JPS61111514A - Manufacturing method for permanent magnet - Google Patents

Manufacturing method for permanent magnet

Info

Publication number
JPS61111514A
JPS61111514A JP59233684A JP23368484A JPS61111514A JP S61111514 A JPS61111514 A JP S61111514A JP 59233684 A JP59233684 A JP 59233684A JP 23368484 A JP23368484 A JP 23368484A JP S61111514 A JPS61111514 A JP S61111514A
Authority
JP
Japan
Prior art keywords
magnetic field
cylindrical
permanent magnet
atomic
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233684A
Other languages
Japanese (ja)
Other versions
JPH0578166B2 (en
Inventor
Michio Yamashita
三千雄 山下
Masao Togawa
戸川 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59233684A priority Critical patent/JPS61111514A/en
Publication of JPS61111514A publication Critical patent/JPS61111514A/en
Publication of JPH0578166B2 publication Critical patent/JPH0578166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Abstract

PURPOSE:To form a truly circular cylindrical or cylindrical permanent magnet easily at low cost and without any defect by molding alloy powder having Fe, B and R as its main constituents in a magnetic field while applying the magnetic field in the direction of the maximum radius of an elliptic cylindrical body and sintering the molded body. CONSTITUTION:In molding an alloy powder of which main constituents are R (provided that r is an at least one kind of rare earth elements including V) of 8-30 atomic %, B of 2-28 atomic % and Fe of 42-90 atomic %, a shape of a dice is made to be an ellipsoid having its maximum diameter in the direction of the magnetic field and its minimum diameter in the direction perpendicular to that of the magnetic field. Raw material powder is filled in a molded space and molded in the magnetic field while applying the magnetic field in the direction of the major diameter of the ellipsoid. Sintering and aging treatment of the obtained molded body make it possible to obtain sintered permanent magnet of an Fe-B-R series having an anisotropy in the radial direction of a circular cylinder or a cylinder and superior magnetic characteristics of (BH)max of 25 MGO8 or more.

Description

【発明の詳細な説明】 利用産業分野 この発明は、すぐれた磁気特性を有するFe−B−R系
焼結永久磁石の製造方法に係り、頁内の円柱状あるいは
円筒状のF・−El−R系焼結永久磁石を1種7ること
ができる永久磁石の製造方法に関する。
Detailed Description of the Invention Field of Application This invention relates to a method for manufacturing Fe-B-R based sintered permanent magnets having excellent magnetic properties. The present invention relates to a method of manufacturing a permanent magnet that can produce one type of R-based sintered permanent magnet.

背景技術 希土類元素を主成分とする永久磁石材料としては、シや
偽を主成分とするR Co s系やRzCoy系磁石が
すぐれた磁石特性を有し、例えば小型で付加価値の高い
磁気回路等の用途に多用されている、しかし、資源的に
希少であったり、その供給が不安定で高価になるなどの
問題がある上記のシ、C。
BACKGROUND ART As permanent magnet materials containing rare earth elements as their main components, RCos and RZCoy magnets, whose main components are carbon and carbon, have excellent magnetic properties, and can be used, for example, in small, high value-added magnetic circuits, etc. However, there are problems such as rare resources, unstable supply, and high prices.

を多mに含有する希土類コバルト磁石は、高価ではある
が、その高磁石特性のため、特に、高性能かつ小形化、
軽量化の必要な用途、例えば、メーターやモーター用等
の円柱状あるいは円筒状で径方向に磁気異方性を有する
永久磁石に使用されている。
Although rare earth cobalt magnets containing a large amount of
It is used in applications that require weight reduction, such as permanent magnets that are cylindrical or cylindrical and have magnetic anisotropy in the radial direction, such as for meters and motors.

一方、本出願人は先に、高価な鑓やらを含有しない新し
い高性能永久磁石としてFe −B −R系(RはYを
含む希土類元素のうち少なくとも1種)永久磁石を提案
した(特願昭57−145072号、特願昭57−16
6663号、特願昭57−200204号、特願昭58
−5813号)。この永久磁石は、Rとして陶や円を中
心とする資源的に豊富な軽希土類を用い、F・。
On the other hand, the present applicant previously proposed a Fe-B-R-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive chips (patent application). No. 57-145072, patent application No. 57-16
No. 6663, Patent Application No. 1982-200204, Patent Application No. 1982
-5813). This permanent magnet uses resource-rich light rare earth materials such as ceramics and circles as R, and F.

B 、Rを主成分として25MGOag、上の極めて高
いエネルギー積を示す、すぐれた永久磁石である。
It is an excellent permanent magnet that has B and R as its main components and exhibits an extremely high energy product of over 25MGOag.

一般に、かかる円筒状1円柱状で径方向に界方性を有す
る永久磁石を製造する場合、希土類コバルト川石の場合
は磁場プレスの磁場方向と該磁場とn角方向の焼結によ
る収縮率の差は1%以下であり、その差がほとんどない
ため、希土類コバル1−系磁石合金粉末を所要の円柱状
や円筒状に磁場中成型し、その成型体を焼結して製造す
るが、焼結体の強度が小さく、径方向と軸方向の収縮率
の差や成形時の粉末の偏りなどのために、焼結時や(の
役の加工、検査等において、ひび9割れ、かけが発生し
やすい問題があった。
Generally, when manufacturing such a permanent magnet having a cylindrical shape and having field orientation in the radial direction, in the case of rare earth cobalt river stone, the difference in shrinkage rate due to the magnetic field direction of the magnetic press and the sintering in the n-angle direction from the magnetic field. is less than 1%, and there is almost no difference between them. Therefore, rare earth Kobal 1-based magnet alloy powder is molded into the required columnar or cylindrical shape in a magnetic field, and the molded body is sintered. Due to the low strength of the body, the difference in shrinkage rate in the radial and axial directions, and the unevenness of the powder during molding, cracks and chips may occur during sintering, processing, and inspection. There was an easy problem.

ところが、このFa−B−R系焼結永久磁石は、従来の
希土類コバルト系永久磁石と同様の方法で、円柱状や円
筒状で径方向に磁気異方性を有する焼結永久磁石を得る
ことは、磁場方向と該磁場と直角方向の焼結による収縮
率の差が5%以上もあることにより困難であり、直円の
円柱状あるいは円筒状が(りられない問題があった。
However, this Fa-B-R based sintered permanent magnet cannot be obtained using the same method as the conventional rare earth cobalt based permanent magnet, which has a cylindrical or cylindrical shape and has magnetic anisotropy in the radial direction. This is difficult because the difference in shrinkage rate due to sintering in the direction of the magnetic field and in the direction perpendicular to the magnetic field is 5% or more, and there was a problem that a right circular columnar or cylindrical shape could not be obtained.

発明の目的 直円の円柱状あるいは円筒状のF・−B−R系焼結永久
磁石を、欠陥なく容易に安価に得ることができる永久磁
石の製造方法を目的としている。
OBJECTS OF THE INVENTION The object of the invention is to provide a method for manufacturing a permanent magnet that can easily and inexpensively obtain a right circular columnar or cylindrical F·-BR based sintered permanent magnet without any defects.

発明の構成と効果 この発明は、真円の円柱状あるいは円筒状のF・−B−
R系焼結永久磁石を得ることができる製造方法を目的に
種々検討した結果、F・−B−R系焼結永久附石の場合
は、磁場プレスの磁場方向と該磁場と直角方向の焼結に
よる収縮率の差が5%以上であることより、楕円柱状体
の最大径方向に磁場を印加しながら、磁場中成型し、こ
の成型体を焼結すると真円の円柱状あるいは円筒状で径
方向に磁気異方性を有する焼結磁石を、ひび、 vlれ
やかけ等の欠陥な発生させることなく製造できることを
知見したものである。
Structure and effect of the invention This invention provides a perfect circular columnar or cylindrical F・-B-
As a result of various studies aimed at manufacturing methods that can obtain R-based sintered permanent magnets, we found that in the case of F-BR-based sintered permanent magnets, the magnetic field direction of the magnetic field press and the sintering direction perpendicular to the magnetic field are Since the difference in shrinkage rate due to solidification is 5% or more, when a magnetic field is applied in the direction of the maximum diameter of the elliptical cylinder and the molded body is molded in a magnetic field and this molded body is sintered, it becomes a perfect circular column or cylinder. It has been discovered that a sintered magnet having magnetic anisotropy in the radial direction can be manufactured without producing defects such as cracks, VL warps, and chips.

すなわち、この発明は、円柱状あるいは円筒状の径方向
に磁気異方性を有する焼結永久磁石の製造方法において
、R(促しRはYを含む希土類元素のうら少なくとも1
種)8原子%〜30原子%、B 2原子%〜28原子%
、Fe42原子%〜90原子%を主成分とする合金粉末
を、磁場中成型する際に、磁気族方性方向に最大径を有
し、磁気異方性と直角方向に最小径を有する楕円成型体
にし、磁場成型後焼結して真円の円柱状あるいは円筒状
の焼結体を得ることを特徴とする永久磁石の製造方法で
ある。
That is, the present invention provides a method for manufacturing a sintered permanent magnet having a cylindrical or cylindrical radial magnetic anisotropy, in which R (where R is at least one of the rare earth elements containing Y) is used.
species) 8 at% to 30 at%, B 2 at% to 28 at%
, when molding an alloy powder whose main component is Fe42 atomic % to 90 atomic % in a magnetic field, it is formed into an ellipse having a maximum diameter in the magnetic group orientation direction and a minimum diameter in the direction perpendicular to the magnetic anisotropy. This is a method for producing a permanent magnet, which is characterized in that the permanent magnet is molded into a body, molded in a magnetic field, and then sintered to obtain a perfectly circular cylindrical or cylindrical sintered body.

この発明は、例えば、磁場中成型を行なうダイス形状を
、磁場方向に最大径、磁場方向と直角方向に最小径をf
iする楕円体とし、成型空間内に下記する組成の原料粉
末を充填し、該楕円の最大径方向に磁場を印加しながら
磁場中成型し、得られた成型体を焼結し、さらに時効処
理することにより、(B H) max 25M G 
Oeの極めてすぐれた磁気特性を右する円柱状あるいは
円n状の径方向異方性を右するFe −B −R系焼結
永久磁石が17られる。
For example, the present invention provides a die shape for molding in a magnetic field, with a maximum diameter f in the direction of the magnetic field and a minimum diameter f in the direction perpendicular to the direction of the magnetic field.
An ellipsoid having a shape of By doing so, (B H) max 25M G
17 is a Fe-B-R based sintered permanent magnet that exhibits a cylindrical or circular n-shaped radial anisotropy that exhibits extremely excellent magnetic properties of Oe.

また、この発明方法にJ3いて、成型体の最大径と最小
径との比率は、1.03〜1.15の範囲が好ましく、
この範囲外では、焼結体の形状が略真円の円柱状あるい
は円筒状とはならず、焼結後の加工代が多くなり、製品
歩留が低下する。
In addition, in J3 of the method of this invention, the ratio of the maximum diameter to the minimum diameter of the molded product is preferably in the range of 1.03 to 1.15,
Outside this range, the shape of the sintered body will not be a substantially perfect cylinder or cylinder, and the processing allowance after sintering will increase, resulting in a decrease in product yield.

この発明方法において、焼結後の焼結体形状の直円とは
、外径研摩を支障なく、実施できる範囲の円形゛を意味
し、通常、外径公差が±3%以下の真円度である。
In the method of this invention, the term "right circle" in the shape of the sintered body after sintering means a circle within a range in which outside diameter polishing can be carried out without any problem, and usually the roundness has an outside diameter tolerance of ±3% or less. It is.

また、この発明によって得られたF・−El−R系焼結
永久磁石は、磁石表面にめっき、化成処理、塗装コーテ
ィング等の表面被膜を施して使用することが望ましい。
Further, it is preferable that the F·-El-R based sintered permanent magnet obtained according to the present invention is used with a surface coating such as plating, chemical conversion treatment, paint coating, etc. applied to the magnet surface.

永久磁石用合金粉末の限定理由 以下に、この考案によるREIFI系円筒状焼結磁石の
組成限定理由を説明する。
Reasons for limiting the alloy powder for permanent magnets The reasons for limiting the composition of the REIFI-based cylindrical sintered magnet according to this invention will be explained below.

この発明のF・−B−R系焼結永久磁石に用いる希土類
光SRは、イツトリウム(Y)を包会し軽希土類及びf
l、土類を包含する希土類元素であり、これらのうち少
なくとも1種、好ましくはNd。
The rare earth light SR used in the F-B-R based sintered permanent magnet of this invention encloses yttrium (Y) and contains light rare earth and f
l, a rare earth element including earth, at least one of these, preferably Nd.

Pr等の軽希土類を主体として、あるいはNd。Mainly light rare earths such as Pr, or Nd.

pr等との混合物を用いる。A mixture with pr etc. is used.

又、通例Rのうち1種をもって足りるが、実用上は2)
I!以上の混合物(ミツシュメタル、ジジム等)を入手
上の便宜等の理由により用いることがでさ、Sm、Y、
La、Cc、Gd等は他のR1特にNd、Pr等との混
合物として用いることがCきる。
Also, one type of R is usually sufficient, but in practice 2)
I! It is not possible to use the above mixtures (Mitushmetal, dididium, etc.) for reasons such as availability, Sm, Y,
La, Cc, Gd, etc. can be used as a mixture with other R1, especially Nd, Pr, etc.

% J)、このRは純希土類元県でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含aするも
のでも差支えない。
% J), this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、W
i現なFe−EIR系永久磁石における、必須元素であ
って、8原子%未満では、結品構造がα−鉄と同−描込
の立方品組織となるため、昌磁気特性、特に高保磁力が
得られず、30原子%を越えると、Rリッチな非磁性相
が多くなり、残留磁束密度(Br )が低下して、すぐ
れた特性の円柱状。
R (at least one rare earth element including Y) is W
It is an essential element in current Fe-EIR permanent magnets, and if it is less than 8 at%, the crystal structure becomes a cubic structure similar to that of α-iron, so it has poor magnetic properties, especially high coercive force. is not obtained, and if it exceeds 30 at %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a cylindrical shape with excellent properties is obtained.

円筒状焼結磁石が4qられない。よって、希土類元素は
、8原子%〜30原子%の範囲とする。
Cylindrical sintered magnet cannot be 4q. Therefore, the rare earth element is in the range of 8 atomic % to 30 atomic %.

また、Rの50%以上を軽希土類金属が占めることが必
要である。また、Rの一部の1〜30%を重希土類のD
y、Tb、)−1o、Gd、Er、Yb+7)うち1種
以上と置換することは、保磁力及び最大エネルギー積の
向上が1種られる。
Further, it is necessary that the light rare earth metal accounts for 50% or more of R. In addition, 1 to 30% of R is replaced with heavy rare earth D.
y, Tb, )-1o, Gd, Er, Yb+7), the coercive force and the maximum energy product can be improved in one way.

Bは、新規なFI  EI  R系永久磁石における、
必須元素であって、2原子%未満では、菱面体組織とな
り、^い保磁力(iHc )は得られず、28原子%を
越えると、Bリッチな非磁性相が多くなり、残留磁束密
度(Br )が低下するため、すぐれた円柱状1円筒状
焼結石石が得られない。よって、Bは、2原子%〜28
原子%の範囲とする。
B is a new FI EI R-based permanent magnet,
It is an essential element, and if it is less than 2 atomic %, it will form a rhombohedral structure and a high coercive force (iHc) will not be obtained, and if it exceeds 28 atomic %, B-rich nonmagnetic phase will increase, and the residual magnetic flux density ( Br ) decreases, making it impossible to obtain an excellent cylindrical sintered stone. Therefore, B is 2 atomic % to 28
The range is atomic percent.

Feは、新規なF・−15−R系永久磁石において、必
須元素であり、421種i;j子%未満では残留磁束密
度(Br )が低下し、90原子%を越えると、高い保
磁力が得られないので、Feは42原了%〜90原子%
の含有とする。
Fe is an essential element in new F・-15-R permanent magnets, and if it is less than 421 species i; Since it is not possible to obtain Fe, the content of Fe is 42% to 90%.
Contains.

また、この発明の磁石用合金において、F・の一部を6
で置換することは、得られる磁石の磁気特性を損うこと
なく、温度特性を改善することができるが、cou換量
がF・の50%を越えると、逆に磁気特性が劣化するた
め、好ましくない。また、他の金馬元素や非金属元素が
数%含有されていてもよい。
In addition, in the magnet alloy of this invention, a part of F.
Replacement with F can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet, but if the amount of cou exchange exceeds 50% of F, the magnetic properties will deteriorate. Undesirable. In addition, several percent of other metal elements or nonmetallic elements may be contained.

また、この発明の円柱状1円筒状焼結磁石用合金は、粒
径が1〜100−の範囲にある正方品系の結品梠造を有
する化合物を主相とし、体積比で1%〜50%の非磁性
相を含むことを特徴とする。
Further, the alloy for a cylindrical sintered magnet of the present invention has a main phase of a compound having a square grain structure with a grain size in the range of 1 to 100, and has a volume ratio of 1% to 50. % of non-magnetic phase.

実施例 実施例A 原子%で、15m −28−5Go−72F@の組成を
有する平均粒度が3IのF・−B−R系焼結永久磁石用
合金粉末を、成形空間横断面が楕円で、その最大径が2
5mm、 R小径が23mmのダイス内に充填し、10
KOeの磁場を最大径方向に配向し、2【櫂の圧力で磁
場中成形を行なった。
Examples Example A An F-BR based sintered permanent magnet alloy powder having a composition of 15 m -28-5Go-72F@ in atomic % and an average particle size of 3I was prepared, with a molding space having an elliptical cross section, Its maximum diameter is 2
Fill a die with a diameter of 5 mm and a radius of 23 mm, and make 10
The magnetic field of KOe was oriented in the maximum radial direction, and molding was performed in the magnetic field with the pressure of 2 paddles.

%i%、られた成形体を、1種00℃、2時間、 Ar
中、の条件で焼結し、その後強制冷却し、ざらにAr中
ので600℃、2時間の時効処理を施して、この発明に
Jこる円柱状ラジアル異方性Fe−E3R系焼結永久磁
石を作製した。
%i%, the molded body was heated at 00°C for 2 hours in Ar
A cylindrical radially anisotropic Fe-E3R-based sintered permanent magnet is produced by sintering it under medium conditions, followed by forced cooling, and aging treatment at 600°C for 2 hours in roughly Ar. was created.

1′1られた焼結体形状は、20 mmφ、ioさ5m
1nで、外径公差は10.3mm以内であった。
The shape of the sintered body is 20 mmφ and 5 m wide.
1n, the outer diameter tolerance was within 10.3 mm.

1′?られた円柱状焼結永久磁石は、[3r 12.3
 kG、1)−1c 13.8 kos、(B H) 
max 35.7M Gosの磁気特性を有していた。
1'? The cylindrical sintered permanent magnet is [3r 12.3
kG, 1)-1c 13.8 kos, (B H)
It had magnetic properties of max 35.7M Gos.

実施例B 原子%で、14t&  2Pr  2Dy−7B −7
5Fmの組成を有する平均粒度が2.5IのFs  B
−R系焼結永久磁石用合金粉末を、成形空間横断面が楕
円で、その最大経が13.1mm、 Ii小径が12.
1種1種1種1.コアの長径が4.3mm、短径が4.
0間で上記の最大径と長径方向が同方向のダイス内に充
填し、10KOeの磁場を最大径方向に配向し、2 t
Jの圧力で磁場中成形を行なった。
Example B In atomic %, 14t & 2Pr 2Dy-7B-7
Fs B with an average particle size of 2.5I with a composition of 5Fm
-R-based sintered permanent magnet alloy powder is molded so that the cross section of the molding space is elliptical, the maximum diameter is 13.1 mm, and the small diameter Ii is 12.
1 type 1 type 1 type 1. The major axis of the core is 4.3 mm, and the minor axis is 4.
Fill the die with the maximum diameter and major axis direction in the same direction between 0 and 2 t.
Molding was carried out in a magnetic field at a pressure of J.

得られた成形体を、1種00℃、2時1m、Ar中、の
条件で焼結し、その後強制冷却し、さらにに中ので60
0℃、2時間の時効処理を施して、この発明による円筒
状ラジアル異方性Fe  B  R系焼結永久磁石を作
製した。
The obtained molded body was sintered under the conditions of 00°C, 2 hours and 1 m in Ar, then forced cooling, and further sintered at 60°C in Ar.
A cylindrical radially anisotropic Fe BR based sintered permanent magnet according to the present invention was produced by aging at 0° C. for 2 hours.

得られた焼結体形状は、10.5mmφX 3.5mm
φX20mmで、外径及び内径公差は±0.2mm以内
であった。
The shape of the obtained sintered body is 10.5mmφX 3.5mm
φX was 20 mm, and the outer diameter and inner diameter tolerances were within ±0.2 mm.

肖られた円筒状焼結永久磁石は、3r 1種.7 kG
、iHc 18.5 koe、  (B tl ) g
Iax 29.8MGOeの磁気特性を(1していた。
The cylindrical sintered permanent magnet shown is 3r type 1. 7 kg
, iHc 18.5 koe, (B tl ) g
The magnetic properties of Iax 29.8MGOe were (1).

比較例C 中m%で、Sm27.OCo47,6  Fa 12.
 +−Ni 5,4−偽7.9の組成を有する平均粒度
が3.5fの希土類コバルト磁石用合金粉末を、成形空
間横断面が12.4mmφの円形で、中心に4.1Mφ
のコアを配しIζグイス内に充填し、10KOeのvA
楊を径方向に配向し、2 t4の圧力でIS中成形を行
なった。
Comparative Example C Medium m%, Sm27. OCo47,6 Fa 12.
A rare earth cobalt magnet alloy powder having a composition of +-Ni 5,4-false 7.9 and an average particle size of 3.5f was placed in a circular molding space with a cross section of 12.4mmφ and a center of 4.1Mφ.
A core of 10 KOe was placed and filled in the I
With the tooth oriented in the radial direction, molding was carried out during IS at a pressure of 2 t4.

qられた成形体を、1220℃、2時間、Ar中、の条
件で焼結し、その9!!液体窒素中で急冷処理し、さら
に、800℃、4時間の時効処理を施して、従来製法に
よる希土類コバルト系円筒状ラジアノl;異方性永久磁
石を作製した。
The q molded body was sintered under the conditions of 1220°C for 2 hours in Ar, and step 9! ! The magnet was rapidly cooled in liquid nitrogen and then aged at 800° C. for 4 hours to produce a rare earth cobalt cylindrical radianol anisotropic permanent magnet using a conventional manufacturing method.

得られた焼結体形状は、10,5nvnφX 3.5m
mφX20mmで、外径及び内径公差は±0.2胴以内
であった。
The shape of the obtained sintered body is 10.5nvnφX 3.5m
mφ×20 mm, and the outer diameter and inner diameter tolerances were within ±0.2 barrel.

得られた円筒状焼結永久磁石は、3r 12.3 kG
The obtained cylindrical sintered permanent magnet has a 3r 12.3 kG
.

iHc 13.8 kQs、(8H) 1lax 35
.7M Gosの磁気特性を有していた。
iHc 13.8 kQs, (8H) 1lax 35
.. It had magnetic properties of 7M Gos.

この発明による実施例A、BのF・−El−R系焼結永
久磁石は、いずれも従来の希土類コバルト系焼結磁石(
比較例C)と同等精度の円形を有しており、さらに、強
度は曲げ強さで比較例Cの1214に対して、25kC
IJの強度を有して著しく高強度で、焼結後の冷却時や
加工時におけるひび1割れやかけ等の欠陥が皆無であっ
た。
The F・-El-R based sintered permanent magnets of Examples A and B according to the present invention are both conventional rare earth cobalt based sintered magnets (
It has a circular shape with the same precision as Comparative Example C), and the bending strength is 25kC compared to 1214 of Comparative Example C).
It had the strength of IJ and was extremely strong, with no defects such as cracks or chips during cooling or processing after sintering.

出願人  住友特殊金屈株式会社 自光手わ″L:ンrll正口 昭和60年1月25日 昭和59年 特許願 第233684号2、発明の名称 永久磁石の製造方法 3、補正をする者   ′ 事件との関係    出願人 4、代理人 5、補正の対象 明細:の「発明の詳細な説明」の欄 6、補正の内δ 明細ツの第1頁から第12頁を別紙のとd3り補正する
ただし、「発明の名称」と「特許請求の範囲」に変更明
  m  書 1、発明の名称 永久磁石の製造方法 2、特許請求の範囲 1 円柱状あるいは円筒状の径方向に磁気異方性を有す
る焼結永久磁石の製造方法において、R(但しRはYを
含む希土類元素のうち少なくとも1種)8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜9
0原子%を土成分とする合金粉末を、磁場中成型する際
に、磁気異方性方向に最大径を有し、磁気異方性と直角
方向に最小径を有する楕円成型体にし、las成形後焼
結して真円の円柱状あるいは円筒状の焼結体を得ること
を特徴とする永久磁石の製造方法。
Applicant: Sumitomo Special Konkutsu Co., Ltd. Jikotewa"L: Nrll Masaguchi January 25, 1985 1988 Patent Application No. 233684 2 Name of the invention Method for manufacturing permanent magnets 3 Person making the amendment 'Relationship to the case Applicant 4, Agent 5, Detailed description of the invention: Column 6 of "Detailed description of the invention", δ of the amendment Pages 1 to 12 of the specification are attached as attached d3. Amended However, the "title of the invention" and "scope of claims" should be changed. m Book 1, Name of the invention Method for manufacturing permanent magnets 2, Claim 1 Magnetic anisotropy in the radial direction of a columnar or cylindrical shape In the method for manufacturing a sintered permanent magnet having
atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 9
When molding alloy powder with an earth component of 0 atomic % in a magnetic field, it is formed into an elliptical molded body having a maximum diameter in the direction of magnetic anisotropy and a minimum diameter in a direction perpendicular to the magnetic anisotropy, and is then lath molded. A method for producing a permanent magnet, which comprises post-sintering to obtain a perfectly circular columnar or cylindrical sintered body.

3、発明の詳細な説明 利用産業分野 この発明は、すぐれた磁気持1生を有するFa  B−
R系焼結永久磁石の製造方法に係り、真円の円柱状ある
いは円筒状のFa−B  R系焼結永久磁石を得ること
ができる永久磁石の製造方法に関する。
3. Detailed Description of the Invention Industrial Field of Application This invention is directed to Fa B-
The present invention relates to a method for manufacturing an R-based sintered permanent magnet, and relates to a method for manufacturing a permanent magnet that can produce a perfectly circular cylindrical or cylindrical Fa-BR sintered permanent magnet.

背景技術 希土類元素を主成分とする永久EHE材料としては、S
mヤさを主成分とするRCo5系やR2C0I7系ta
bがすぐれた磁石特性を有し、例えば小型で付加価値の
高い磁気回路等の用途に多用されている、しかし、資源
的に希少であったり、その供給が不安定で高価になるな
どの問題がある上記のSm、C。
BACKGROUND ART As a permanent EHE material whose main component is rare earth elements, S
RCo5 series and R2C0I7 series ta whose main component is myasa
B has excellent magnetic properties and is often used in applications such as small, high-value-added magnetic circuits, etc. However, there are problems such as it being a scarce resource and its supply being unstable and expensive. There is Sm, C above.

を多辺に含有する希土類コバルト磁石は、高価ではある
が、その高磁石特性のため、特に、高性能かつ小形化、
軽口化の必要な用途、例えば、メーターやモーター用等
の円柱状あるいは円筒状で径方向に磁気異方性を有する
永久磁石に使用されている。
Rare earth cobalt magnets containing many sides are expensive, but due to their high magnetic properties, they are especially suitable for high performance, miniaturization,
It is used in applications that require light weight, such as permanent magnets that are cylindrical or cylindrical and have magnetic anisotropy in the radial direction, such as for meters and motors.

一方、本出願人は先に、高価なSmやらを含有しない新
しい高性能永久磁石としてFa−8R系(RはYを含む
希土類元素のうち少なくとも1種)永久′f!i石を提
案した(特願昭57−145072号、特願昭57−1
sses3@、特願昭57−200204号、特願昭5
8−5813号)。この永久磁石は、Rとして出や円を
中心とする資源的に豊富な軽希土類を用い、Fa 。
On the other hand, the present applicant has previously developed an Fa-8R series (R is at least one rare earth element including Y) permanent 'f! as a new high-performance permanent magnet that does not contain expensive Sm. proposed i-stone (Patent Application No. 145072, 1982, Patent Application No. 1983)
sses3@, Japanese Patent Application No. 1983-200204, Japanese Patent Application No. 1983
No. 8-5813). This permanent magnet uses resource-rich light rare earth metals, mainly cylindrical metals, as R, and Fa.

B 、Rを主成分として25)iGOe以上の極めて高
いエネルギー晴を示す、すぐれた永久磁石である。
It is an excellent permanent magnet that contains B and R as its main components and exhibits an extremely high energy level exceeding 25) iGOe.

一般に、かかる円筒状1円柱状で径方向に異方性を有す
る永久磁石を製造する場合、希土類コバルト磁石の場合
は磁場プレスの磁場方向と該磁場と直角方向の焼結によ
る収縮率の差は1%以下であり、その差がほとんどない
ため、希土類コバルト系磁石合金粉末を所要の円柱状や
円筒状に磁場中成型し、その成型体を焼結して製造する
が、焼結体の強度が小さく、径方向と軸方向の収縮率の
差や成形時の粉末の偏りなどのために、焼結時やその後
の加工、検査等において、ひび1割れ、かけが発生しや
すい問題があった。
Generally, when manufacturing such a permanent magnet having a cylindrical shape and anisotropy in the radial direction, in the case of rare earth cobalt magnets, the difference in shrinkage rate due to sintering in the magnetic field direction of the magnetic field press and in the direction perpendicular to the magnetic field is 1% or less, and there is almost no difference, so rare earth cobalt magnet alloy powder is molded into the required columnar or cylindrical shape in a magnetic field, and the molded body is sintered to produce it, but the strength of the sintered body Due to the small shrinkage rate difference between the radial and axial directions and the unevenness of the powder during molding, cracks and chipping were likely to occur during sintering and subsequent processing and inspection. .

ところが、このFs  B  R系焼結永久磁石は、従
来の希土類コバルト系永久磁石と同様の方法で、円柱状
や円筒状で径方向に磁気異方性を有する焼結永久磁石を
1qることは、磁場方向と該磁場と直角方向の焼結によ
る収縮率の差が5%以上もあることにより困難であり、
真円の円柱状あるいは円筒状が得られない問題があった
However, with this FsBR-based sintered permanent magnet, it is impossible to produce 1q of sintered permanent magnets that are columnar or cylindrical and have magnetic anisotropy in the radial direction using the same method as conventional rare earth cobalt-based permanent magnets. This is difficult because the difference in shrinkage rate due to sintering in the direction of the magnetic field and in the direction perpendicular to the magnetic field is more than 5%.
There was a problem in that a perfectly round columnar or cylindrical shape could not be obtained.

発明の目的 真円の円柱状あるいは円筒状のFil−B−R系焼結永
久磁石を、欠陥なく容易に安価に1qることができる永
久磁石の製造方法を目的としている。
OBJECT OF THE INVENTION The object of the invention is to provide a method for manufacturing a permanent magnet that can easily and inexpensively produce 1 q of perfectly circular cylindrical or cylindrical Fil-BR based sintered permanent magnets without any defects.

発明の構成と効果 この発明は、真円の円柱状おるいは円筒状のFa−B−
R系焼結永久磁石を1qることができる製造方法を目的
に種々検討した結果、Fe−B R系焼結永久磁石の場
合は、磁場プレスのm場方向と該磁場と直角方向の焼結
による収縮率の差が5%以上であることより、楕円柱状
体の最大径方向に磁場を印加しながら、vii場中酸中
成型この成型体を焼結すると真円の円柱状あるいは円筒
状で径方向に磁気異方性を有する焼結磁石を、ひび2割
れやかけ等の欠陥を発生させることなく製造できること
を知見したものである。
Structure and effect of the invention The present invention provides a perfect circular columnar or cylindrical Fa-B-
As a result of various studies aimed at manufacturing methods that can produce 1q of R-based sintered permanent magnets, we found that in the case of Fe-BR R-based sintered permanent magnets, sintering is performed in the m-field direction of the magnetic field press and in the direction perpendicular to the magnetic field. Since the difference in shrinkage rate is 5% or more, when a magnetic field is applied in the direction of the maximum diameter of the elliptical columnar body and this molded body is sintered in an in-field acid, it becomes a perfect circular cylinder or cylindrical shape. It has been discovered that a sintered magnet having magnetic anisotropy in the radial direction can be manufactured without producing defects such as cracks, cracks, etc.

すなわち、この発明は、円柱状あるいは円筒状の径方向
に磁気異方性を有する焼結永久磁石の製造方法において
、R(但しRはYを含む希土類元素のうち少なくとも1
種)8原子%〜30原子%、B22原子〜28原子%、
Fe 42原子%〜90原子%を主成分とする合金粉末
を、磁場中成型する際に、磁気異方性方向に最大径を有
し、磁気異方性と直角方向に最小径を有する楕円成型体
にし、磁場成型後焼結して真円の円柱状あるいは円筒状
の焼結体を得ることを特徴とする永久磁石の製造方法で
おる。
That is, the present invention provides a method for manufacturing a sintered permanent magnet having a cylindrical or cylindrical radial magnetic anisotropy.
species) 8 atom% to 30 atom%, B22 atom to 28 atom%,
When molding alloy powder whose main component is 42 at% to 90 at% Fe in a magnetic field, it is formed into an ellipse having a maximum diameter in the direction of magnetic anisotropy and a minimum diameter in the direction perpendicular to the magnetic anisotropy. This is a method for producing a permanent magnet, which is characterized in that the permanent magnet is molded into a body, molded in a magnetic field, and then sintered to obtain a perfectly circular cylindrical or cylindrical sintered body.

この発明は、例えば、磁場中成型を行なうダイス形状を
、磁場方向に最大径、磁場方向と直角方向に最小径を有
する楕円体とし、成型空間内に下記する組成の原料粉末
を充填し、該楕円の最大径方向に磁場を印加しながら磁
場中成型し、得られた成型体を焼結し、ざらに時効処理
することにより、(BH)max 25)IGOe以上
の極めてすぐれた磁気持j生を右する円柱状あるいは円
筒状の径方向異方性を有するFa  B−R系焼結永久
磁石が得られる。
In this invention, for example, the die shape for performing molding in a magnetic field is an ellipsoid having a maximum diameter in the direction of the magnetic field and a minimum diameter in a direction perpendicular to the direction of the magnetic field, and a molding space is filled with raw material powder having the following composition. By molding in a magnetic field while applying a magnetic field in the direction of the maximum diameter of the ellipse, sintering the obtained molded body, and roughly aging it, it is possible to achieve extremely excellent magnetic retention exceeding (BH) max 25) IGOe. An Fa BR based sintered permanent magnet having a cylindrical or cylindrical radial anisotropy having the following properties can be obtained.

また、この発明方法において、成型体の最大径と最小径
との比率は、1.03〜1.15の範囲が好ましく、こ
の範囲外では、焼結体の形状が略真円の円柱状あるいは
円筒状とはならず、焼結後の加工代が多くなり、製品歩
留が低下する。
In addition, in the method of this invention, the ratio of the maximum diameter to the minimum diameter of the molded body is preferably in the range of 1.03 to 1.15, and outside this range, the shape of the sintered body is approximately cylindrical or completely circular. It does not become cylindrical, and the machining allowance after sintering increases, resulting in a lower product yield.

この発明方法において、焼結後の焼結体形状の直円とは
、外径研摩を支障なく、実施できる範囲の円形を意味し
、通常、外径公差が±3%以下の真円度である。
In the method of this invention, the term "right circle" in the shape of the sintered body after sintering means a circle within a range where outer diameter polishing can be carried out without any problem, and usually the outer diameter tolerance is within ±3% of the roundness. be.

また、この発明によって得られたFaB  R系〜焼結
永久磁石は、磁石表面にめっき、化成処理、塗装コーテ
ィング等の表面被膜を施して使用することが望ましい。
Further, it is desirable to use the FaBR type to sintered permanent magnet obtained by the present invention by applying a surface coating such as plating, chemical conversion treatment, paint coating, etc. to the magnet surface.

永久磁石用合金粉末の限定理由 以下に、この発明によるRBFe系円筒状焼結磁石の組
成限定理由を説明する。
Reasons for limiting the alloy powder for permanent magnets The reasons for limiting the composition of the RBFe-based cylindrical sintered magnet according to the present invention will be explained below.

この発明のFa−B  R系焼結永久磁5に用いる希土
類元素Rは、イツトリウム(Y)を包含し軽希土類及び
重希土類を包含する希土類元素であり、これらのうち少
なくとも1種、好ましくはNd、Pr等の軽希土類を主
体として、あるいはNd、 Pr等との混合物を用いる
The rare earth element R used in the Fa-B R-based sintered permanent magnet 5 of the present invention is a rare earth element including ythtrium (Y), light rare earths, and heavy rare earths, and at least one of these, preferably Nd. , Pr, etc., or a mixture with Nd, Pr, etc. is used.

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることがテキ、Sm、 Y、 
La、 Ce、 Gd等は仙のR1持にNd、 Pr等
との混合物として用いることができる。
In addition, one type of R is usually sufficient, but in practice, it is preferable to use a mixture of two or more types (Mitushmetal, dididim, etc.) for reasons such as convenience of availability, Sm, Y,
La, Ce, Gd, etc. can be used as a mixture with Nd, Pr, etc. in the R1 layer.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規なFa  B−R系永久磁石における、必須元素であ
って、8原子%未満では、結晶構造がα−鉄と同一(を
造の立方品組織となるため、l@i磁気特性、持に高保
磁力が1qられず、30原子%を越えると、Rリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
、すぐれた特性の円柱状7円筒状焼結磁石が得られない
。よって、希土類元素は、8原子%〜30原子%の範囲
とする。
R (at least one rare earth element including Y) is an essential element in the new Fa B-R permanent magnet, and if it is less than 8 at%, the crystal structure is the same as α-iron. Because it becomes a cubic structure, the l@i magnetic properties and high coercive force are not maintained at 1q, and when it exceeds 30 at%, the R-rich nonmagnetic phase increases, and the residual magnetic flux density (Br) decreases. A cylindrical 7-cylindrical sintered magnet with excellent properties cannot be obtained.Therefore, the rare earth element content is set in the range of 8 at.% to 30 at.%.

また、Rの50%以上を軽希土類金属が占めることが必
要である。また、Rの一部の1〜30%を重希土類のD
y、 Tb、 I(o、Gd、 Er、 Ybのうら1
種以上とご換することは、保磁力及び最大エネルギー積
の向上が1qられる。
Further, it is necessary that the light rare earth metal accounts for 50% or more of R. In addition, 1 to 30% of R is replaced with heavy rare earth D.
y, Tb, I(o, Gd, Er, back 1 of Yb
Replacing it with more than 100% of the species can improve the coercive force and the maximum energy product by 1q.

Bは、新規なFe−BRR系永久磁石おける、必須元素
であって、2原子%未満では、菱面体組織となり、高い
保磁力(iHc)は得られず、28原子%を越えると、
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた円柱状1円筒状焼結磁石が得
られない。よって、Bは、2原子%〜28原子%の範囲
とする。
B is an essential element in the new Fe-BRR permanent magnet, and if it is less than 2 at%, it will form a rhombohedral structure and high coercive force (iHc) cannot be obtained, and if it exceeds 28 at%,
The amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density (Br)
As a result, an excellent cylindrical sintered magnet cannot be obtained. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規なFs  B  R系永久磁石において、
必須元素であり、42原子%未満では残留磁束密度(B
r)が低下し、90原子%を越えると、高い保磁力が得
られないので、Feは42原子%〜90原子%の含有と
する。
In the new Fs BR permanent magnet, Fe is
It is an essential element, and if it is less than 42 at%, the residual magnetic flux density (B
If r) decreases and exceeds 90 atom %, high coercive force cannot be obtained, so Fe is contained in the range of 42 atom % to 90 atom %.

また、この発明の磁石用合金において、Faの一部をら
で置換することは、得られる磁石の磁気特性を損うこと
なく、温度特性を改善することができるが、G@換但が
F8の50%を越えると、逆に磁気特性が劣化するため
、好ましくない。また、他の金属元素や非金屈元素が数
%含有されていてもよい。
In addition, in the magnet alloy of the present invention, replacing a part of Fa with Ra can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet. If it exceeds 50%, the magnetic properties will deteriorate, which is not preferable. In addition, several percent of other metal elements or non-metallic elements may be contained.

また、この発明の円柱状0円筒状焼結磁石用合金は、粒
径が1〜1001種mの範囲にある正方品系の結晶構造
を有する化合物を主相とし、体積比で1%〜50%の非
磁性相を含むことを特徴とする。
Further, the alloy for a cylindrical sintered magnet of the present invention has a compound having a tetragonal crystal structure with a grain size in the range of 1 to 1001 m as a main phase, and has a volume ratio of 1% to 50%. It is characterized by containing a non-magnetic phase.

実施例 実施例A 原子%で、15Nd2 B  5Co −72Faの組
成を有する平均粒度が3tsのFa  B  R系焼結
永久磁石用合金粉末を、成形空r1横断面が楕円で、そ
の最大径か25mm、最小径が23mmのダイス内に充
填し、10 koeの磁場を最大径方向に配向し、2 
t4の圧力で磁場中成形を行なった。
Examples Example A A Fa BR based sintered permanent magnet alloy powder having a composition of 15Nd2B5Co-72Fa in atomic % and an average particle size of 3ts was molded into a molding cavity r1 with an elliptical cross section and a maximum diameter of 25 mm. , a die with a minimum diameter of 23 mm was filled, a magnetic field of 10 koe was oriented in the direction of the maximum diameter, and 2
Molding was performed in a magnetic field at a pressure of t4.

得られた成形体を、1種00’C,2時間、 Ar中、
の条件で焼結し、その後強制冷却し、ざらにAr中ので
600’C,2時間の時効処理を施して、この発明によ
る円柱状ラジアル異方性Fa  B  R系焼結永久ド
1石を作製した。
The obtained molded body was heated at 00'C for 2 hours in Ar.
The cylindrical radially anisotropic Fa B R based sintered permanent stone according to the present invention was obtained by sintering under the following conditions, followed by forced cooling and aging treatment for 2 hours at 600'C in rough Ar. Created.

jqられた焼結体形状は、20mmφ、高さ5mmで、
外径公差は±0.3mm以内であった。
The shape of the jqed sintered body is 20 mmφ and 5 mm in height.
The outer diameter tolerance was within ±0.3 mm.

得られた円柱状焼結永久1種5は、Br 12.3 k
G、1flc 13.8 koa、(8H)max 3
5.7MGOaの磁気特性を有していた。また、密度は
7.53  IJ4であった。
The obtained cylindrical sintered permanent type 1 5 has Br 12.3 k
G, 1flc 13.8 koa, (8H) max 3
It had magnetic properties of 5.7 MGOa. Moreover, the density was 7.53 IJ4.

実施例B 原子%で、14Nd−2Pr  2Dy −7B −7
3Faの組成を有する平均粒度が2.5通のFe  B
  R系焼結゛永久磁石用合金粉末を、成形空間横断面
が楕円で、その最大径が13.1mm、最小径が12.
1mm、コアの長径が4.3mm、短径が4.0mmで
上記の最大径と長径方向が同方向のダイス内に充填し、
10 kOaの磁場を最大径方向に配向し、2 t4の
圧力で磁場中成形を行なった。
Example B In atomic %, 14Nd-2Pr 2Dy -7B -7
Fe B with an average particle size of 2.5 grains having a composition of 3Fa
The R-based sintered alloy powder for permanent magnets was made into a molding space with an elliptical cross section, a maximum diameter of 13.1 mm, and a minimum diameter of 12.1 mm.
1 mm, the major axis of the core is 4.3 mm, the minor axis is 4.0 mm, and the above maximum diameter and major axis direction are filled in the same direction,
A magnetic field of 10 kOa was oriented in the maximum radial direction, and molding was performed in the magnetic field at a pressure of 2 t4.

得られた成形体を、1種00℃、2時間、Ar中、の条
件で焼結し、その後強制冷却し、ざらにに中ので600
℃、2時間の時効処理を施して、この発明による円筒状
ラジアル異方性Fs  B  R系焼結永久磁石を作製
した。
The obtained molded body was sintered at 00°C for 2 hours in Ar, then forcedly cooled, and
A cylindrical radially anisotropic Fs BR type sintered permanent magnet according to the present invention was produced by subjecting it to an aging treatment at .degree. C. for 2 hours.

得られた焼結体形状は、10.5mmφX3.5mmφ
X20mmで、外径及び内径公差は±0.2mm以内で
あった。
The shape of the obtained sintered body is 10.5 mmφ x 3.5 mmφ
X20 mm, and the outer diameter and inner diameter tolerances were within ±0.2 mm.

得られた円筒状焼結永久磁石は、3r 1種.7 kG
、1)fc IF3.5 koa、 (Bl)max 
29.88GDaの磁気特性を有していた。また、密度
は7.37  gdrあった。
The obtained cylindrical sintered permanent magnet was 3r type 1. 7 kg
, 1) fc IF3.5 koa, (Bl)max
It had magnetic properties of 29.88 GDa. Further, the density was 7.37 gdr.

比較例C 重量%で、Sm27.OCo47.6  Fe12.1
−NL 5.4−Ca7.9の組成を有する平均粒度が
3.5−の希土類コバルト磁石用合金粉末を、成形空間
横断面が12.4mmφの円形で、中心に4.1種T1
mφのコアを配したダイス内に充填し、10 koeの
磁場を径方向に配向し、2 t、7の圧力で磁場中成形
を行なった。
Comparative Example C Sm27.% by weight. OCo47.6 Fe12.1
A rare earth cobalt magnet alloy powder having a composition of -NL 5.4-Ca7.9 and an average particle size of 3.5- is formed into a circular molding space with a cross section of 12.4 mmφ and a 4.1 type T1 in the center.
The material was filled into a die having a core of mφ, and a magnetic field of 10 koe was oriented in the radial direction, and molding was performed in the magnetic field at a pressure of 2 t and 7.

(qられた成形体を、1220″C,2時間、 Ar中
、の条件で焼結し、その後液体窒素中で急冷処理し、ざ
らに、800℃、4時間の時効処理を施して、従来製法
による希土類コバルト系円筒状ラジアル異方性永久f!
1石を作製した。
(The resulting molded body was sintered at 1220"C for 2 hours in Ar, then rapidly cooled in liquid nitrogen, and roughly aged at 800°C for 4 hours. Rare earth cobalt based cylindrical radial anisotropy permanent f!
I made one stone.

得られた焼結体形状は、10.5mmφX 3.5nn
r+φ×20w+mで、外径及び内径公差は±0.2m
m以内であった。
The shape of the obtained sintered body is 10.5mmφX 3.5nn
r+φ×20w+m, outer diameter and inner diameter tolerance is ±0.2m
It was within m.

得られた円筒状焼結永久磁石は、Br 10.6 kG
、iHc  7.4 kOa、(BH)maX 27.
58GOaの磁気特性を有していた。また、密度は8.
50  (IJであった。
The obtained cylindrical sintered permanent magnet has a Br of 10.6 kG.
, iHc 7.4 kOa, (BH)maX 27.
It had magnetic properties of 58 GOa. Also, the density is 8.
50 (It was IJ.

この発明による実施例A、BのFs  B  R系焼結
永久磁石は、いずれも従来の希土類コバルト系焼結fj
1石(比較例C)と同等精度の円形を有しており、ざら
に、強度は曲げ強さで比較例Cの12に14に対して、
25−4の強度を有して着しく高強度で、焼結後の冷却
時や加工時におけるひび2割れやかけ等の欠陥が皆無で
あった。
The Fs B R based sintered permanent magnets of Examples A and B according to the present invention are both conventional rare earth cobalt based sintered fj
It has a circular shape with the same accuracy as 1 stone (Comparative Example C), and the bending strength is roughly 12 to 14 in Comparative Example C.
It had a strength of 25-4, which was extremely high, and there were no defects such as cracks, chips, etc. during cooling or processing after sintering.

Claims (1)

【特許請求の範囲】[Claims] 1 円柱状あるいは円筒状の径方向に磁気異方性を有す
る焼結永久磁石の製造方法において、R(但しRはYを
含む希土類元素のうち少なくとも1種)8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜9
0原子%を主成分とする合金粉末を、磁場中成型する際
に、磁気異方性方向に最大径を有し、磁気異方性と直角
方向に最小径を有する楕円成型体にし、磁場成形後焼結
して真円の円柱状あるいは円筒状の焼結体を得ることを
特徴とする永久磁石の製造方法。
1. In a method for manufacturing a sintered permanent magnet having a cylindrical or cylindrical radial magnetic anisotropy, R (where R is at least one rare earth element including Y) 8 at % to 30
atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 9
When molding alloy powder whose main component is 0 atomic % in a magnetic field, it is formed into an elliptical molded body having a maximum diameter in the direction of magnetic anisotropy and a minimum diameter in a direction perpendicular to the magnetic anisotropy. A method for producing a permanent magnet, which comprises post-sintering to obtain a perfectly circular columnar or cylindrical sintered body.
JP59233684A 1984-11-06 1984-11-06 Manufacturing method for permanent magnet Granted JPS61111514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233684A JPS61111514A (en) 1984-11-06 1984-11-06 Manufacturing method for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233684A JPS61111514A (en) 1984-11-06 1984-11-06 Manufacturing method for permanent magnet

Publications (2)

Publication Number Publication Date
JPS61111514A true JPS61111514A (en) 1986-05-29
JPH0578166B2 JPH0578166B2 (en) 1993-10-28

Family

ID=16958917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233684A Granted JPS61111514A (en) 1984-11-06 1984-11-06 Manufacturing method for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61111514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380162A (en) * 1986-09-19 1988-04-11 Matsushita Electric Ind Co Ltd Filter for bath tub water
US5178691A (en) * 1990-05-29 1993-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing a rare earth element-iron anisotropic magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145322A (en) * 1979-05-01 1980-11-12 Tdk Corp Manufacturing method of magnet with radial pole indication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145322A (en) * 1979-05-01 1980-11-12 Tdk Corp Manufacturing method of magnet with radial pole indication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380162A (en) * 1986-09-19 1988-04-11 Matsushita Electric Ind Co Ltd Filter for bath tub water
US5178691A (en) * 1990-05-29 1993-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing a rare earth element-iron anisotropic magnet

Also Published As

Publication number Publication date
JPH0578166B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
TW201739929A (en) Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
JPH0778269B2 (en) Rare earth / iron / boron tetragonal compound for permanent magnet
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP6784484B2 (en) RTB-based sintered magnets and motors
US5643491A (en) Rare earth magnetic powder, its fabrication method, and resin bonded magnet
JPH01257308A (en) Magnet for voice coil motor
JPS60153109A (en) Permanent magnet
JPS61111514A (en) Manufacturing method for permanent magnet
JPH07169633A (en) Manufacture of yoke-united permanent magnet, and yoke-united permanent magnet manufactured by that manufacture
JPS6217149A (en) Manufacture of sintered permanent magnet material
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JPH0769618A (en) Rare earth-iron-boron based tetragonal compound
JPS6181607A (en) Preparation of rare earth magnet
JPH0354161B2 (en)
JPS60216512A (en) Magnet for magnetic roll
KR102660624B1 (en) Rare Earth Sintered Magnet
JPS61276303A (en) Manufacture of rare earths permanent magnet
JPH05308030A (en) Method of controlling residual magnetic induction of sintered magnet and product made the method
JPS5999705A (en) Manufacture of magnet having radial anisotropy
JPS5932107A (en) Composite soft magnetic material
JPS6250437A (en) Permanent magnet material superior in corrosion resistance
JPS58136757A (en) Manufacture of permanent magnet alloy
JPH0218905A (en) Radial anisotropic rare earth magnet
JPH01117003A (en) R-tm-b system radical an isotropic permanent magnet and its manufacture
JPS5852013B2 (en) Manufacturing method of rare earth cobalt magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees