (Group I)Choose from
Including one or more of the above,
Ingredients of the following (Group II) (however, the elements selected in Group I
Excluding prime)Any one or two selected from
Including the above, the balance consists of Fe and unavoidable impurities,
And the maximum particle size of the oxide-based nonmetallic inclusion is 8 μm or less.
Characteristics of microstructure change due to repeated stress loading
Excellent bearing steel.Record (Group I)  Si: 0.05-0.5 wt%, Mn: 0.05-2.0 wt%, Ni: 0.05-
1.0 wt%, Cu: 0.05-1.0 wt%, B: 0.0005-0.01 wt%,
Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt%(Group II) Si: more than 0.5 to 2.5 wt%, Ni: more than 1.0 to 3.0 wt%, N: 0.0
More than 12 to 0.050 wt%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.
0 wt%, W: 0.05-1.0 wt%, Zr: 0.02-0.5 wt%, T
a: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and Co: 0.05-
1.5 wt%
JP09555293A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3233727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09555293A JP3233727B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09555293A JP3233727B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287696A JPH06287696A (en) 1994-10-11
JP3233727B2 true JP3233727B2 (en) 2001-11-26

Family

ID=14140747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09555293A Expired - Fee Related JP3233727B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3233727B2 (en)

Also Published As

Publication number Publication date
JPH06287696A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3411088B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379784B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411087B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JPH07252595A (en) Bearing member excellent in delaying property in change of microstructure caused by repeated stress load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees