JP3379780B2 - Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading - Google Patents

Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Info

Publication number
JP3379780B2
JP3379780B2 JP05269593A JP5269593A JP3379780B2 JP 3379780 B2 JP3379780 B2 JP 3379780B2 JP 05269593 A JP05269593 A JP 05269593A JP 5269593 A JP5269593 A JP 5269593A JP 3379780 B2 JP3379780 B2 JP 3379780B2
Authority
JP
Japan
Prior art keywords
bearing
steel
life
repeated stress
bearing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05269593A
Other languages
Japanese (ja)
Other versions
JPH06264186A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05269593A priority Critical patent/JP3379780B2/en
Publication of JPH06264186A publication Critical patent/JPH06264186A/en
Application granted granted Critical
Publication of JP3379780B2 publication Critical patent/JP3379780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに多量のMnを添加することによって、繰
り返し応力負荷によって転動接触面下に発生するミクロ
組織変化(劣化)に対する遅延特性を改善してなる軸受
鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly when a large amount of Mn is added, it is generated below a rolling contact surface by repeated stress loading. We propose a bearing steel with improved delay characteristics against changes in microstructure (deterioration).

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are techniques for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、高価な溶製設備
の設置あるいは従来設備の大幅な改良が必要であり、経
済的な負担が大きいという問題があった。また、本発明
者らが行った最近の研究成果を整理したところによれ
ば、転動寿命を決めている要因としては、従来から一般
に論じられてきた現象;すなわち、熱処理時に生じる
“脱炭層”(低C濃度領域)や上述した“非金属介在
物”の存在以外の要因もあるということが判った。とい
うのは、従来技術の下で単に脱炭層や非金属介在物を減
少させても、軸受の転動疲労寿命, 特に、高負荷あるい
は高温といった過酷な条件下での軸受寿命の向上には大
きな効果が得られないということを多く経験したからで
ある。このことから、特有の軸受寿命を律する他の要因
の存在を確信したのである。
However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is necessary to install expensive melting equipment or to greatly improve conventional equipment, which causes a large economical burden. There was a problem. Further, according to a summary of recent research results conducted by the present inventors, as a factor that determines the rolling life, a phenomenon that has been generally discussed in the past; that is, a "decarburized layer" generated during heat treatment It was found that there are other factors besides the (low C concentration region) and the presence of the above-mentioned "non-metallic inclusions". This is because simply reducing the decarburization layer and non-metallic inclusions under the conventional technology is not enough to improve the rolling contact fatigue life of the bearing, especially the bearing life under severe conditions such as high load or high temperature. This is because I experienced many things that I could not get the effect. From this, we were convinced of the existence of other factors that control the bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体との回転接触時に発生する繰り返し剪断
応力により、図1(a) に示すような、転動接触面の下層
部分(表層部)に、帯状の白色生成物と棒状の析出物か
らなるミクロ組織変化層が発生し、これが転動回数を増
すにつれて次第に成長し、終いにはこのミクロ組織変化
部から、図1(b) に示すような、疲労剥離が生じて軸受
寿命につながることがわかった。さらに、軸受使用環境
の過酷化すなわち, 高面圧化(小型化), 使用温度の上
昇は、これらミクロ組織変化が発生するまでの時間を縮
め、著しい軸受寿命の低下を招くことになるということ
をつきとめた。すなわち、過酷な状況下での軸受寿命
は、従来技術のような、単に脱炭層や非金属介在物を制
御するだけでは不十分である。例えば、単に非金属介在
物を低減させただけでは、上述した転動接触面下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。
Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, due to the repeated shear stress generated during the rolling contact between the inner and outer races of the bearing and the rolling element, a band-shaped white color was generated in the lower layer (surface layer) of the rolling contact surface as shown in Fig. 1 (a). A microstructure-changed layer consisting of solids and rod-shaped precipitates is formed, which gradually grows as the number of rolling increases, and at the end, fatigue delamination from this microstructure-changed part as shown in Fig. 1 (b). Was found to lead to bearing life. In addition, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the time until these microstructural changes occur, resulting in a marked reduction in bearing life. I found him. That is, the bearing life under severe conditions is not sufficient by merely controlling the decarburized layer and non-metallic inclusions as in the prior art. For example, simply reducing the amount of non-metallic inclusions cannot delay the time until the above-described microstructure change occurring under the rolling contact surface occurs. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
での軸受使用中に生成が予想されるミクロ組織変化を遅
延させることができ、ひいては軸受寿命の著しい向上を
もたらす軸受鋼を提供することにある。
Therefore, an object of the present invention is to delay the microstructural change expected to occur during the use of a bearing under a high load in order to improve the rolling contact fatigue life characteristics under severe operating conditions. And to provide a bearing steel that can significantly improve the life of the bearing.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、それの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立って、さらに種々の実
験と検討とを行った。その結果、意外にもMnを多量に添
加すれば、繰り返し応力負荷による転動接触面下に生成
する上述したミクロ組織変化を著しく遅延でき、ひいて
は軸受寿命を著しく向上させることができることを見い
出し、本発明軸受鋼を開発した。
The inventors of the present invention focused on a new "microstructure change delay characteristic" as the bearing life based on the above-mentioned knowledge, and of course, it is necessary to improve it. With the recognition that a new alloy design (composition composition) of (1) is necessary and the life of the bearing cannot be further improved without realizing this, various experiments and studies were further conducted. As a result, it was unexpectedly found that by adding a large amount of Mn, the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading can be significantly delayed, and by extension, the bearing life can be significantly improved. Invented bearing steel developed.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,O:0.00
20wt%以下を含有し、残部がFeおよび不可避的不純物か
らなる、繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼(第1発明)。 (2) C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,O:0.00
20wt%以下を含有し、さらに、Si:0.05〜0.5wt%,C
r:0.05〜2.5wt%,Mo:0.05〜0.5wt%,Cu:0.05〜1.0
wt%,B:0.0005〜0.01wt%及びN:0.0005〜0.012wt
%のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼(第2発明)。 (3) C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,O:0.00
20wt%以下を含有し、さらにSi:0.5超〜2.5wt%,C
r:2.5超〜8.0wt%,Mo:0.5超〜2.0wt%,N:0.012超
〜0.050wt%,V:0.05〜1.0wt%,Nb:0.05〜1.0wt
%,W:0.05〜1.0wt%,Zr:0.02〜0.5wt%,Ta:0.02
〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜1.5wt%
のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
鋼(第3発明)。 (4) C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,O:0.00
20wt%以下を含有し、さらに、下記I群の成分のうちか
ら選ばれるいずれか1種または2種以上を含み、さら
、下記II群の成分(ただし、I群で選択されている元
素は除く)のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなる、
繰り返し応力負荷によるミクロ組織変化の遅延特性に優
れた軸受鋼(第4発明)。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Mo:0.
05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01wt
%及びN:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Mo:
0.5超〜2.0wt%,N:0.012超〜0.050wt%,V:0.05〜
1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%及びCo:0.05〜1.5wt%
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Mn: over 2.5 to 5.0 wt%, O: 0.00
A bearing steel containing 20 wt% or less, and the balance being Fe and inevitable impurities, which is excellent in delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Mn: over 2.5 to 5.0 wt%, O: 0.00
Contains less than 20wt%, Si: 0.05-0.5wt%, C
r: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0
wt%, B: 0.0005~0.01wt% beauty N: 0.0005~0.012wt
%, And a balance of Fe and unavoidable impurities, the balance of which is excellent in delay characteristics of microstructure change due to repeated stress load (second invention). (3) C: 0.5 to 1.5 wt%, Mn: over 2.5 to 5.0 wt%, O: 0.00
It contained the following 20 wt%, further, Si: 0.5 super ~2.5wt%, C
r: over 2.5 ~ 8.0wt%, Mo: over 0.5 ~ 2.0wt%, N: over 0.012 ~ 0.050wt%, V: 0.05 ~ 1.0wt%, Nb: 0.05 ~ 1.0wt
%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02
~ 0.5wt%, Hf: 0.02-0.5wt% and Co: 0.05-1.5wt%
A bearing steel which contains one or more selected from the group consisting of Fe and unavoidable impurities with the balance being excellent in delay characteristics of microstructure change due to repeated stress load (third invention). (4) C: 0.5 to 1.5 wt%, Mn: over 2.5 to 5.0 wt%, O: 0.00
20 wt% or less, and further contains any one kind or two or more kinds selected from the following group I components, and further contains the following group II components (provided that they are selected in group I). Yuan
(Excluding elements) , and any one or more selected from the group consisting of Fe and inevitable impurities.
Bearing steel excellent in delay characteristics of microstructure change due to repeated stress load (4th invention). Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Mo: 0.
05-0.5wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01wt
% And N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Mo:
Over 0.5 ~ 2.0wt%, N: over 0.012 ~ 0.050wt%, V: 0.05 ~
1.0wt%, Nb: 0.05 to 1.0wt%, W: 0.05 to 1.0wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt%

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, Ni:0.0040wt%, O:0.0012wt%)
と、Mnを添加した2種の材料 (C:1.01wt%, , Si:0.21wt%, Mn:2.05wt%,
Cr:1.30wt%, O:0.0010wt%, N:0.0040wt%) (C:0.98wt%, , Si:0.25wt%, Mn:4.22wt%,
Cr:1.32wt%, O:0.0011wt%, N:0.0040wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35wt%, Ni: 0.0040wt%, O: 0.0012wt%)
And two materials containing Mn (C: 1.01 wt%,, Si: 0.21 wt%, Mn: 2.05 wt%,
Cr: 1.30 wt%, O: 0.0010 wt%, N: 0.0040 wt%) (C: 0.98 wt%,, Si: 0.25 wt%, Mn: 4.22 wt%,
Cr: 1.32 wt%, O: 0.0011 wt%, N: 0.0040 wt%) was prepared. Then, these test materials were subjected to normalizing treatment, spheroidizing normalizing treatment, quenching and tempering treatment, and 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
kgf/mm2 , 46500 cpm の負荷条件の下で転動疲労寿命の
試験を行った。試験結果は、ワイブル分布確立紙上にプ
ロットし, 材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と高負荷
転動時の繰り返し応力負荷によるミクロ組織変化発生を
遅延させることによる転動疲労寿命の向上を示す数値と
見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was conducted under load conditions of kgf / mm 2 and 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and are considered to be the numerical values showing the improvement of rolling contact fatigue life due to the increase of material strength. B 10 (10% cumulative failure probability) and micro stress due to repeated stress loading during high load rolling. B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructural change, was determined.

【0011】その結果、表1に示すように、高Mn添加材
については、前記B10値についての改善はそれほど大き
くないが、B50値については著しく高い数値を示し、軸
受平均寿命はSUJ 2 に比べてB10値で約4倍、B50値で
約18倍もの改善を示すことが認められた。とくに、Mnの
多量添加は高負荷転動中に生成するミクロ組織変化の遅
延特性に対して顕著な効果を示し、その分破損(寿命)
を遅延させることが期待できる。
As a result, as shown in Table 1, with respect to the high Mn-added material, the B 10 value is not so much improved, but the B 50 value is remarkably high, and the average bearing life is SUJ 2 It was confirmed that the B 10 value showed an improvement of about 4 times, and the B 50 value showed an improvement of about 18 times, compared with the above. In particular, the addition of a large amount of Mn has a remarkable effect on the delaying property of the microstructure change generated during high-load rolling, and the damage (life) is correspondingly increased.
Can be expected to be delayed.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物に起因する軸受寿命とミクロ組織変
化に起因する寿命の変化との関係を示す模式図である。
この図に明らかなように、従来のように累積破損確率10
%のB10値で示される軸受寿命(以下、これを「B10
動疲労寿命」という)によれば、Mnを多量に添加しても
その効果は期待した程には顕れない。しかし、これをB
50値でみると、Mnの多量添加の効果は極めて顕著なもの
となり、過酷な条件下, すなわちミクロ組織変化生成環
境の下での軸受寿命を意識する限り、かかるB50に優れ
ているという評価は不可欠のものであることが判った。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes.
As is clear from this figure, the cumulative damage probability 10
According to the bearing life indicated by the B 10 value of% (hereinafter referred to as “B 10 rolling contact fatigue life”), even if a large amount of Mn is added, the effect is not as expected. But this is B
The 50 value shows that the effect of adding a large amount of Mn becomes extremely remarkable, and it is evaluated that the B 50 is excellent as long as the bearing life under severe conditions, that is, under the microstructure change generation environment, is taken into consideration. Proved to be essential.

【0014】そこで、本発明においては、繰り返し応力
負荷によるミクロ組織変化遅延特性の改善を図るという
観点から、以下に説明するような成分組成の範囲を決定
した。
Therefore, in the present invention, the range of the composition of components as described below is determined from the viewpoint of improving the microstructure change delaying property due to repeated stress loading.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保と、そ
れによる転動疲労寿命を向上させるために含有させる。
その含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では非酸化性, 鍛造性が低下する
ので、 0.5〜1.5 wt%の範囲に限定した。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts on the strengthening of martensite, and secures the strength after quenching and tempering and improves the rolling contact fatigue life. Is included for
If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the non-oxidizing property and the forgeability deteriorate, so the range was limited to 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5wt%,0.5超〜2.5wt% Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ,焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5wt%の範囲とする。さらに、このSi
は、0.5wt%超を添加すると、繰り返し応力負荷の下で
のミクロ組織変化の遅延をもたらして転動疲労寿命を向
上させる効果がある。しかし、その含有量が2.5wt%を
超えると、その効果が飽和する一方で加工性や靱性を低
下させるので、ミクロ組織変化遅延特性のより一層の向
上のためには、0.5超〜2.5wt%を添加することが有効で
ある。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5wt% Si is used as a deoxidizer during the melting of steel and also as a base material.
Quenching and tempering due to an increase in softening resistance
As an element that increases the strength after rolling and improves rolling contact fatigue life
Is effective. Containing Si added for these purposes
The amount is in the range of 0.05 to 0.5 wt%. Furthermore, this Si
is 0.5wt% Addition, under repeated stress loading
The microstructure change of the
It has the effect of increasing the quality. However, its content is 2.5 wt%
If it exceeds, the effect will be saturated, but the workability and toughness will be reduced.
As a result, it is possible to further improve the microstructure change delay property.
For the above, it is effective to add more than 0.5 ~ 2.5wt%
is there.

【0017】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if the delay of microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0018】Mn: 2.0超〜5.0 wt% このMnは、本発明において最も重要な役割を担っている
元素であり、とくに 2.0wt%を超えて多量に添加するこ
とにより、高負荷転動時の繰返し応力の負荷の下で、上
述したミクロ組織変化の遅延を促して、B50転動疲労寿
命を顕著に改善する。しかし、その量が5.0 wt%を超え
るようなあまりに多量の添加では、残留γが多量に発生
して強度ならびに寸法安定性が低下するため、この目的
のためには、 2.0超〜5.0 wt%の範囲で添加する。
Mn: more than 2.0 to 5.0 wt% This Mn is an element that plays the most important role in the present invention, and especially when it is added in a large amount exceeding 2.0 wt%, it is Under cyclic stress loading, it promotes the delay of the above-mentioned microstructural change and significantly improves the B 50 rolling contact fatigue life. However, if the amount added exceeds 5.0 wt%, a large amount of residual γ is generated and the strength and dimensional stability are reduced. Add in range.

【0019】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によるミクロ組織変化を遅延せしめて、こ
の面での転動疲労寿命を向上させるのに有効である。そ
して、この目的のためのCr添加の効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、この目的のた
めに添加するときは、 2.5超〜8.0 wt%としなければな
らない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when it is added for this purpose, it must be more than 2.5 to 8.0 wt%.

【0020】Mo:0.05〜0.5 wt%, 0.5 超〜2.0 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。さらにこのMoは、0.5 wt%超とい
う多量になると、転動時のミクロ組織変化を遅らせる効
果が著しくなり、この面での転動疲労寿命を向上させ
る。しかし、その量が 2.0wt%を超えると、切削性, 鍛
造性を低下させ、コストアップの因ともなるため、この
目的のためには 0.5超〜2.0 wt%の範囲内で添加するこ
とが必要である。
Mo: 0.05 to 0.5 wt%, more than 0.5 to 2.0 wt% Mo is an element which improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life. Further, when Mo is contained in a large amount of more than 0.5 wt%, the effect of delaying the microstructure change during rolling becomes remarkable, and the rolling fatigue life in this aspect is improved. However, if the amount exceeds 2.0 wt%, the machinability and forgeability will be reduced, and this will cause cost increase. Therefore, for this purpose, addition within the range of more than 0.5 to 2.0 wt% is necessary. Is.

【0021】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。
Cu: 0.05 to 1.0 wt% Cu is added in order to enhance the strength after quenching and tempering due to the increase in quenching and to improve the rolling contact fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability to increase the strength after quenching and tempering and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0023】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0024】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling contact fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.

【0025】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0026】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(MnおよびSi, Cr, Mo, Cu, B, N)および
C,P,Sの限定理由について説明したが、本発明では
さらに、V, Nb, W, Zr, Ta, HfおよびCoのうちから選
ばれるいずれか1種または2種以上を添加することによ
り、高負荷時の転動疲労寿命を改善させるようにしても
よい。
As described above, the main components (Mn and Si, Cr, Mo, for improving rolling fatigue life by delaying the microstructure change due to repeated stress loading and improving rolling fatigue life by increasing strength). The reason for limiting Cu, B, N) and C, P, S has been described, but the present invention further includes any one or two selected from V, Nb, W, Zr, Ta, Hf and Co. By adding the above, the rolling fatigue life under high load may be improved.

【0027】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.

【表2】 [Table 2]

【0028】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0029】[0029]

【実施例】表3, 4, 5に示す成分組成の鋼を常法にて
溶製し、得られた鋼材につき1240℃で30h の拡散焼鈍の
後に65mmφの棒鋼に圧延した。次いで、焼ならし−球状
化焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラ
ッピング仕上げにより12mmφ×22mmの円筒型転動疲労寿
命試験片を作製した。そして、上記各試験片について、
軸受平均寿命であるB50転動疲労寿命の試験を行った。
このB50転動疲労寿命試験は、ラジアルタイプの転動疲
労寿命試験機を用いて、ヘルツ最大接触応力:600 kgf/
mm2 , 繰り返し応力数約46500 cpm の条件で行ったもの
である。試験結果は、ワイブル分布に従うものとして確
率紙上にまとめ、鋼材No. 40 (従来鋼である SUJ2) の
平均寿命 (累積破損確率:50%における、剥離発生まで
の総負荷回数) を1として、その他の鋼種のものを対比
して評価した。その評価結果も、表3, 4, 5にそれぞ
れ示した。
EXAMPLE Steels having the compositions shown in Tables 3, 4, and 5 were melted by a conventional method, and the obtained steel materials were diffusion-annealed at 1240 ° C. for 30 hours and then rolled into steel bars of 65 mmφ. Then, heat treatment was performed in the order of normalizing-spheroidizing annealing-quenching-tempering, and a 12 mmφ x 22 mm cylindrical rolling fatigue life test piece was prepared by lapping finish. And for each of the above test pieces,
A test of B 50 rolling contact fatigue life, which is the average bearing life, was conducted.
This B 50 rolling contact fatigue life test uses a radial type rolling contact fatigue life tester and the Hertz maximum contact stress: 600 kgf /
The test was performed under the condition of mm 2 , cyclic stress number of about 46500 cpm. The test results are summarized on the probability paper according to the Weibull distribution, and the average life of steel material No. 40 (conventional steel SUJ2) (cumulative failure probability: 50%, the total number of loads before delamination) is set to 1, and other The steel grades were evaluated in comparison. The evaluation results are also shown in Tables 3, 4, and 5, respectively.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】表3,4,5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.41、鋼中Mn
量が本発明範囲外である鋼材No.42,43、ならびに鋼中
O量が本発明範囲外である鋼材No.44の平均寿命は、い
ずれも従来鋼(鋼材No.40)に比べて低い。これに対
し、本発明鋼である鋼材No.1〜36(但し、No.2,25,2
6,28,29,31を除く)の平均寿命は、従来鋼(鋼材No.4
0)に比較して2.3〜26.9倍も優れている。すなわち、軸
受鋼へのMnの添加がミクロ組織変化を著しく遅延し、そ
の結果転動疲労寿命の向上に有効に作用したことが窺え
る。
As is clear from the results shown in Tables 3, 4 and 5, steel No. 41 and Mn in steel having a C content in the steel outside the range of the present invention.
The average life of steel materials No. 42 and 43 whose amounts are outside the scope of the present invention and steel materials No. 44 whose amount of O in the steel is outside the scope of the present invention are both lower than that of conventional steel (steel material No. 40). . On the other hand, steel materials No. 1 to 36 of the present invention (however, No. 2 , 25, 2
The average life of 6, 28, 29 and 31 is the same as that of conventional steel (steel material No. 4).
It is 2.3 to 26.9 times better than 0). That is, it can be seen that the addition of Mn to the bearing steel significantly retarded the microstructural change, and as a result, effectively acted to improve the rolling contact fatigue life.

【0034】なかでも、Si, Cr, Mo, W, V, Zr, Ta,
Hf, Cu, Co, Nを所定量以上を積極的に加えた鋼No.27
〜 39 の場合には、上記平均寿命(B50転動疲労寿命)
は、より一層向上することが確かめられた。
Among them, Si, Cr, Mo, W, V, Zr, Ta,
Steel No. with positive addition of Hf, Cu, Co, N in a specified amount or more 27
In the case of ~ 39, the above average life (B 50 rolling contact fatigue life)
Was confirmed to be further improved.

【0035】[0035]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には 2.0wt%超の高Mn含有軸受鋼とすることによ
り、繰り返し応力負荷に伴うミクロ組織変化の遅延をも
たらすことによる転動疲労寿命の向上を達成して、高寿
命の軸受用の鋼を提供することができる。従って、従来
技術の下では不可欠とされていた、より一層の鋼中酸素
量の低減あるいは鋼中に存在する酸化物系非金属介在物
の組成, 形状, ならびにその分布状態をコントロールす
るために必要となる製鋼設備の改良あるいは建設が不必
要である。また、本発明にかかる軸受鋼の開発によっ
て、転がり軸受の小型化ならびに軸受使用温度のより以
上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using a bearing steel with a high Mn content of more than 2.0 wt%, it is possible to achieve an improvement in rolling contact fatigue life by delaying the microstructural change due to repeated stress loading, and for bearings with long life. Steel can be provided. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. Further, the development of the bearing steel according to the present invention enables downsizing of the rolling bearing and further increase of the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a), (b)は、繰り返し応力負荷の下に発生する
ミクロ組織変化のようすを示す金属組織の顕微鏡写真。
1A and 1B are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすMnの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the effect of Mn on the bearing life due to inclusions and the bearing life due to microstructural changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平3−138332(JP,A) 特開 平3−271319(JP,A) 特開 平3−254339(JP,A) 特開 平1−283430(JP,A) 特開 平3−53021(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (56) Reference JP-A-3-138332 (JP, A) Kaihei 3-271319 (JP, A) JP-A-3-254339 (JP, A) JP-A-1-283430 (JP, A) JP-A-3-53021 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,
O:0.0020wt%以下を含有し、残部がFeおよび不可避的
不純物からなる、繰り返し応力負荷によるミクロ組織変
化の遅延特性に優れた軸受鋼。
1. A C: 0.5~1.5wt%, Mn: 2.5 Ultra 5.0 wt%,
O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and a bearing steel excellent in delay characteristics of microstructure change due to repeated stress load.
【請求項2】C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,
O:0.0020wt%以下を含有し、さらに、Si:0.05〜0.5w
t%,Cr:0.05〜2.5wt%,Mo:0.05〜0.5wt%,Cu:0.0
5〜1.0wt%,B:0.0005〜0.01wt%及びN:0.0005〜0.
012wt%のうちから選ばれるいずれか1種または2種以
上を含み、残部がFeおよび不可避的不純物からなる、繰
り返し応力負荷によるミクロ組織変化の遅延特性に優れ
た軸受鋼。
Wherein C: 0.5~1.5wt%, Mn: 2.5 Ultra 5.0 wt%,
O: contains 0.0020 wt% or less, and further Si: 0.05 to 0.5 w
t%, Cr: 0.05 to 2.5 wt%, Mo: 0.05 to 0.5 wt%, Cu: 0.0
5~1.0wt%, B: 0.0005~0.01wt% beauty N: 0.0005~0.
A bearing steel containing at least one selected from the group consisting of 012 wt% and the balance consisting of Fe and unavoidable impurities and having excellent delay characteristics of microstructure change due to repeated stress loading.
【請求項3】C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,
O:0.0020wt%以下を含有し、さらにSi:0.5超〜2.5
wt%,Cr:2.5超〜8.0wt%,Mo:0.5超〜2.0wt%,N:
0.012超〜0.050wt%,V:0.05〜1.0wt%,Nb:0.05〜
1.0wt%,W:0.05〜1.0wt%,Zr:0.02〜0.5wt%,T
a:0.02〜0.5wt%,Hf:0.02〜0.5wt%及びCo:0.05〜
1.5wt%のうちから選ばれるいずれか1種または2種以
上を含み、残部がFeおよび不可避的不純物からなる、繰
り返し応力負荷によるミクロ組織変化の遅延特性に優れ
た軸受鋼。
3. C: 0.5~1.5wt%, Mn: 2.5 Ultra 5.0 wt%,
O: 0.0020 wt% or less is contained, and Si: more than 0.5 to 2.5
wt%, Cr: over 2.5 to 8.0 wt%, Mo: over 0.5 to 2.0 wt%, N:
Over 0.012 ~ 0.050wt%, V: 0.05 ~ 1.0wt%, Nb: 0.05 ~
1.0wt%, W: 0.05-1.0wt%, Zr: 0.02-0.5wt%, T
a: 0.02-0.5wt%, Hf: 0.02-0.5wt% and Co: 0.05-
A bearing steel that contains one or more selected from 1.5 wt% and the balance is Fe and inevitable impurities, and that is excellent in delay characteristics of microstructure change due to repeated stress loading.
【請求項4】C:0.5〜1.5wt%,Mn:2.5超〜5.0wt%,
O:0.0020wt%以下を含有し、さらに、下記I群の成分
のうちから選ばれるいずれか1種または2種以上を含
み、さらに、下記II群の成分(ただし、I群で選択され
ている元素は除く)のうちから選ばれるいずれか1種ま
たは2種以上を含み、残部がFeおよび不可避的不純物か
らなる、繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼。 I群: Si:0.05〜0.5wt%,Cr:0.05〜2.5wt%,Mo:0.
05〜0.5wt%,Cu:0.05〜1.0wt%,B:0.0005〜0.01wt
%及びN:0.0005〜0.012wt%II群: Si:0.5超〜2.5wt%,Cr:2.5超〜8.0wt%,Mo:
0.5超〜2.0wt%,N:0.012超〜0.050wt%,V:0.05〜
1.0wt%,Nb:0.05〜1.0wt%,W:0.05〜1.0wt%,Z
r:0.02〜0.5wt%,Ta:0.02〜0.5wt%,Hf:0.02〜0.5
wt%及びCo:0.05〜1.5wt%
4. C: 0.5~1.5wt%, Mn: 2.5 Ultra 5.0 wt%,
O: 0.0020 wt% or less, further contains any one or more selected from the following group I components, and further contains the following group II components (provided that in group I Selected
And which elements are excluded) include any one or more selected from among, the balance being Fe and unavoidable impurities, repetitive stress load by microstructural changes in the delay characteristics excellent bearing steel. Serial group I: Si: 0.05~0.5wt%, Cr: 0.05~2.5wt%, Mo: 0.
05-0.5wt%, Cu: 0.05-1.0wt%, B: 0.0005-0.01wt
% And N: 0.0005 to 0.012 wt% Group II: Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Mo:
Over 0.5 ~ 2.0wt%, N: over 0.012 ~ 0.050wt%, V: 0.05 ~
1.0wt%, Nb: 0.05 to 1.0wt%, W: 0.05 to 1.0wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5
wt% and Co: 0.05 to 1.5 wt%
JP05269593A 1993-03-12 1993-03-12 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3379780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05269593A JP3379780B2 (en) 1993-03-12 1993-03-12 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05269593A JP3379780B2 (en) 1993-03-12 1993-03-12 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06264186A JPH06264186A (en) 1994-09-20
JP3379780B2 true JP3379780B2 (en) 2003-02-24

Family

ID=12922028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05269593A Expired - Fee Related JP3379780B2 (en) 1993-03-12 1993-03-12 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3379780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555110A (en) * 2016-10-31 2017-04-05 钢铁研究总院 A kind of hypo eutectoid air cooling hardening bearing steel and preparation method thereof

Also Published As

Publication number Publication date
JPH06264186A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379784B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees