JP3383351B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3383351B2
JP3383351B2 JP09555693A JP9555693A JP3383351B2 JP 3383351 B2 JP3383351 B2 JP 3383351B2 JP 09555693 A JP09555693 A JP 09555693A JP 9555693 A JP9555693 A JP 9555693A JP 3383351 B2 JP3383351 B2 JP 3383351B2
Authority
JP
Japan
Prior art keywords
steel
bearing
bearing steel
rolling
repeated stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09555693A
Other languages
Japanese (ja)
Other versions
JPH06287700A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09555693A priority Critical patent/JP3383351B2/en
Publication of JPH06287700A publication Critical patent/JPH06287700A/en
Application granted granted Critical
Publication of JP3383351B2 publication Critical patent/JP3383351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに繰り返し応力負荷によって転動接触面
下に発生するミクロ組織変化(劣化)に対する遅延特性
に優れた軸受鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly to a delay for a microstructure change (deterioration) which occurs under a rolling contact surface due to repeated stress loads. We propose a bearing steel with excellent characteristics.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are techniques for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、鋼中酸素量の低
減が不可欠であるところ、これも既に限界に達してお
り、高価な溶製設備の設置あるいは従来設備の大幅な改
良が必要であり、経済的な負担が大きいという問題があ
った。また、本発明者らが行った最近の研究によれば、
転動寿命を決めている要因としては、従来から一般に論
じられてきた現象;すなわち、熱処理時に生じる“脱炭
層”(低C濃度領域)や上述した“非金属介在物”の存
在以外の要因もあるということが判った。というのは、
従来技術の下で単に脱炭層や非金属介在物を減少させて
も、軸受の転動疲労寿命、特に、高負荷あるいは高温と
いった過酷な条件下での軸受寿命の向上には大きな効果
が得られないことを多く経験したからである。このこと
から、特有の軸受寿命を律する他の要因の存在を確信し
たのである。
However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is essential to reduce the amount of oxygen in the steel, but this has already reached the limit, and expensive melting There is a problem in that it requires a large amount of financial burden because it requires installation of equipment or significant improvement of conventional equipment. Further, according to the recent research conducted by the present inventors,
The factors that determine the rolling life are phenomena that have been generally discussed in the past; that is, factors other than the presence of the “decarburized layer” (low C concentration region) and the above-mentioned “non-metallic inclusions” that occur during heat treatment. It turns out that there is. I mean,
Even if the decarburization layer and non-metallic inclusions are simply reduced under the conventional technology, a great effect can be obtained in improving the rolling contact fatigue life of the bearing, especially under severe conditions such as high load or high temperature. Because I experienced a lot of things that didn't happen. From this, we were convinced of the existence of other factors that control the bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体との回転接触時に発生する繰り返し剪断
応力により、転動接触面の下層部分(表層部)に、図1
(a)に示すような、帯状の白色生成物と棒状の析出物か
らなるミクロ組織変化層が発生し、これが転動回数を増
すにつれて次第に成長し、終いにはこのミクロ組織変化
部から疲労剥離(図1(b))が生じて軸受寿命につながる
ということが判った。さらに、軸受使用環境の苛酷化す
なわち,高面圧化(小型化),使用温度の上昇は、これ
らミクロ組織変化が発生するまでの転動回数を短縮し、
従来の軸受鋼SUJ2では著しい軸受寿命の低下となるとい
うことをつきとめた。すなわち、軸受寿命というのは、
従来技術のような、脱炭層や非金属介在物だけの制御で
は不十分であり、例えば、単に非金属介在物の量や大き
さを低減させただけでは、上述した転動接触面下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。
Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, by repeating the shear stress generated during rolling contact between the inner and outer rings and rolling elements of the bearing, the lower layer portion of the rolling contact surface (surface layer portion), FIG. 1
As shown in (a), a microstructure-changed layer consisting of a strip-shaped white product and rod-shaped precipitates is formed, which gradually grows as the number of rolling increases, and at the end fatigue from this microstructure-changed part occurs. It was found that peeling (Fig. 1 (b)) occurs and this leads to bearing life. Furthermore, the harsh bearing operating environment, that is, high surface pressure (miniaturization) and increase in operating temperature, shortens the number of rolling cycles until these microstructural changes occur,
We have found that the conventional bearing steel SUJ2 will significantly reduce the bearing life. In other words, bearing life is
Controlling only the decarburized layer and non-metallic inclusions as in the prior art is not sufficient.For example, if the amount and size of non-metallic inclusions are simply reduced, it will occur under the rolling contact surface described above. It is not possible to delay the time until the microstructure change occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
下における軸受使用中に発生するミクロ組織変化を遅延
させることができると共に、非金属介在物の最大粒径を
小さく抑制することにより、軸受寿命の著しい向上をも
たらすことのできる軸受鋼を提供することにある。
Therefore, an object of the present invention is to delay the microstructure change occurring during the use of the bearing under high load in order to improve the rolling contact fatigue life characteristics under severe operating conditions. The object is to provide a bearing steel capable of significantly improving the bearing life by suppressing the maximum grain size of non-metallic inclusions to be small.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命を律する要因として、新た
に“ミクロ組織変化遅延特性”というものに着目た。そ
して、この特性の向上を図るには、当然そのための新た
な合金設計(成分組成)が必要であり、このことの実現
なくして軸受のより一層の寿命向上は図れないという認
識に立って、さらに種々の実験と検討とを行った。その
結果、多量のMnを適正量含有させれば、繰り返し応力負
荷による転動接触面下に生成する上述したミクロ組織変
化を著しく遅延できることを見い出し、本発明軸受鋼に
想到した。
The inventors of the present invention have newly focused on the "microstructure change delay characteristic" as a factor that determines the bearing life based on the above-mentioned findings. In order to improve these characteristics, of course, a new alloy design (ingredient composition) is necessary for that purpose, and with the recognition that it is impossible to further improve the life of the bearing without realizing this, Various experiments and studies were conducted. As a result, they have found that the inclusion of a large amount of Mn can significantly delay the above-described microstructural change generated under the rolling contact surface due to repeated stress loading, and have conceived the present invention bearing steel.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を含み、残
部がFeおよび不可避的不純物からなり、かつ酸化物系非
金属介在物の最大粒径が8μm以下である,繰り返し応
力負荷によるミクロ組織変化の遅延特性に優れた軸受鋼
(第1発明)。 (2) C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を含有し、
さらに、Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Mo:
0.05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01
wt%及びN:0.0005〜0.012wt%のうちから選ばれるい
ずれか1種または2種以上を含み、残部がFeおよび不可
避的不純物からなり、かつ酸化物系非金属介在物の最大
粒径が8μm以下である,繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受鋼(第2発明)。 (3) C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を含有し、
さらにSi:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,M
o:0.5超〜2.0wt%,N:0.012超〜0.050wt%,V:0.0
5〜1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,
Zr:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.
5wt%及びCo:0.05〜1.5wt%のうちから選ばれるいずれ
か1種または2種以上を含み、残部がFeおよび不可避的
不純物からなり、かつ酸化物系非金属介在物の最大粒径
が8μm以下である,繰り返し応力負荷によるミクロ組
織変化の遅延特性に優れた軸受鋼(第3発明)。 (4) C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を含有し、
さらに、下記I群の成分のうちから選ばれるいずれか1
種または2種以上を含み、さらに、下記II群の成分(た
だし、I群で選択されている元素は除く)のうちから選
ばれるいずれか1種または2種以上を含み、残部がFeお
よび不可避的不純物からなり、かつ酸化物系非金属介在
物の最大粒径が8μm以下である,繰り返し応力負荷に
よるミクロ組織変化の遅延特性に優れた軸受鋼(第4発
明)。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Mo:0.
05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01wt
%及びN:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Mo:
0.5超〜2.0wt%,N:0.012超〜0.050wt%,V:0.05〜
1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%及びCo:0.05〜1.5wt%
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based nonmetallic inclusions is 8 μm or less, Bearing steel excellent in delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%,
Further, Si: 0.05 to 0.5 wt%, Cr: 0.05 to 2.5 wt%, Mo:
0.05-0.5wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01
wt%及 Beauty N: 0.0005~0.012wt comprise one or any two or more selected from among%, the balance being Fe and unavoidable impurities, and a maximum particle diameter of the oxide-based nonmetallic inclusions Bearing steel of 8 μm or less, which is excellent in delay characteristics of microstructure change due to repeated stress load (second invention). (3) C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%,
Furthermore , Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, M
o: more than 0.5 to 2.0 wt%, N: more than 0.012 to 0.050 wt%, V: 0.0
5 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%,
Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.
5 wt%及 Beauty Co: 0.05~1.5wt comprise one or any two or more selected from among%, the balance being Fe and unavoidable impurities, and a maximum particle diameter of the oxide-based nonmetallic inclusions Bearing steel of 8 μm or less, which is excellent in delay characteristics of microstructure change due to repeated stress load (third invention). (4) C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%,
Furthermore , any one selected from the following group I components
Ingredients or two or more of them
However, the maximum grain size of the oxide-based non-metallic inclusions, which comprises one or more selected from the group (excluding elements selected from Group I) , the balance being Fe and unavoidable impurities Bearing steel having a diameter of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress load (4th invention). Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Mo: 0.
05-0.5wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01wt
%及 Beauty N: 0.0005~0.012wt% II group: Si: 0.5 super ~2.5wt%, Cr: 2.5 super ~8.0wt%, Mo:
Over 0.5 ~ 2.0wt%, N: over 0.012 ~ 0.050wt%, V: 0.05 ~
1.0wt%, Nb: 0.05 to 1.0wt%, W: 0.05 to 1.0wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, Ni:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, Ni:0.0042wt%, O:0.0015wt%)
と、多量のAlを添加した2種の材料 (C:1.01wt%, , Si:0.21wt%, Mn:2.05wt%,
Cr:1.30wt%, O:0.0010wt%, N:0.0040wt%) (C:0.99wt%, , Si:0.28wt%, Mn:2.10wt%,
Cr:1.30wt%, O:0.0033wt%, N:0.0048wt%) (C:0.98wt%, , Si:0.25wt%, Mn:4.22wt%,
Cr:1.32wt%, O:0.0011wt%, N:0.0040wt%) (C:0.98wt%, , Si:0.30wt%, Mn:4.30wt%,
Cr:1.33wt%, O:0.0017wt%, N:0.0050wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼なまし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35wt%, Ni: 0.0040wt%, O: 0.0012wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, Ni: 0.0042wt%, O: 0.0015wt%)
And two kinds of materials added with a large amount of Al (C: 1.01 wt%,, Si: 0.21 wt%, Mn: 2.05 wt%,
Cr: 1.30wt%, O: 0.0010wt%, N: 0.0040wt%) (C: 0.99wt%,, Si: 0.28wt%, Mn: 2.10wt%,
Cr: 1.30 wt%, O: 0.0033 wt%, N: 0.0048 wt%) (C: 0.98 wt%,, Si: 0.25 wt%, Mn: 4.22 wt%,
Cr: 1.32wt%, O: 0.0011wt%, N: 0.0040wt%) (C: 0.98wt%, Si: 0.30wt%, Mn: 4.30wt%,
Cr: 1.33 wt%, O: 0.0017 wt%, N: 0.0050 wt%) was prepared. Then, these test materials were subjected to normalizing treatment, spheroidizing annealing and quenching and tempering treatment, and then 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
0kgf/mm2 ,繰り返し応力数 46500 cpmの負荷条件の下で
転動疲労寿命の試験を行った。試験結果は、ワイブル分
布確立紙上にプロットし、非金属介在物の制御によって
影響される材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と、高負
荷転動時の繰り返し応力負荷によるミクロ組織変化発生
を遅延させることによる転動疲労寿命の向上を示す数値
と見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was carried out under a load condition of 0 kgf / mm 2 and a cyclic stress number of 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and B 10 (10% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life due to the increase of material strength affected by the control of non-metallic inclusions, B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change due to repeated stress load during high load rolling, was determined.

【0011】その結果、表1に示すように、介在物制御
をすることなく、単にMnを多量に添加しただけのもの
については、前記B10値についての改善は小さいもの
の、B50値についてはかなり高い数値を示して著しく改
善されていることが判る。即ち、軸受平均寿命はSUJ 2
に比べてB10値で約4倍、B50値で約18倍もの改善効果
を示していた。これに対し、Mnの多量添加とともに非金
属介在物の最大粒径を制御したものでは、高負荷転動
中に生成するミクロ組織変化の遅延特性に対して顕著な
改善効果を示すと共に、さらにB10値に表れているよう
に非金属介在物を原因とする剥離に対する改善効果が認
められた。なかでもは、鋼中酸素量が高いにもかかわ
らず介在物制御によってB10値は約14倍も優れており、
ミクロ組織変化の遅延と介在物の微細化がこのB10値の
向上に作用していることが判る。
As a result, as shown in Table 1, in the case of simply adding a large amount of Mn without controlling inclusions, the improvement in the B 10 value was small, but the B 50 value was small. It can be seen that the numerical value is considerably high and that it is remarkably improved. That is, the average bearing life is SUJ 2
The B 10 value showed an improvement effect of about 4 times and the B 50 value showed an improvement effect of about 18 times. On the other hand, when the maximum grain size of non-metallic inclusions is controlled together with the addition of a large amount of Mn, a significant improvement effect on the retardation property of the microstructure change generated during high-load rolling is exhibited, and B As shown in the 10- value, the effect of improving the peeling caused by the non-metallic inclusions was recognized. Above all, the B 10 value is about 14 times better by controlling inclusions despite the high oxygen content in the steel.
It can be seen that the delay of microstructure change and the refinement of inclusions act to improve the B 10 value.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物粒径に起因する軸受寿命とミクロ組
織変化に起因する寿命との関係を示す模式図である。こ
の図に明らかなように、従来のように累積破損確率10%
のB10値で示される軸受寿命(以下、これを「B10転動
疲労寿命」という)は、Mnを多量に添加することだけで
は大きな効果は期待し得ないが、非金属介在物制御をも
併せて行ったものの方が顕著な改善効果を示している。
一方、累積破損確率50%のB50値で示される軸受寿命
(以下、これを「B50高負荷転動疲労寿命」という)で
みると、非金属介在物制御とは関係なくMn多量添加のみ
によっても改善の効果が極めて顕著なものとなり、ミク
ロ組織変化生成環境の下での軸受寿命を著しく向上させ
るのに有効なことが判る。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the bearing life due to the particle size of non-metallic inclusions and the life due to microstructural changes. As is clear from this figure, the cumulative damage probability is 10% as in the past.
The bearing life indicated by the B 10 value (hereinafter, referred to as “B 10 rolling contact fatigue life”) cannot be expected to have a great effect only by adding a large amount of Mn, but it is possible to control non-metallic inclusions. The results of the above also show a remarkable improvement effect.
On the other hand, bearing life indicated by B 50 value with cumulative damage probability of 50%
(Hereinafter, this is referred to as “B 50 high load rolling contact fatigue life”), the effect of improvement is extremely remarkable even if only a large amount of Mn is added, regardless of the control of non-metallic inclusions, and microstructural change generation occurs. It can be seen that it is effective in significantly improving the bearing life under the environment.

【0014】そこで、本発明においては、主として繰り
返し応力負荷によるミクロ組織変化遅延特性の改善を図
るという観点から、以下に説明するような成分組成の範
囲を決定した。
Therefore, in the present invention, the range of the composition of components as described below is determined mainly from the viewpoint of improving the microstructure change retarding property due to the repeated stress load.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen the martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life by it. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, machinability and forgeability will deteriorate, so it is limited to the range of 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5wt%,0.5超〜2.5wt% Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ,焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5wt%の範囲とする。また、このSiは、
0.5wt%超を添加すると、繰り返し応力負荷の下でのミ
クロ組織変化の遅延をもたらして転動疲労寿命を向上さ
せる効果がある。しかし、その含有量が2.5wt%を超え
るとその効果が飽和する一方で、加工性や靱性を低下さ
せるので、ミクロ組織変化遅延特性のより一層の向上の
ためには、0.5超〜2.5wt%を添加することが有効であ
る。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5wt% Si is used as a deoxidizer during the melting of steel and also as a base material.
Quenching and tempering due to an increase in softening resistance
As an element that increases the strength after rolling and improves rolling contact fatigue life
Is effective. Containing Si added for these purposes
The amount is in the range of 0.05 to 0.5 wt%. Also, this Si is
0.5over wt%Is added, the stress is increased under repeated stress loading.
Improves rolling contact fatigue life by delaying the change in microstructure
Has the effect of However, its content exceeds 2.5 wt%
When the effect is saturated, the workability and toughness decrease.
As a result, it is possible to further improve the microstructure change delay characteristics.
For this reason, it is effective to add more than 0.5 to 2.5 wt%.
It

【0017】Mn: 2.0超〜5.0 wt% Mnは、基本的には鋼の溶製時に脱酸剤として作用し、鋼
の低酸素化に有効に働く元素である。また、鋼の焼入れ
性を向上させることにより基地マルテンサイトの靱性,
硬度を向上させることによって転動疲労寿命の向上に有
効に作用する。ただし、本発明においてこのMnは、もっ
と重要な役割を有し、とくにその添加量が2.0wt %を超
えるような多量添加になると上述した繰返し応力の負荷
によるミクロ組織変化を著しく遅延させる効果を有しこ
の面における、転動疲労寿命を改善する。しかし、その
量が5.0 wt%を超えると、多量の残留γが発生して強度
ならびに寸法安定性が低下するため、2.0 超〜5.0 wt%
の範囲で添加する。
Mn: over 2.0 to 5.0 wt% Mn is an element that basically acts as a deoxidizing agent during the melting of steel and effectively acts to reduce the oxygen content of steel. Further, by improving the hardenability of steel, the toughness of martensitic matrix,
By improving the hardness, it effectively acts to improve the rolling contact fatigue life. However, in the present invention, this Mn has a more important role, and particularly when it is added in a large amount such that its addition amount exceeds 2.0 wt%, it has an effect of remarkably delaying the microstructure change due to the load of cyclic stress. Improve the rolling contact fatigue life in this aspect. However, if the amount exceeds 5.0 wt%, a large amount of residual γ will be generated and the strength and dimensional stability will decrease.
Add in the range of.

【0018】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によるミクロ組織変化を遅延せしめて、こ
の面での転動疲労寿命を向上させるのに有効である。そ
して、この目的のためのCr添加の効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、この目的のた
めに添加するときは、 2.5超〜8.0 wt%としなければな
らない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when it is added for this purpose, it must be more than 2.5 to 8.0 wt%.

【0019】Mo:0.05〜0.5 wt%, 0.5 超〜2.0 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。さらにこのMoは、0.5 wt%超とい
う多量を添加すると、転動時のミクロ組織変化を遅らせ
る効果が著しくなり、この面での転動疲労寿命を向上さ
せる。しかし、その量が 2.0wt%を超えると、切削性,
鍛造性を低下させ、コストアップの因ともなるため、こ
の目的のためには 0.5超〜2.0 wt%の範囲内で添加する
ことが必要である。
Mo: 0.05-0.5 wt%, more than 0.5-2.0 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life. Furthermore, when Mo is added in a large amount of more than 0.5 wt%, the effect of delaying the microstructure change during rolling becomes remarkable, and the rolling fatigue life in this aspect is improved. However, if the amount exceeds 2.0 wt%, machinability,
Forgeability is deteriorated and it causes a cost increase. Therefore, for this purpose, it is necessary to add it in the range of more than 0.5 to 2.0 wt%.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、そしてこのことにより転動疲労寿命を向上させる。
この作用効果は0.05wt%の添加で顕著となり、1.0 wt%
を超えると飽和するので、0.05〜1.0 wt%の範囲で添加
する。
Cu: 0.05-1.0 wt% Cu enhances the strength after quenching and tempering due to the increase in quenching, and thereby improves the rolling fatigue life.
This action effect becomes remarkable with the addition of 0.05 wt%, and 1.0 wt%
Since it will be saturated when it exceeds 0.1%, it is added in the range of 0.05 to 1.0 wt%.

【0021】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0022】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0023】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desired to be as low as possible because it lowers the toughness and rolling contact fatigue life of steel, and the upper limit of its allowable limit is
It is 0.025 wt%.

【0024】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0025】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(MnおよびSi, Cr, Mo, Cu, B, N)および
C,P,Sの限定理由について説明したが、本発明では
さらに、V, Nb, W, Zr, Ta, HfおよびCoのうちから選
ばれるいずれか1種または2種以上を添加することによ
り、高負荷時の転動疲労寿命を改善させるようにしても
よい。
As described above, main components (Mn and Si, Cr, Mo, for improving rolling fatigue life by delaying microstructure change due to repeated stress loading and improving rolling fatigue life through increase in strength). The reason for limiting Cu, B, N) and C, P, S has been described, but the present invention further includes any one or two selected from V, Nb, W, Zr, Ta, Hf and Co. By adding the above, the rolling fatigue life under high load may be improved.

【0026】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.

【表2】 [Table 2]

【0027】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0028】次に、本発明においては、上記成分組成の
限定に加え、鋼中の酸化物系非金属介在物の形態(大き
さ)制御を行うことよって、主として上述したB10転動
疲労寿命の一層の向上を図ることにした。
Next, in the present invention, in addition to the above-mentioned compositional limitation, the morphology (size) of the oxide-based non-metallic inclusions in the steel is controlled, so that the above-mentioned B 10 rolling contact fatigue life is mainly obtained. It was decided to further improve.

【0029】そこでまず、発明者らは、酸化物系非金属
介在物量ならびに成分組成が異なる2種の材料:即ち、
高炭素クロム軸受鋼(JIS-SUJ2)(A)と、上記適合範囲
内組成の軸受鋼(B)とを用いて、鋼中の酸化物系非金
属介在物最大径とB10転動疲労寿命との関係を調査し
た。その結果、図3に示すように、鋼中の酸化物系非金
属介在物量あるいは組成に関係なく、該非金属介在物の
最大径が8μmを越えると、B10転動疲労寿命は目立っ
て低下することが判り、このことから、本発明軸受鋼と
しては、最大粒径が8μm以下になるようにすることが
必要である。
Therefore, first of all, the inventors have made two kinds of materials having different amounts of oxide-based non-metallic inclusions and component compositions:
Using a high carbon chromium bearing steel (JIS-SUJ2) (A) and a bearing steel (B) with a composition within the above applicable range, the maximum diameter of oxide non-metallic inclusions in the steel and B 10 rolling contact fatigue life I investigated the relationship with. As a result, as shown in FIG. 3, regardless of the amount or composition of oxide nonmetallic inclusions in the steel, when the maximum diameter of the nonmetallic inclusions exceeds 8 μm, the B 10 rolling contact fatigue life is markedly reduced. From this, it is necessary for the bearing steel of the present invention to have a maximum grain size of 8 μm or less.

【0030】[0030]

【実施例】表3, 表4, 表5に示す成分組成の鋼を常法
にて溶製し、得られた鋼材につき1240℃で30h の拡散焼
鈍の後に65mmφの棒鋼に圧延した。次いで、焼ならし−
球状化焼なまし−焼入れ−焼もどしの順で熱処理を行
い、ラッピング仕上げにより12mmφ×22mmの円筒型転動
疲労寿命試験片を作製した。非金属介在物の試験は、 4
00倍で 800視野の酸化物系非金属介在物を測定し、各視
野での介在物最大径をGumbel確率紙上にまとめ、50000
mm2 相当の極値を算出し、鋼中に存在する酸化物系非金
属介在物最大粒径とした。また、転動疲労寿命試験は、
ラジアルタイプの転動疲労寿命試験機を用いて、ヘルツ
最大接触応力:600 kgf/mm2 , 繰り返し応力数約46500
cpm の条件で行った。試験結果は、ワイブル分布に従う
ものとして確率紙上にまとめ、鋼材No.1 (従来鋼である
JIS- SuJ2) の平均寿命 (累積破損確率:10%および50
%における、剥離発生までの総負荷回数) を1として、
その他の鋼種のものを対比して評価したものである。そ
の評価結果を、表3、表4にそれぞれ併せて示した。
[Examples] Steels having the chemical compositions shown in Tables 3, 4 and 5 were melted by a conventional method, and the obtained steel materials were diffusion annealed at 1240 ° C for 30 hours and then rolled into steel bars of 65 mmφ. Then normalize-
Heat treatment was performed in the order of spheroidizing annealing-quenching-tempering, and 12 mmφ x 22 mm cylindrical rolling fatigue life test pieces were prepared by lapping finish. The test for non-metallic inclusions is 4
Measure oxide-based non-metallic inclusions in 800 fields at 00 times and summarize the maximum size of inclusions in each field on Gumbel probability paper.
An extreme value equivalent to mm 2 was calculated and used as the maximum particle size of oxide-based nonmetallic inclusions present in the steel. In addition, the rolling fatigue life test
Using a radial type rolling fatigue life tester, Hertz maximum contact stress: 600 kgf / mm 2 , cyclic stress number about 46500
It went under the condition of cpm. The test results are summarized on the probability paper as being in accordance with the Weibull distribution, and the steel material No. 1 (conventional steel
JIS-SuJ2) average life (cumulative damage probability: 10% and 50
%, The total number of loads until peeling occurs) is 1, and
It is evaluated by comparing other steel types. The evaluation results are also shown in Tables 3 and 4, respectively.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.5, 鋼中Mn量が本
発明範囲外である鋼材No.6のB50転動疲労寿命は、いず
れも従来鋼(鋼材No.1)に比べて悪い。また、介在物最
大径が8μm を超えるNo.4では、B10転動疲労寿命の方
が悪いという結果となった。これに対し、本発明鋼( 第
1発明)である鋼材No.7および8 のB10, B50値は、い
ずれも従来鋼(鋼材No.1) に比較して約2〜4倍も優れ
ている。すなわち、軸受鋼へのMnの単独多量添加がミク
ロ組織変化を著しく遅延し、介在物最大径の制御によっ
て、軸受のあらゆる転動疲労寿命の向上に対して有効に
作用したことが窺える。
As is clear from the results shown in Tables 3 and 4,
Steel No. 5 with a C content outside the scope of the present invention and steel No. 6 with a Mn content outside the scope of the present invention have the same B 50 rolling contact fatigue life as the conventional steel (steel No. 1). Bad compared to. Further, in No. 4 in which the maximum inclusion diameter exceeds 8 μm, the B 10 rolling contact fatigue life is worse. On the other hand, the B 10 and B 50 values of the steel materials No. 7 and 8 of the present invention (first invention) are about 2 to 4 times better than those of the conventional steel (steel material No. 1). ing. That is, it can be seen that the addition of a large amount of Mn alone to the bearing steel significantly retarded the microstructural change, and effectively controlled all the rolling fatigue life of the bearing by controlling the maximum inclusion diameter.

【0034】なかでも、MnとSbの添加る加えてSi, Cr,
Mo, W, V, Nb, Zr, Ta, Hf, Co, Nの単独添加およびそ
れらの複合添加例(第3発明鋼)No.17 〜29の場合に
は、上記平均寿命(B50転動疲労寿命)は、より一層向
上することが確かめられた。
Among them, addition of Mn and Sb, addition of Si, Cr,
In the case of adding Mo, W, V, Nb, Zr, Ta, Hf, Co, N alone and their compounding examples (third invention steel) No. 17 to 29, the above average life (B 50 rolling It was confirmed that the fatigue life) was further improved.

【0035】また、介在物粒径制御にあわせ強度上昇に
よる寿命改善成分を単独または複合して添加してなるN
o.9〜16(第2本発明例)は、B10軸受寿命の方が極め
て高い改善の程度を示した。さらに、本発明において推
奨する全ての寿命改善成分を選択的に添加してなるNo.3
0 〜42(第4発明鋼)の場合、寿命改善傾向はB10,B
50とも一層顕著となる。
In addition, N is obtained by adding a life-improving component for increasing the strength alone or in combination in accordance with the control of the inclusion particle size.
Nos. 9 to 16 (Examples of the second invention) showed a much higher degree of improvement in the B 10 bearing life. Furthermore, No. 3 is obtained by selectively adding all the life improving components recommended in the present invention.
In the case of 0 to 42 (4th invention steel), the life improvement tendency is B 10 , B.
50 is even more prominent.

【0036】[0036]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には2.0 超〜5.0 wt%のMnを含有する軸受鋼とす
ることにより、繰り返し応力負荷に伴うミクロ組織変化
の遅延をもたらすことによる転動疲労寿命の向上を達成
して、この面において高寿命の軸受用の鋼を提供するこ
とができる。しかも、非金属介在物の粒径制御を通じて
材料強度を高めることによって、この面における転動疲
労寿命の向上をも実現できる。なお、本発明にかかる軸
受鋼の開発によって、転がり軸受の小型化ならびに軸受
使用温度のより以上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using a bearing steel containing more than 2.0 to 5.0 wt% Mn, the rolling fatigue life is improved by delaying the microstructural change due to repeated stress loading, and in this aspect A long-life bearing steel can be provided. Moreover, by increasing the material strength by controlling the particle size of the non-metallic inclusions, it is possible to improve the rolling fatigue life in this aspect. The development of the bearing steel according to the present invention makes it possible to downsize the rolling bearing and further increase the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に、
発生するミクロ組織変化のようすを示す金属組織の顕微
鏡写真。
1 (a) and 1 (b) are under cyclic stress loading,
A micrograph of the metal structure showing the appearance of the microstructure change that occurs.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすMnの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the effect of Mn on the bearing life due to inclusions and the bearing life due to microstructural changes.

【図3】非金属介在物最大径と軸受転動疲労寿命との関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum diameter of non-metallic inclusions and bearing rolling fatigue life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平3−254342(JP,A) 特開 平3−56640(JP,A) 特開 昭63−62847(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works Ltd. Technical Research Division (56) Reference JP-A-3-254342 (JP, A) Kaihei 3-56640 (JP, A) JP-A-63-62847 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を
含み、残部がFeおよび不可避的不純物からなり、かつ酸
化物系非金属介在物の最大粒径が8μm以下である,繰
り返し応力負荷によるミクロ組織変化の遅延特性に優れ
た軸受鋼。
1. C: 0.5-1.5 wt%, Mn: more than 2.0-5.0 wt%, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based nonmetallic inclusions being 8 μm or less. A bearing steel with excellent delay characteristics for microstructural changes due to repeated stress loading.
【請求項2】C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を
含有し、さらに、Si:0.05〜0.5wt%,Cr:0.05〜2.5wt
%,Mo:0.05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.00
05〜0.01wt%及びN:0.0005〜0.012wt%のうちから選
ばれるいずれか1種または2種以上を含み、残部がFeお
よび不可避的不純物からなり、かつ酸化物系非金属介在
物の最大粒径が8μm以下である,繰り返し応力負荷に
よるミクロ組織変化の遅延特性に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%, Si: 0.05 to 0.5 wt%, Cr: 0.05 to 2.5 wt%
%, Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0 wt%, B: 0.00
05~0.01Wt%及 Beauty N: maximum any one selected from among 0.0005~0.012Wt% comprises one or two or more, the balance being Fe and unavoidable impurities, and an oxide-based nonmetallic inclusions Bearing steel with a grain size of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress loading.
【請求項3】C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を
含有し、さらにSi:0.5超〜2.5wt%,Cr:2.5超〜8.0
wt%,Mo:0.5超〜2.0wt%,N:0.012超〜0.050wt%,
V:0.05〜1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.
0wt%,Zr:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:
0.02〜0.5wt%及びCo:0.05〜1.5wt%のうちから選ばれ
るいずれか1種または2種以上を含み、残部がFeおよび
不可避的不純物からなり、かつ酸化物系非金属介在物の
最大粒径が8μm以下である,繰り返し応力負荷による
ミクロ組織変化の遅延特性に優れた軸受鋼。
3. C: 0.5-1.5 wt%, Mn: more than 2.0-5.0 wt% , Si: more than 0.5-2.5 wt%, Cr: more than 2.5-8.0
wt%, Mo: more than 0.5 to 2.0 wt%, N: more than 0.012 to 0.050 wt%,
V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.
0wt%, Zr: 0.02-0.5wt%, Ta: 0.02-0.5wt%, Hf:
0.02~0.5Wt%及 Beauty Co: up either selected from among 0.05~1.5Wt% comprises one or two or more, the balance being Fe and unavoidable impurities, and an oxide-based nonmetallic inclusions Bearing steel with a grain size of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress loading.
【請求項4】C:0.5〜1.5wt%,Mn:2.0超〜5.0wt%を
含有し、さらに、下記I群の成分のうちから選ばれるい
ずれか1種または2種以上を含み、さらに、下記II群の
成分(ただし、I群で選択されている元素は除く)のう
ちから選ばれるいずれか1種または2種以上を含み、残
部がFeおよび不可避的不純物からなり、かつ酸化物系非
金属介在物の最大粒径が8μm以下である,繰り返し応
力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Mo:0.
05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01wt
%及びN:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Mo:
0.5超〜2.0wt%,N:0.012超〜0.050wt%,V:0.05〜
1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%及びCo:0.05〜1.5wt%
4. C: 0.5 to 1.5 wt%, Mn: more than 2.0 to 5.0 wt%, further containing any one or more selected from the following group I components , and Of group II below
It contains any one or two or more selected from the components (excluding the elements selected in Group I) , the balance being Fe and inevitable impurities, and oxide-based nonmetallic inclusions Bearing steel with a maximum grain size of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress loading Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Mo: 0.
05-0.5wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01wt
%及 Beauty N: 0.0005~0.012wt% II group: Si: 0.5 super ~2.5wt%, Cr: 2.5 super ~8.0wt%, Mo:
Over 0.5 ~ 2.0wt%, N: over 0.012 ~ 0.050wt%, V: 0.05 ~
1.0wt%, Nb: 0.05 to 1.0wt%, W: 0.05 to 1.0wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt%
JP09555693A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3383351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09555693A JP3383351B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09555693A JP3383351B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287700A JPH06287700A (en) 1994-10-11
JP3383351B2 true JP3383351B2 (en) 2003-03-04

Family

ID=14140862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09555693A Expired - Fee Related JP3383351B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3383351B2 (en)

Also Published As

Publication number Publication date
JPH06287700A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379784B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3411087B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity
JPH06287704A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees