JPS61106500A - Method for annealing compound semiconductor substrate - Google Patents

Method for annealing compound semiconductor substrate

Info

Publication number
JPS61106500A
JPS61106500A JP22691584A JP22691584A JPS61106500A JP S61106500 A JPS61106500 A JP S61106500A JP 22691584 A JP22691584 A JP 22691584A JP 22691584 A JP22691584 A JP 22691584A JP S61106500 A JPS61106500 A JP S61106500A
Authority
JP
Japan
Prior art keywords
vapor pressure
annealing
compound semiconductor
protective film
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22691584A
Other languages
Japanese (ja)
Inventor
Toshihiko Takebe
武部 敏彦
Mitsuru Shimazu
充 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22691584A priority Critical patent/JPS61106500A/en
Publication of JPS61106500A publication Critical patent/JPS61106500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent scattering of a component element having high vapor pressure and to anneal uniformly by forming a protective film on a surface to be annealed, and giving the vapor pressure of the component element having high vapor pressure from the outside. CONSTITUTION:A protective film is provided on the surface of a compd. semiconductor substrate to be annealed. Then the vapor pressure of the element which is one of the component elements of said compd. semiconductor and having higher vapor pressure is supplied to the atmosphere. Annealing is carried out in said atmosphere. Accordingly, the scattering of the component element having high vapor pressure is prevented and the compd. semiconductor is uniformly annealed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体の改良方法に関し、詳しくは化合
物半導体のアニール法に関する。本発明の方法は化合物
半導体および混晶半導体の基板およびデバイスに有利に
応用し得る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for improving compound semiconductors, and more particularly to an annealing method for compound semiconductors. The method of the invention can be advantageously applied to compound semiconductor and mixed crystal semiconductor substrates and devices.

〔従来の技術〕[Conventional technology]

化合物半導体にイオン注入法(よシ活性層を形成する場
合、注入損傷回復と注入イオン活性化を目的として、温
度800〜1000℃にて熱処理を行う必要があ〕、こ
れをアニールという。その際に、化合物半導体において
は、蒸気圧の高い構成元素、例えばGaAaではム8、
工nPではP、 Zn8ではZn %0dTs  でF
iaa等が飛散するのを防ぐために、従来より、■81
0!、8 is 14あるいはムtM等の保護膜を形成
して該半導体を覆う、■該構成元素の蒸気圧を印加した
雰囲気を用意する、といった方法がとられていた。
Ion implantation into compound semiconductors (when forming an active layer, it is necessary to perform heat treatment at a temperature of 800 to 1000°C for the purpose of recovering from implantation damage and activating the implanted ions), this is called annealing. In addition, in compound semiconductors, constituent elements with high vapor pressure, such as GaAa,
P for engineering nP, F for Zn %0dTs for Zn8
In order to prevent iaa etc. from scattering, ■81
0! , 8 is 14 or MutM to cover the semiconductor, and (2) preparing an atmosphere to which the vapor pressure of the constituent elements is applied.

〔発明が解決しようとする問題点] しかしながら、上記の■および■の従来法では、以下の
ような不都合点があった。
[Problems to be Solved by the Invention] However, the above conventional methods (1) and (2) have the following disadvantages.

まず■の保護騰形成の方法の場合には、保護膜の厚み及
び質が、面内において不均一なことに由来するアニール
の不均一という問題、さらには、保護簿膜と半導体基板
の間における熱膨張係数の差異による熱ストレス発生の
なめに、アニール中に蒸気圧の高い半導体構成元素が保
励膜を通して飛散するという熱ビット発生の問題が欠点
である。
First, in the case of method (2) for forming a protective film, there is a problem of non-uniform annealing due to non-uniformity of the thickness and quality of the protective film in the plane, and furthermore, there is a problem of non-uniformity of annealing due to non-uniformity of the thickness and quality of the protective film within the surface. Due to thermal stress caused by differences in thermal expansion coefficients, a drawback is the problem of thermal bit generation in which semiconductor constituent elements with high vapor pressure scatter through the holding film during annealing.

次に■の構成元素の蒸気圧を印加した雰囲気とする方法
の場合には、たとえ均一な蒸気圧を印加できても、基板
内に不均一に分布する転位によって、転位近傍での不均
一な構成元素の飛散が起こってしまうこと、さらに、ア
ニール後の冷却速度の面内不均一によって、実効印加蒸
気圧の履歴の面内分布が生じるという欠点があった。
Next, in the case of method (2) where an atmosphere is created where the vapor pressure of the constituent elements is applied, even if a uniform vapor pressure can be applied, dislocations that are unevenly distributed within the substrate will cause unevenness in the vicinity of the dislocations. There are drawbacks that scattering of the constituent elements occurs, and that the history of the effective applied vapor pressure has an in-plane distribution due to the in-plane non-uniformity of the cooling rate after annealing.

本発明の目的は上記の如き現状に鑑みて、従来法の欠点
を解消し、均一なアニールを実現できる方法を提供する
にある。
In view of the current situation as described above, an object of the present invention is to provide a method that eliminates the drawbacks of the conventional method and can realize uniform annealing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記■および■の両方法を併用することに
よシ、互のアニール法の欠点を補って、均一なアニール
を実現できることを見出した。
The present inventors have discovered that by using both of the above methods (1) and (2) in combination, the drawbacks of each annealing method can be compensated for and uniform annealing can be achieved.

すなわち本発明は、化合物半導体基板のアニールにおい
て、少なくともアニールされる面の表面には保護膜を設
けておき、該化合物半導体構成元素であって蒸気圧の高
い方の元素の蒸気圧を供給し九雰囲気中にてアニールを
行うことを特徴とする化合物半導体のアニール法である
That is, in the present invention, in annealing a compound semiconductor substrate, a protective film is provided on at least the surface to be annealed, and the vapor pressure of the element having a higher vapor pressure among the constituent elements of the compound semiconductor is supplied. This is a compound semiconductor annealing method characterized by performing annealing in an atmosphere.

以下、本発明のアニール法を詳細に説明する。The annealing method of the present invention will be explained in detail below.

本発明の方法は、化合物半導体基板表面に、5101.
813 m、、AtM等の保護膜を形成した上で、蒸気
圧の高い構成元素の蒸気圧印加雰凹気中でアニールを行
うものであって、閉管法、開管法のいずれで行ってもよ
い。
In the method of the present invention, 5101.
After forming a protective film such as 813 m, AtM, etc., annealing is performed in a concave atmosphere in which the vapor pressure of the constituent elements with high vapor pressure is applied, and it can be performed by either the closed tube method or the open tube method. good.

本発明方法の保護膜としては、例えば810..8 i
s N、、ムt’s  等が用いられ、これらの保護膜
の形成法としては、avn (化学気相堆積)法、プラ
ズマOVD法、スパッタリング法が挙げられ、ゝ保護膜
の厚さは1000〜2000X程度でよい。
As the protective film for the method of the present invention, for example, 810. .. 8 i
The protective film is formed by AVN (chemical vapor deposition), plasma OVD, or sputtering, and the thickness of the protective film is 1000 mm. ~2000X is sufficient.

第1図は本発明の方法にしたがい、閉管法にてアニール
する場合の概略の構成及び、各部位に対応した設定温度
の関係を説明する図である。
FIG. 1 is a diagram illustrating a schematic configuration and a relationship between set temperatures corresponding to each portion when annealing is performed by a closed tube method according to the method of the present invention.

図中、1は化合物半導体基板、2は保護膜、3け試料の
化合物半導体の蒸気圧の高い方の元素単体で蒸気印加用
のもの、4は元素単体3からの飽和蒸気圧、sFi保護
膜2を形成され九化合物半導体基板1と元素単体3を真
空封入した石英チューブ、6Fi反応管、7はヒーター
を示す。
In the figure, 1 is the compound semiconductor substrate, 2 is the protective film, the single element with the higher vapor pressure of the compound semiconductor of the 3 samples is for vapor application, 4 is the saturated vapor pressure from the simple element 3, and the sFi protective film 2, a quartz tube in which a compound semiconductor substrate 1 and a simple element 3 are vacuum-sealed, a 6Fi reaction tube, and 7 a heater.

ま六’I’d温度を示し、T1  は゛蒸気圧印加用元
素単体3の飽和蒸気圧設定温度、T2  はアニール温
度を示す。
6'I'd temperature is shown, T1 is the saturated vapor pressure setting temperature of the element 3 for applying vapor pressure, and T2 is the annealing temperature.

本方法では、まず十分に洗浄・フッ酸エツチング・ガス
出しベークを施した石英チューブに洗浄を施した高蒸気
圧元素と、保護膜を形成した化合物半導体試料を装填し
、〜10−’ Torrまで真空排気したあと、酸水素
炎などで引き口を封入する。次にチューブはあらかじめ
TI  とT2 の状聾に温度分布をつけた炉に挿入し
て所定時間アニールし、あとは取)出して自然冷却又は
水中に投じて急冷する。この方法では印加蒸気圧が明確
に定義できる。
In this method, a quartz tube that has been thoroughly cleaned, hydrofluoric acid etched, and degassed is loaded with a cleaned high vapor pressure element and a compound semiconductor sample with a protective film formed, and then heated to ~10-' Torr. After evacuating, seal the opening with oxyhydrogen flame. Next, the tube is inserted into a furnace with a temperature distribution of TI and T2 in advance and annealed for a predetermined period of time, after which it is taken out and cooled naturally or thrown into water for quenching. This method allows the applied vapor pressure to be clearly defined.

また第2図は本発明の方法にしたがい、開管法にてアニ
ールする場合を第1図同様に示し九説明図であって、図
中の1.2.6および7の意味するところは第1図と同
様であシ、8は試料半導体の蒸気圧の高い方の元素を含
む蒸気圧印加用の気体の流れをあられす。この場合、温
度T8  はアニール温度であるとともにDの分解温度
でもある。
FIG. 2 is an explanatory diagram showing the case of annealing using the open tube method according to the method of the present invention, similar to FIG. 1, and 1.2.6 and 7 in the figure mean Similar to Figure 1, reference numeral 8 indicates a flow of gas for applying vapor pressure containing the element with the higher vapor pressure of the sample semiconductor. In this case, temperature T8 is both the annealing temperature and the decomposition temperature of D.

本方法では石英チューブ内に試料を封入する必要がない
代わりに高蒸気圧構成元素を含むガスを炉内Kfiして
熱分屏し、該元素の蒸気圧を得る。まず用意した保護膜
つき化合物半導体試料を温度T8  に保った炉内の入
口低温部にセットし、該高蒸気圧元素から成るガスf:
流し、次に試料ヲT! 部へ移動アニールする。終了後
は低温部に戻し冷却する。本法では印加蒸気圧が確定で
1!ないが、石英チューブに封入する手間が省ける。
In this method, there is no need to enclose a sample in a quartz tube, but instead a gas containing a high vapor pressure constituent element is thermally divided by Kfi in a furnace to obtain the vapor pressure of the element. First, the prepared compound semiconductor sample with a protective film was set in the low temperature section of the inlet of a furnace kept at a temperature T8, and the gas f consisting of the high vapor pressure element:
Pour the sink, then sample! Move to section for annealing. After finishing, return to the low temperature section to cool. In this method, the applied vapor pressure is determined to be 1! No, but it saves the trouble of sealing it in a quartz tube.

開管法・閉管法ともにT、 温度(アニール温#)は8
00〜900℃程度である。閉管法でのT1  は、T
t<Ttで該高蒸気圧元素の蒸気圧が石英チューブの破
壊に至らない範囲で任意に設定する。
T for both open tube method and closed tube method, temperature (annealing temperature #) is 8
The temperature is about 00 to 900°C. T1 in the closed tube method is T
It is arbitrarily set within a range where t<Tt and the vapor pressure of the high vapor pressure element does not lead to destruction of the quartz tube.

本発明の方法の特長は、i) 保画膜の採用によって、
基板内に不均一に分布する、゛転位に依存した構成元素
の不均一な飛散が抑えられる、11)蒸気圧の高い構成
元素の蒸気圧1第1図又は第2図に示すように外部から
加えることにより、保護膜の不均一や保護膜と基板との
間の熱ストレスの発生に伴う該元素の膜を通した飛散お
よび熱ピットの発生を抑えることができる一1IH)保
護膜の採用により、冷却時の印加蒸気圧のウェハ面内に
生じる冷却履歴の分布を緩和できる、ことにあり、した
がって、ウェハ面内で均一かつ蒸気圧の高い構成元素の
飛散がない、化合物半導体のアニールができる。
The features of the method of the present invention are as follows: i) By employing an image retention film,
11) Vapor pressure of constituent elements with high vapor pressure 1 As shown in Fig. 1 or 2, the dislocation-dependent dislocation-dependent constituent elements can be prevented from dispersing non-uniformly in the substrate. 1IH) By using a protective film, it is possible to suppress the scattering of the element through the film and the generation of thermal pits due to unevenness of the protective film and thermal stress between the protective film and the substrate. , it is possible to alleviate the distribution of the cooling history that occurs within the wafer surface due to the applied vapor pressure during cooling, and therefore it is possible to anneal the compound semiconductor uniformly within the wafer surface and without scattering of constituent elements with high vapor pressure. .

以上の説明では化合物半導体基板の一方の表面に保護膜
を形成し比例を示したが、このようにアニールすべき面
のみに形成しても又、両面に形成してもよい。さらに、
同種の保護膜を形成された同種の化合物半導体基板ft
2枚、保護膜形成面が重ね合せとなるよう(両面に保護
膜形成をした場合はアニールすべき面同志が重ね合せに
なるよう)に設置してアニールを行うこともできる。
In the above description, the protective film was formed on one surface of the compound semiconductor substrate to show the proportionality, but it may be formed only on the surface to be annealed, or may be formed on both surfaces. moreover,
Same type of compound semiconductor substrate ft on which same type of protective film is formed
It is also possible to perform annealing by installing two sheets so that the surfaces on which the protective films are formed overlap each other (if the protective films are formed on both sides, the surfaces to be annealed overlap each other).

〔実施例〕〔Example〕

実験例として半絶縁性Gaム8基板に81イオン注入し
てFIlfT を形成し、しきい値電圧の面内分布を測
定することによシ本アニール法を従来法と比較し九。
As an experimental example, the present annealing method was compared with the conventional method by implanting 81 ions into a semi-insulating Ga 8 substrate to form a FIlfT and measuring the in-plane distribution of threshold voltage.

用いたGa、Aa基板 XJK O(Liqul Kncapgulat@d 
0zochralski)法による2′φアyドープG
aAs (001)結晶の中央部より隣接して6枚のウ
ェハを切出し、鏡面研磨を施したものを使用した。3枚
ム1.B1゜01はIF I T (Field ef
fect transistor )、形成のため、残
シ3枚ム2.B2,02Fiイオン注入層の電気的評価
のために用いた。
The Ga, Aa substrate used was
2′φ eye-doped G by the Ozochralski) method
Six wafers were cut adjacent to each other from the center of an aAs (001) crystal, and mirror-polished wafers were used. 3 pieces 1. B1゜01 is IF I T (Field ef
2. It was used for electrical evaluation of the B2,02Fi ion-implanted layer.

イオン注入伯仲・アニール条件 活性層イオン注入条件: 共通である。Ion implantation process/annealing conditions Active layer ion implantation conditions: Common.

アニール条件を表1に示す。Annealing conditions are shown in Table 1.

表1 FBTO田造 ソース・ドレイン電極 Au−Ge−Ni合金400℃
5分の処理 ゲート電極  Ti/Au重ね蒸着 注入層の電気的特性評価 2.5−角のチップを臂開法によってウェハよシ切出し
四すみにムu−Go−Ni  合金電極を形成、van
 der Pauw 法によるシートキャリア密度とキ
ャリア移動度の測定を行なった。注入層電気的特性測定
結果を表2に示す。
Table 1 FBTO Tazo source/drain electrode Au-Ge-Ni alloy 400℃
5 minutes processing Gate electrode Electrical characteristics evaluation of Ti/Au overlapping vapor deposited injection layer 2. A 5-square chip was cut out from the wafer by the arm-opening method, and mu-Go-Ni alloy electrodes were formed on the four corners of the van.
The sheet carrier density and carrier mobility were measured by the der Pauw method. Table 2 shows the measurement results of the electrical characteristics of the injection layer.

表2 0内20個のサンプルに苅するパラツキB2→C2→A
2の順でシートキャリア密度が増し、かつ移動度が高く
なっている。このことから保護膜つきでムe圧印加する
ことにより、キャリアの活性化率が上が夛、かりムe飛
散に伴うアクセプタの発生が抑制されることがわかる。
Table 2 Discrepancies in 20 samples within 0 B2 → C2 → A
The sheet carrier density increases in the order of No. 2, and the mobility also increases. This shows that by applying pressure with a protective film, the activation rate of carriers is increased and the generation of acceptors due to scattering of particles is suppressed.

また均一性を示すバラツキの程度はム2で最も小さく、
すぐれていることがわかる。
In addition, the degree of variation indicating uniformity is the smallest in Mu2,
I can see that it is excellent.

FICTのしきい値電圧分布測゛定 ウェハ全面で3〜4万個のF′ETに対するしきい値電
圧”thの測定をコンピュータ駆動の自動測定装置で行
ない表3に示す結果を得た。
Measurement of threshold voltage distribution of FICT The threshold voltage "th" for 30,000 to 40,000 F'ETs was measured on the entire surface of the wafer using a computer-driven automatic measuring device, and the results shown in Table 3 were obtained.

表3 なおりthは平均値、6 vthは標準偏差、B1−4
01−4AIの順でvthがon  側にシフトし活性
化が大きくなっている。これは5で示したシートキャリ
ア密度の増加傾向とも一致している。一方パラツキ、す
なわち論理振幅に対する6 vthの比がム1で最も小
さくなシ、面内均一性が向上していることがわかる。
Table 3 Naori th is the average value, 6 vth is the standard deviation, B1-4
In the order of 01-4AI, vth shifts to the on side and the activation becomes larger. This also coincides with the increasing trend of sheet carrier density shown in 5. On the other hand, it can be seen that the variation, that is, the ratio of 6 vth to the logical amplitude, is the smallest in M1, and that the in-plane uniformity is improved.

従って以上の実験結果よシ本発明によるアニール方法は
、均一なアニールのために著しく有効であることがわか
る。これは夫々の従来法で得られた効果から予想される
以上の相乗的に大きな効果である。
Therefore, from the above experimental results, it can be seen that the annealing method according to the present invention is extremely effective for uniform annealing. This is a synergistically greater effect than expected from the effects obtained with each of the conventional methods.

〔発明の効果] 本発明の方法は従来法のそれぞれの欠点を補い、均一で
、蒸気圧の高い構成元素の飛散のない化合物半導体のア
ニールができる。
[Effects of the Invention] The method of the present invention compensates for the drawbacks of the conventional methods, and enables uniform annealing of compound semiconductors without scattering of constituent elements with high vapor pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明のアニール方法の実施態様
の構成と、アニール炉の各位置く対応した温度設定を説
明する図で、第1図は閉管法の場合、第2図は開管法の
場合である。 7:−Jけ戸水平軸方向値l アニール炉水平軸方向61 P・続捕正書 昭和59年12月 72 日
Figures 1 and 2 are diagrams explaining the configuration of an embodiment of the annealing method of the present invention and temperature settings corresponding to each position of the annealing furnace. Figure 1 is for the closed tube method, and Figure 2 is for the open tube method. This is the case with the law. 7:-J door horizontal axis direction value l Annealing furnace horizontal axis direction 61 P. Continuation of the correction book December 72, 1982

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体基板のアニールにおいて、少なくと
もアニールされる面の表面には保護膜を設けておき、該
化合物半導体構成元素であつて蒸気圧の高い方の元素の
蒸気圧を供給した雰囲気中にてアニールを行うことを特
徴とする化合物半導体のアニール法。
(1) In annealing a compound semiconductor substrate, a protective film is provided on at least the surface to be annealed, and the substrate is placed in an atmosphere supplied with the vapor pressure of the element with the higher vapor pressure among the constituent elements of the compound semiconductor. An annealing method for compound semiconductors characterized by performing annealing using
(2)アニールすべき2枚の同種の化合物半導体基板の
それぞれにおいて、少なくともアニールされる表面に同
種の保護膜を設けておき、アニールすべき面側がそれぞ
れ外側になるように上記の2枚の化合物半導体基板を重
ね合せてアニールを行う特許請求の範囲第(1)項記載
の方法。
(2) For each of the two compound semiconductor substrates of the same type to be annealed, provide a protective film of the same type on at least the surface to be annealed, and attach the two compound semiconductor substrates so that the surfaces to be annealed are on the outside. The method according to claim 1, wherein the semiconductor substrates are stacked and annealed.
JP22691584A 1984-10-30 1984-10-30 Method for annealing compound semiconductor substrate Pending JPS61106500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22691584A JPS61106500A (en) 1984-10-30 1984-10-30 Method for annealing compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22691584A JPS61106500A (en) 1984-10-30 1984-10-30 Method for annealing compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS61106500A true JPS61106500A (en) 1986-05-24

Family

ID=16852592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22691584A Pending JPS61106500A (en) 1984-10-30 1984-10-30 Method for annealing compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61106500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472998A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472998A (en) * 1987-09-14 1989-03-17 Nippon Mining Co Heat treatment of compound semiconductor single crystal

Similar Documents

Publication Publication Date Title
KR0181532B1 (en) Thermal treatment of a semiconductor wafer
US4159917A (en) Method for use in the manufacture of semiconductor devices
US5279973A (en) Rapid thermal annealing for semiconductor substrate by using incoherent light
EP0015694A2 (en) Method for forming an insulating film on a semiconductor substrate surface
US4879259A (en) Rapid thermal annealing of gallium arsenide with trimethyl arsenic overpressure
EP0454100B1 (en) Method of forming silicon nitride thin film and method of manufacturing thin film transistor using silicon nitride thin film
JPH1187257A (en) Heat treatment of silicon carbide substrate
JPS61106500A (en) Method for annealing compound semiconductor substrate
JPH0297015A (en) Heat treatment method
US3215571A (en) Fabrication of semiconductor bodies
JPH0480880B2 (en)
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
EP0023925B1 (en) Method of producing insulating film for semiconductor surfaces and semiconductor device with such film
JPS60239030A (en) Annealing method of compound semiconductor
US3948695A (en) Method of diffusing an impurity into semiconductor wafers
KR920007193B1 (en) Anealing method of semiconductor elements
KR100542690B1 (en) Silicon oxide film formation method of semiconductor device
JPH06196459A (en) Manufacture of semiconductor silicon wafer
JPS6134949A (en) Heat treatment for compound semiconductor substrate
JPS60186024A (en) Heat treating method of compound semiconductor substrate
JPS59198715A (en) Heat treatment of compound semiconductor
JPH03238825A (en) Semiconductor substrate
JPS63271923A (en) Heat treatment of compound semiconductor substrate
JPS5840818A (en) Introduction of impurity
JPH0480878B2 (en)