JPS61108131A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPS61108131A
JPS61108131A JP23162284A JP23162284A JPS61108131A JP S61108131 A JPS61108131 A JP S61108131A JP 23162284 A JP23162284 A JP 23162284A JP 23162284 A JP23162284 A JP 23162284A JP S61108131 A JPS61108131 A JP S61108131A
Authority
JP
Japan
Prior art keywords
plane
semiconductor substrate
melt
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23162284A
Other languages
Japanese (ja)
Inventor
Toshio Tanaka
利夫 田中
Ichiro Kume
久米 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23162284A priority Critical patent/JPS61108131A/en
Publication of JPS61108131A publication Critical patent/JPS61108131A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it feasible to control a thin epitaxial layer to be grown by a method wherein the crystal growing thickness of one substrate is made larger than that of the other substrate among two opposing semiconductor substrate. CONSTITUTION:Solution of As 13 saturated with Ga 12 is permeated into the gap between two opposing substrates 9, 10 to slowly cool down the temperature of furnace for resultant epitaxial growing of GaAs on the substrates 9, 10. At this time, the plane directions of substrates 9, 10 are respectively set up to be (2-21) plane and (001) plane while the gap between substrates 9 and 10 is set up not to exceed the diffusion length of solute. Thus a thick GaAs crystal layer 16 may be grown on the substrate 9 while a thin GaAs crystal layer 17 may be grown on the substrate 10 since the growing speed on the (2-21) plane is around three times of that on the (001) plane. Through these procedures, the thin layer 17 may be controlled to be grown by means of selecting said plane directions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は液相成長法による半導体結晶の結晶成長方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for growing semiconductor crystals by liquid phase growth.

〔従来の技術〕[Conventional technology]

一般に半導体結晶、特に■−v族化合物半導体結晶を製
造する一つの手段として液相成長法が良く知られている
。この液相成長法とは、半導体材料を加熱溶融して得ら
れた飽和融液に半導体基板を接触させ、飽和融液を冷却
して融液中の半導体材料を上記半導体基板の表面にエピ
タキシャル成長させるものである。
In general, a liquid phase growth method is well known as a means of manufacturing semiconductor crystals, particularly 1-V group compound semiconductor crystals. This liquid phase growth method involves bringing a semiconductor substrate into contact with a saturated melt obtained by heating and melting a semiconductor material, cooling the saturated melt, and epitaxially growing the semiconductor material in the melt onto the surface of the semiconductor substrate. It is something.

従来、液相成長を実施するための装置としては種々の装
置が提案されているが、−例として第4図に示すような
液相成長装置がある。すなわち同図において、1は融液
であって、例えばGaAs。
Conventionally, various apparatuses have been proposed as apparatuses for carrying out liquid phase growth, and one example is a liquid phase growth apparatus as shown in FIG. That is, in the figure, 1 is a melt, for example GaAs.

液相成長の場合はGa溶液中にAsを飽和し、不純物を
添加したものである。2は融液1を入れる容器、3は容
器2に対して隙間がなくかつ下方に摺動可能な蓋部材、
4はとの蓋部材3を下方に摺動させるだめの押圧治具、
5は成長融液槽、6は成長融液槽5に融液1を導入する
ための入口スリット、7は入口スリット6に対応する出
口スリット、8は成長融液槽5から押圧された融液1を
溜めるための融液溜め槽、9は成長融液槽5中に設定さ
れた一方の半導体基板、10は一方の半導体基板9に向
い合って配設される他方の半導体基板、11は成長融液
槽5.融液溜め槽8および半導体基板9,10を保持す
るだめの保持部材であり、押圧治具4と連動するように
構成されている。また、容器2は融液1および蓋部材3
とともに外部からの操作によシ同図中の左右方向に移動
できるように構成されている。
In the case of liquid phase growth, a Ga solution is saturated with As and impurities are added thereto. 2 is a container in which the melt 1 is placed; 3 is a lid member that has no gap with respect to the container 2 and is slidable downward;
4 a pressing jig for sliding the bottom lid member 3 downward;
5 is a growth melt tank, 6 is an inlet slit for introducing the melt 1 into the growth melt tank 5, 7 is an exit slit corresponding to the inlet slit 6, and 8 is the melt pressed from the growth melt tank 5. 9 is one of the semiconductor substrates set in the growth melt tank 5; 10 is the other semiconductor substrate disposed facing the one semiconductor substrate 9; 11 is the growth melt tank 5; Melt tank5. This is a holding member for holding the melt reservoir tank 8 and the semiconductor substrates 9 and 10, and is configured to interlock with the pressing jig 4. Moreover, the container 2 contains the melt 1 and the lid member 3.
It is also configured so that it can be moved in the left and right directions in the figure by external operation.

このように構成される液相成長装置によシ実際のエピタ
キシャル成長を行なう場合には、まず、同図に示すよう
に融液1.蓋部材3および半導体基板9,10を設定し
たボートを、成長温度まで上昇した炉(図示せず)内に
挿入する。これらを一定時間保持した後に容器2を外部
からの操作によシ、同図中の右側に移動する。その際、
融液1上の蓋部材3が押圧治具4によシ押されて融液1
が入口スリット6を通して成長融液槽5に導入される。
When performing actual epitaxial growth using the liquid phase growth apparatus configured as described above, first, as shown in the figure, a melt 1. The boat containing the lid member 3 and the semiconductor substrates 9 and 10 is inserted into a furnace (not shown) heated to a growth temperature. After holding these for a certain period of time, the container 2 is moved to the right side in the figure by an external operation. that time,
The lid member 3 on the melt 1 is pressed by the pressing jig 4, and the melt 1
is introduced into the growth melt tank 5 through the inlet slit 6.

導入された融液1は一方の半導体基板9と一定の隙間を
おいて向い合った他方の半導体基板10との間に流れ込
み接触する。この状態から炉の温度を徐冷することによ
シ、半導体基板9,10上にエピタキシャル成長する。
The introduced melt 1 flows between and comes into contact with one semiconductor substrate 9 and the other semiconductor substrate 10 facing each other with a certain gap therebetween. By gradually cooling the temperature of the furnace from this state, epitaxial growth is performed on the semiconductor substrates 9 and 10.

さらに不純物の異なる層あるいは異種材料を多層にエピ
タキシャル成長する際には、容器2をさらに右側方向に
移動することによシ、次の組成の融液1が押圧治具4に
よシ押され、融液1の入口スリット6を通してところて
ん式に前の融液1を押し流しつつ導入される。
Furthermore, when epitaxially growing layers with different impurities or different materials, by moving the container 2 further to the right, the melt 1 with the next composition is pushed by the pressing jig 4, and the melt 1 is pressed by the pressing jig 4. The liquid 1 is introduced through the inlet slit 6 in a trickling manner, displacing the previous melt 1.

第5図はこのように向い合ったGaAs半導体基板9,
100間に導入されたGa 12中のAs13飽和融液
からGaAs結晶がエピタキシャル成長してゆくモデル
を示したものである。すなわち同図に示すようにGa1
2中に飽和したAs 13は炉の温度を徐冷することに
よシ、一方のGaAs半導体基板9と他方のGaAs半
導体基板10との対向面上にGaAs結晶層14.15
がそれぞれエピタキシャル成長される。
FIG. 5 shows GaAs semiconductor substrates 9 facing each other in this way,
This figure shows a model in which a GaAs crystal grows epitaxially from a saturated As13 melt in Ga12 introduced over a period of 100 minutes. That is, as shown in the figure, Ga1
By gradually cooling the temperature of the furnace, the As 13 saturated in 2 is formed into GaAs crystal layers 14 and 15 on the opposing surfaces of one GaAs semiconductor substrate 9 and the other GaAs semiconductor substrate 10.
are epitaxially grown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このように構成される従来の半導体結晶
の成長装置においては、成長速度が半導体基板に接触す
る融液1の高さ、すなわちエピタキシャル成長に寄与す
る融液1の絶対量でtlぼ決まってしまい、それ以上薄
いエピタキシャル層を制御して成長することはほとんど
不可能であった。
However, in the conventional semiconductor crystal growth apparatus configured as described above, the growth rate is approximately determined by the height of the melt 1 that contacts the semiconductor substrate, that is, the absolute amount of the melt 1 that contributes to epitaxial growth. , it has been almost impossible to controllably grow even thinner epitaxial layers.

したがってこの発明は、上述した従来における欠点に鑑
みなされたものであり、その目的とするところは、液相
成長法で極限に薄いエピタキシャル層を制御して成長す
ることができる結晶成長方法を提供することにある。
Therefore, the present invention was made in view of the above-mentioned drawbacks of the conventional technology, and its purpose is to provide a crystal growth method that can control and grow an extremely thin epitaxial layer using liquid phase growth. There is a particular thing.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

このような目的を達成するためにこの発明は、結晶成長
を行なう際、互いに向い合った2枚の半導体基板のうち
、一方の半導体基板上の結晶成長量を、他方の半導体基
板の結晶成長量よりも大きくするものである。
In order to achieve such an object, the present invention has an object in which, when performing crystal growth, the amount of crystal growth on one of two semiconductor substrates facing each other is compared with the amount of crystal growth on the other semiconductor substrate. It is meant to be larger than that.

(作用〕 この発明においては、半導体基板の各面指数における結
晶成長速度の大きさが異なるので、結晶成長量が制御さ
れる。
(Operation) In the present invention, since the magnitude of the crystal growth rate is different for each plane index of the semiconductor substrate, the amount of crystal growth is controlled.

また、この発明の別の発明においては、互いに向い合っ
た2枚の半導体基板のうち、一方の半導体基板の表面積
を大きくすることによシ、結晶層〔実施例〕 以下、図面を用いてこの発明の実施例を詳細に説明する
Further, in another invention of the present invention, by increasing the surface area of one of the two semiconductor substrates facing each other, a crystal layer [Example] will be described below with reference to the drawings. Examples of the invention will be described in detail.

第1図はこの発明による結晶成長方法の一実施例を説明
するだめの半導体基板の面指数とその成長速度を示すグ
ラフである。同図に示すように通常用いられている半導
体基板の面指数は(001)面であシ、この(001)
面上への成長速度は(331)面の約’A、(221)
面の約+である。
FIG. 1 is a graph showing the surface index and growth rate of a blank semiconductor substrate for explaining one embodiment of the crystal growth method according to the present invention. As shown in the figure, the plane index of the commonly used semiconductor substrate is the (001) plane.
The growth rate on the (331) surface is approximately 'A' on the (221) surface.
It is about + of the surface.

第2図は互いに向い合った2枚のGaAs半導体基板9
,10の間に導入されたGa12中のA813飽和融液
からGaAs結晶層16.17がエピタキシャル成長し
てゆく状態を示したものである。
Figure 2 shows two GaAs semiconductor substrates 9 facing each other.
This figure shows the epitaxial growth of GaAs crystal layers 16 and 17 from the A813 saturated melt in Ga12 introduced during .

次にこれらの図に基いて本発明による結晶成長方法を説
明する。まず、第4図で説明した半導体結晶の成長装置
を用い、互いに向い合った2枚の半導体基板9,10間
に、Ga12中に飽和するまでA+i13を溶かし込ん
だ融液を導入し、炉の温度を徐冷する。これによってG
aAs半導体基板9゜10上には過飽和になったAs1
3がGaAsとしてエピタキシャル成長させる。このと
き、一方の半導体基板9の面方位を(221)面に、他
方の半導体基板10の面方位を(001)面にそれぞれ
設定し、かつ両方の半導体基板9,10の間隔を溶質の
拡散長、すなわちGaAsの場合、A8の拡散長より狭
い1.5皿以下に設定する。この結果、一方の半導体基
板9の(221)面上の成長速度は第1図で説明したよ
うに他方の半導体基板10の(001)面上への成長速
度に比べて約3倍程度あるため、第2図に示すように過
飽和になったAs13は一方の半導体基板9の(221
)面上へ引き込まれて膜厚の厚いGaAs結晶層16と
なシ、結果的に他方の半導体基板10の(001)面上
にはGaAs結晶層17が薄く成長されることになる。
Next, the crystal growth method according to the present invention will be explained based on these figures. First, using the semiconductor crystal growth apparatus explained in FIG. Cool the temperature gradually. This allows G
Supersaturated As1 on the aAs semiconductor substrate 9°10
3 is epitaxially grown as GaAs. At this time, the plane orientation of one semiconductor substrate 9 is set to the (221) plane, and the plane orientation of the other semiconductor substrate 10 is set to the (001) plane, and the distance between both semiconductor substrates 9 and 10 is set to allow diffusion of solutes. In other words, in the case of GaAs, the diffusion length is set to 1.5 plates or less, which is narrower than the diffusion length of A8. As a result, the growth rate on the (221) plane of one semiconductor substrate 9 is about three times that of the growth rate on the (001) plane of the other semiconductor substrate 10, as explained in FIG. As shown in FIG.
) plane, resulting in a thick GaAs crystal layer 16, and as a result, a thin GaAs crystal layer 17 is grown on the (001) plane of the other semiconductor substrate 10.

このように互いに向い合った他方の半導体基板10の面
方位を(001)面に選ぶことによシ、液相成長法で膜
厚の薄いGaAs結晶層16を制御して成長することが
可能となる。
By selecting the (001) plane as the plane orientation of the other semiconductor substrates 10 facing each other in this way, it is possible to control and grow the thin GaAs crystal layer 16 using the liquid phase growth method. Become.

第3図はこの発明の他の実施例を説明するだめの互いに
向い合った2枚の半導体基板の断面図であシ、第2図と
同一部分は同一符号を付す。同図において、互いに向い
合った半導体基板のうち、一方の半導体基板9′の表面
を凹凸加工して表面積を大きくしたものである。この結
果、凹凸加工して表面積を大きくした半導体基板γ上へ
のGsLAs結晶層14′の成長量は平坦な面上への成
長量に比べて大きいため、過飽和になったAs13は凹
凸加工した面上へ引き込まれて結果的に他方の半導体基
板10の平坦な面上へのGaAs結晶層17は薄くなる
FIG. 3 is a sectional view of two semiconductor substrates facing each other for explaining another embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. In the figure, one of the semiconductor substrates facing each other, 9', has its surface roughened to increase its surface area. As a result, the amount of growth of the GsLAs crystal layer 14' on the semiconductor substrate γ whose surface area has been increased by processing the uneven surface is larger than that on the flat surface, so that the supersaturated As13 grows on the surface processed with the uneven surface. As a result, the GaAs crystal layer 17 on the flat surface of the other semiconductor substrate 10 becomes thinner.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、互いに向い合っ
た一方の半導体基板の成長速度を他方の半導体基板の成
長速度よりも速くすることによシ、従来の液相成長法で
は不可能とされていた薄い成長層を制御して成長できる
という極めて優れた効果が得られる。
As explained above, according to the present invention, the growth rate of one of the semiconductor substrates facing each other is made faster than the growth rate of the other semiconductor substrate, which is impossible with conventional liquid phase growth methods. The extremely excellent effect of being able to control the growth of a thin growth layer, which has previously been achieved, can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による結晶成長方法の一実施例を説明
するためのGaAs基板の面指数と成長速度との関係を
示すグラフ、第2図はこの発明による結晶成長方法の一
実施例を示す結晶の成長原理図、第3図はこの発明によ
る結晶成長方法の他の実施例を示す結晶の成長原理図、
第4図は液相成長装置を示す断面図、第5図は従来の結
晶の成長原理図である。 1・・・・融液、2・・・・容器、3・・・・蓋部材、
4・・−・押圧治具、5・・・・成長融液槽、6・−・
・入口スリット、7・・・・出口スリット、8・O・・
融液溜め槽、9.9’、10・・・・半導体基板、11
・・・・保持部材、12・・Φ・Ga113・・・・A
Bl 14,14′、15゜16.17・・・・GaA
1結晶層。
FIG. 1 is a graph showing the relationship between the plane index of a GaAs substrate and the growth rate to explain an embodiment of the crystal growth method according to the present invention, and FIG. 2 shows an embodiment of the crystal growth method according to the present invention. FIG. 3 is a diagram of the crystal growth principle showing another embodiment of the crystal growth method according to the present invention.
FIG. 4 is a sectional view showing a liquid phase growth apparatus, and FIG. 5 is a diagram showing the principle of conventional crystal growth. 1... Melt, 2... Container, 3... Lid member,
4...Press jig, 5...Growing melt tank, 6...
・Entrance slit, 7...Exit slit, 8・O...
Melt reservoir tank, 9.9', 10... semiconductor substrate, 11
...Holding member, 12...Φ・Ga113...A
Bl 14,14', 15°16.17...GaA
1 crystal layer.

Claims (2)

【特許請求の範囲】[Claims] (1)互いに向い合う2枚の半導体基板間の表面に、半
導体材料を加熱溶融して得られる飽和融液を接触させ、
この飽和融液を冷却してこの飽和融液中の半導体材料を
半導体基板の表面に液相成長させる結晶成長方法におい
て、前記互いに向い合う2枚の半導体基板のうち、一方
の半導体基板の面指数を、他方の半導体基板の面指数と
異ならせることを特徴とした結晶成長方法。
(1) Bringing a saturated melt obtained by heating and melting a semiconductor material into contact with the surface between two semiconductor substrates facing each other,
In a crystal growth method in which the saturated melt is cooled and the semiconductor material in the saturated melt is grown in a liquid phase on the surface of a semiconductor substrate, the surface index of one of the two semiconductor substrates facing each other is A crystal growth method characterized by making the surface index of the other semiconductor substrate different from that of the other semiconductor substrate.
(2)互いに向い合う2枚の半導体基板間の表面に、半
導体材料を加熱溶融して得られる飽和融液を接触させ、
この飽和融液を冷却してこの飽和融液中の半導体材料を
半導体基板の表面に液相成長させる結晶成長方法におい
て、前記互いに向い合う2枚の半導体基板のうち、一方
の半導体基板の表面積を、他方の半導体基板の表面積よ
りも大きくすることを特徴とした結晶成長方法。
(2) Bringing a saturated melt obtained by heating and melting a semiconductor material into contact with the surface between two semiconductor substrates facing each other,
In a crystal growth method in which the saturated melt is cooled and the semiconductor material in the saturated melt is liquid-phase grown on the surface of a semiconductor substrate, the surface area of one of the two semiconductor substrates facing each other is , a crystal growth method characterized in that the surface area of the other semiconductor substrate is larger than that of the other semiconductor substrate.
JP23162284A 1984-10-31 1984-10-31 Crystal growth method Pending JPS61108131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23162284A JPS61108131A (en) 1984-10-31 1984-10-31 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23162284A JPS61108131A (en) 1984-10-31 1984-10-31 Crystal growth method

Publications (1)

Publication Number Publication Date
JPS61108131A true JPS61108131A (en) 1986-05-26

Family

ID=16926391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23162284A Pending JPS61108131A (en) 1984-10-31 1984-10-31 Crystal growth method

Country Status (1)

Country Link
JP (1) JPS61108131A (en)

Similar Documents

Publication Publication Date Title
JPS61108131A (en) Crystal growth method
US4468258A (en) Method of controlling the partial pressure of at least one substance mixture or mixture of substances
US5223079A (en) Forming thin liquid phase epitaxial layers
JPH0438517Y2 (en)
JPS626338B2 (en)
JP2508726B2 (en) Liquid phase epitaxial growth method
JPS5886723A (en) Growing device for semiconductor crystal
DE2334811C2 (en) Process for the production of CdCr deep 2 Se deep 4 single crystals
JPS60145608A (en) Liquid phase epitaxial growth method
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment
JPS6110099A (en) Method for continuous growth of thin film crystal
JPH0729872B2 (en) Liquid phase epitaxial growth system
JPS58190895A (en) Liquid phase epitaxial growth method
JPS63147893A (en) Liquid phase epitaxy
JPS59101823A (en) Liquid-phase epitaxial growth device
JPS61122191A (en) Liquid-phase crystal growth
JPS6020509A (en) Liquid phase epitaxial growth method
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPS5710922A (en) Sliding type liquid phase epitaxial growth device
JPS59124713A (en) Liquid phase epitaxial growth method
JPS599912A (en) Liquid phase crystal growth method
JPH0214894A (en) Liquid phase epitaxial growth process
JPS61239621A (en) Liquid phase epitaxial equipment
JPS60134417A (en) Liquid phase growth method