JPH06196459A - Manufacture of semiconductor silicon wafer - Google Patents

Manufacture of semiconductor silicon wafer

Info

Publication number
JPH06196459A
JPH06196459A JP35671192A JP35671192A JPH06196459A JP H06196459 A JPH06196459 A JP H06196459A JP 35671192 A JP35671192 A JP 35671192A JP 35671192 A JP35671192 A JP 35671192A JP H06196459 A JPH06196459 A JP H06196459A
Authority
JP
Japan
Prior art keywords
hydrogen
atmosphere
etching
substrate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35671192A
Other languages
Japanese (ja)
Inventor
Hisashi Adachi
尚志 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP35671192A priority Critical patent/JPH06196459A/en
Publication of JPH06196459A publication Critical patent/JPH06196459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To solve the problems of a semiconductor silicon wafer, such as the deterioration of surface cleanness and surface roughness, and lowering of the dopant concentration in a surface region after the thermal treatment carried out in a hydrogen atmosphere or a hydrogen-containing atmosphere without subjecting it to a mirror polishing process again. CONSTITUTION:A semiconductor substrate is thermally treated in a hydrogen atmosphere or a hydrogen-containing atmosphere through such a method that gas, for instance, halide gas such as hydrogen chloride gas or the like capable of etching a semiconductor substrate is introduced in a thermal treatment or in another thermal treatment after the thermal treatment concerned so as to perform an etching treatment of the semiconductor substrate, whereby a required etching treatment can be carried out corresponding to the width of region lessened in dopant concentration near the surface of the semiconductor substrate, and the substrate is lessened in number of surface particles and improved in surface roughness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリコン等の半導体
ウェーハの製造方法の改良に係り、特に半導体素子能動
領域であるウェーハ表面近傍の結晶品質を向上させるた
めの、水素又は水素含有雰囲気下での高温熱処理を行う
半導体シリコンウエーハの製造方法において生じる表面
清浄度と表面ラフネスの劣化、並びに表面近傍領域の高
抵抗化を防止して半導体素子の特性及び歩留りを飛躍的
に向上させることを可能とする半導体シリコンウェーハ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing a semiconductor wafer such as silicon, and more particularly, under hydrogen or a hydrogen-containing atmosphere for improving the crystal quality in the vicinity of the wafer surface which is an active region of a semiconductor element. It is possible to dramatically improve the characteristics and yield of semiconductor devices by preventing the deterioration of surface cleanliness and surface roughness and the increase in the resistance of the area near the surface, which occur in the method for manufacturing a semiconductor silicon wafer that is subjected to the high temperature heat treatment. The present invention relates to a method for manufacturing a semiconductor silicon wafer.

【0002】[0002]

【従来の技術】MOS LSIデバイスの基本構成要素
であるMOSトランジスタのゲート部にはゲート電極と
基板間の絶縁膜として薄い熱酸化膜が用いられる。近
年、MOSLSIデバイスの高集積化に伴い、ゲート酸
化膜の薄膜化が進み、その信頼性の問題が顕在化してき
た。該ゲート酸化膜の絶縁耐圧特性は、用いられるシリ
コン基板の表面近傍の結晶品質に強く依存しており、高
集積MOSLSIデバイスの信頼性及び歩留を大きく左
右する。
2. Description of the Related Art A thin thermal oxide film is used as an insulating film between a gate electrode and a substrate in a gate portion of a MOS transistor which is a basic constituent element of a MOS LSI device. In recent years, with the high integration of MOSLSI devices, the gate oxide film has become thinner, and the problem of its reliability has become apparent. The withstand voltage characteristic of the gate oxide film strongly depends on the crystal quality in the vicinity of the surface of the silicon substrate used, and greatly affects the reliability and yield of the highly integrated MOS LSI device.

【0003】このような問題を解決する方法として、特
開昭60−231365号公報、特開昭61−1934
5号公報、特開昭61−193458号公報等に示され
る如く、シリコン基板を水素雰囲気下又は水素含有雰囲
気中で950℃〜1200℃の温度で5分間以上加熱す
ることにより、デバイスプロセス中で形成されるゲート
酸化膜の絶縁耐圧特性を著しく向上させることが知られ
ている。
As a method for solving such a problem, JP-A-60-231365 and JP-A-61-1934 are used.
No. 5, JP-A-61-193458, etc., a silicon substrate is heated in a hydrogen atmosphere or in a hydrogen-containing atmosphere at a temperature of 950 ° C. to 1200 ° C. for 5 minutes or more to perform device processing. It is known to significantly improve the dielectric strength characteristics of the formed gate oxide film.

【0004】しかし、上記の処理には下記の問題点があ
る。すなわち、水素雰囲気下又は水素含有雰囲気中での
熱処理工程における、表面清浄度の劣下(パーティクル
付着)、表面ラフネス(ヘイズレベル)の悪化、及びド
ーパントの外方拡散による表面近傍領域の高抵抗化であ
る。詳述すると、半導体シリコン基板を水素を含む雰囲
気下で加熱する場合、基板表面に生成した自然酸化膜が
水素の還元作用により除去され、活性なシリコン表面が
露出し、炉内に混入するパーティクルの付着が強固とな
り、熱処理後のウェット洗浄等では除去できなくなる。
However, the above processing has the following problems. That is, in the heat treatment step in a hydrogen atmosphere or in a hydrogen-containing atmosphere, the surface cleanliness is deteriorated (particle adhesion), the surface roughness (haze level) is deteriorated, and the resistance of the surface vicinity region is increased by the outward diffusion of the dopant. Is. More specifically, when the semiconductor silicon substrate is heated in an atmosphere containing hydrogen, the natural oxide film formed on the substrate surface is removed by the reducing action of hydrogen, the active silicon surface is exposed, and the particles of particles mixed in the furnace are exposed. Adhesion becomes strong and cannot be removed by wet cleaning after heat treatment.

【0005】また、炉内に混入する微量の酸素、水分に
より活性基板表面をエッチングし、表面ラフネスを悪化
させる。更には自然酸化膜の除去に伴い、基板中にドー
プされているドーパントの外方拡散が生じ、基板表面近
傍の濃度の低下という現象が起こる。従って、シリコン
基板製品への適用を考えると、水素又は水素含有雰囲気
下での高温熱処理後、再度鏡面研磨加工により、表面付
着パーティクルの除去、表面ラフネスの改善及びドーパ
ント濃度低下領域の除去が必要であった。
Further, the surface of the active substrate is deteriorated by etching the surface of the active substrate by a slight amount of oxygen and water mixed in the furnace. Further, with the removal of the natural oxide film, the dopant doped in the substrate is diffused outward, which causes a phenomenon that the concentration near the surface of the substrate is lowered. Therefore, considering application to silicon substrate products, it is necessary to remove surface-adhered particles, improve surface roughness and remove dopant concentration lowering regions by mirror polishing again after high-temperature heat treatment under hydrogen or hydrogen-containing atmosphere. there were.

【0006】[0006]

【発明が解決しようとする課題】近年、半導体デバイス
の高集積化、すなわち微細化は著しく、それに伴い表面
品質に対する要求仕様が一層厳しくなっている。これら
の現状を踏まえると、上述の従来公開されているような
技術手法では、表面清浄度の劣下、表面ラフネスの悪
化、表面近傍領域の高抵抗化に対して何らの対策もでき
ず、製品化することが困難となる。
In recent years, the degree of integration of semiconductor devices, that is, miniaturization has been remarkably increased, and accordingly, the required specifications for surface quality have become stricter. In view of these circumstances, the above-mentioned conventionally disclosed technical methods cannot provide any measures against deterioration of surface cleanliness, deterioration of surface roughness, and high resistance in the vicinity of the surface. Becomes difficult to convert.

【0007】この発明は、かかる現状に鑑み、水素雰囲
気又は水素含有雰囲気下での熱処理後に問題となる表面
清浄度の劣下、表面ラフネスの悪化及び表面近傍領域の
ドーパント濃度低下を熱処理後、再度鏡面加工を施すこ
となく一挙に解決できる半導体シリコン基板の製造方法
の提供を目的とする。
In view of the above situation, the present invention has a problem that the surface cleanliness is deteriorated, the surface roughness is deteriorated, and the dopant concentration in the vicinity of the surface is lowered after the heat treatment in a hydrogen atmosphere or a hydrogen-containing atmosphere. An object of the present invention is to provide a method for manufacturing a semiconductor silicon substrate, which can be solved all at once without performing mirror finishing.

【0008】[0008]

【課題を解決するための手段】この発明は、水素雰囲気
下または水素を含む雰囲気下、あるいは不活性雰囲気下
で、シリコンウェーハに施す高温熱処理後に引き続い
て、エッチングガスによる該ウェーハの表面エッチング
を行うことを特徴とする半導体シリコンウェーハの製造
方法である。より具体的に説明すると、水素雰囲気下ま
たは水素を含む雰囲気下で、CZ単結晶などのシリコン
ウェーハに施す高温熱処理後に引き続いて、例えば、1
000℃〜1300℃の温度域でハロゲン化物ガスを導
入して、ハロゲン化物ガスによる該ウェーハ表面エッチ
ングを行うことを特徴とする半導体シリコンウェーハの
製造方法である。
According to the present invention, the surface of a silicon wafer is subjected to high temperature heat treatment in a hydrogen atmosphere, an atmosphere containing hydrogen, or an inert atmosphere, and then the surface of the wafer is etched by an etching gas. The present invention is a method for manufacturing a semiconductor silicon wafer. More specifically, after a high temperature heat treatment performed on a silicon wafer such as a CZ single crystal in a hydrogen atmosphere or an atmosphere containing hydrogen, for example, 1
A method for producing a semiconductor silicon wafer, characterized in that a halide gas is introduced in a temperature range of 000 ° C to 1300 ° C, and the wafer surface is etched with the halide gas.

【0009】また、この発明は、上述した表面あるいは
その近傍の結晶品質を改善するために、水素雰囲気下ま
たは水素を含む雰囲気下でシリコンウェーハを高温熱処
理を施した後、引き続いてエッチングガスによる該ウェ
ーハの表面エッチングを行うことを特徴とする半導体シ
リコンウェーハの製造方法である。より具体的に説明す
ると、前記目的のために、水素雰囲気下または水素を含
む雰囲気下でCZ単結晶などのシリコンウェーハを高温
熱処理を施した後、引き続いて例えば、1100℃〜1
150℃の温度域でハロゲン化物ガスを導入して、ハロ
ゲン化物ガスによる該ウェーハの表面エッチングを行う
ことを特徴とする半導体シリコンウェーハの製造方法で
ある。
According to the present invention, in order to improve the crystal quality on the surface or in the vicinity thereof, a silicon wafer is subjected to a high temperature heat treatment in a hydrogen atmosphere or an atmosphere containing hydrogen, and then the etching gas is used. A method of manufacturing a semiconductor silicon wafer, characterized in that the surface of the wafer is etched. More specifically, for the above purpose, after subjecting a silicon wafer such as a CZ single crystal to a high temperature heat treatment in a hydrogen atmosphere or an atmosphere containing hydrogen, subsequently, for example, 1100 ° C. to 1 ° C.
A method of manufacturing a semiconductor silicon wafer, characterized in that a halide gas is introduced in a temperature range of 150 ° C., and the surface of the wafer is etched by the halide gas.

【0010】この発明において、エッチングガスによる
ウェーハの表面エッチングを行う工程は、水素雰囲気下
または水素を含む雰囲気下での高温熱処理に際して、そ
の後引き続いてエッチングガスを導入して表面エッチン
グを行うか、あるいは上記の高温熱処理後の別途の種々
の熱処理中又はその処理後に引き続いて行う際など、水
素雰囲気下または水素を含む雰囲気下、あるいは不活性
雰囲気下で、1000℃〜1300℃の温度域でエッチ
ングガスを導入できれば、いずれの熱処理も対象となし
得る。
In the present invention, the step of etching the surface of the wafer with an etching gas is performed by performing high-temperature heat treatment in a hydrogen atmosphere or an atmosphere containing hydrogen, and subsequently introducing an etching gas to perform the surface etching, or Etching gas in a temperature range of 1000 ° C. to 1300 ° C. under a hydrogen atmosphere, an atmosphere containing hydrogen, or an inert atmosphere during various other heat treatments after the above high-temperature heat treatment or when the heat treatment is subsequently performed. If the above can be introduced, any heat treatment can be targeted.

【0011】この発明において、エッチングには半導体
基板をエッチングできるガスであれば、いずれのガスも
利用できるが、塩化水素等のハロゲン化物ガスによるエ
ッチングが、水素雰囲気または水素を含む雰囲気下での
半導体基板を熱処理した後における、表面清浄度と表面
ラフネスを向上させ、表面近傍領域の高抵抗化を防止す
る効果が高く、鏡面加工を施すことなく半導体素子の特
性及び歩留りを飛躍的に向上させるのに最適である。
In the present invention, any gas can be used for etching as long as it can etch a semiconductor substrate. However, etching with a halide gas such as hydrogen chloride is performed in a hydrogen atmosphere or an atmosphere containing hydrogen. After the heat treatment of the substrate, it improves the surface cleanliness and surface roughness, has a high effect of preventing the high resistance of the surface vicinity region, and dramatically improves the characteristics and yield of semiconductor devices without mirror finishing. Is perfect for

【0012】この発明において、ウェーハの表面エッチ
ングは、1000℃〜1300℃の温度域でエッチング
ガスを導入できればその効果が十分得られる。さらに、
塩化水素導入によるエッチング温度1000℃〜105
0℃の範囲では塩化水素の基板に対するエッチング作用
が異方性を示すため、表面ラフネスの著しい改善はみら
れない。また、1200℃以上の温度域になるとシリコ
ン基板の強度が著しく弱くなるため塑性変化を起こす。
従って、塩化水素導入温度は1100℃〜1150℃が
最も望ましい。
In the present invention, the effect of the surface etching of the wafer is sufficiently obtained if the etching gas can be introduced in the temperature range of 1000 ° C to 1300 ° C. further,
Etching temperature by introducing hydrogen chloride 1000 ° C. to 105
In the range of 0 ° C., the etching effect of hydrogen chloride on the substrate exhibits anisotropy, so that the surface roughness is not significantly improved. Further, in the temperature range of 1200 ° C. or higher, the strength of the silicon substrate is significantly weakened and plastic change occurs.
Therefore, the hydrogen chloride introduction temperature is most preferably 1100 ° C to 1150 ° C.

【0013】[0013]

【作用】この発明は、水素雰囲気または水素を含む雰囲
気下での半導体基板を熱処理する方法において、半導体
基板をエッチングできるガス、例えば、塩化水素等のハ
ロゲン化物を当該熱処理中、または当該熱処理後の別途
熱処理中に導入してエッチング処理を行うことを特徴と
し、被熱処理半導体表面近傍のドーパント低下領域幅に
応じて、所望のエッチング処理を行うことができ、表面
パーティクルの低減化、及び表面ラフネスを向上させる
ことができる。この発明は、予め測定した被熱処理半導
体表面近傍のドーパント低下領域幅に応じて、エッチン
グ温度及び時間、ガス種及びその濃度を適宜選定するこ
とにより、所望のエッチング処理を行うことができ、表
面パーティクルの低減化、及び表面ラフネスを著しく向
上させることができる。
The present invention relates to a method of heat treating a semiconductor substrate in a hydrogen atmosphere or an atmosphere containing hydrogen, wherein a gas capable of etching the semiconductor substrate, for example, a halide such as hydrogen chloride is treated during or after the heat treatment. It is characterized in that it is introduced during the separate heat treatment to carry out the etching treatment, and the desired etching treatment can be carried out according to the width of the dopant-reduced region near the surface of the semiconductor to be heat-treated, which reduces the surface particles and reduces the surface roughness. Can be improved. This invention can perform a desired etching treatment by appropriately selecting the etching temperature and time, the gas species and its concentration according to the width of the dopant-reduced region near the surface of the heat-treated semiconductor that is measured in advance. And the surface roughness can be significantly improved.

【0014】[0014]

【実施例】従来例 チョクラルスキー法により育成されたシリコン基板(ボ
ロン濃度4×1018atoms/cm3)に鏡面研磨を
行い、100%水素雰囲気下で1120℃、2時間熱処
理を施した。該基板の表面層から、深さ方向に対するボ
ロン濃度を調査した。評価装置は、二次イオン質量分析
計により求めた。測定結果を図2に示すように水素雰囲
気下での熱処理は基板表面層から2μmの深さ位置まで
ボロン濃度の低下領域が観測された。一方、酸素及び窒
素雰囲気下での上記熱処理条件実施後のボロン濃度変化
は水素雰囲気とは異なりボロンの外方拡散は観測されな
かった。又、リンドープシリコン基板についても同様な
結果が得られた。
EXAMPLES Conventional Example A silicon substrate (boron concentration: 4 × 10 18 atoms / cm 3 ) grown by the Czochralski method was mirror-polished, and heat-treated at 1120 ° C. for 2 hours in a 100% hydrogen atmosphere. The boron concentration in the depth direction was investigated from the surface layer of the substrate. The evaluation device was determined by a secondary ion mass spectrometer. As shown in the measurement results of FIG. 2, in the heat treatment in a hydrogen atmosphere, a region where the boron concentration was lowered was observed from the substrate surface layer to a depth of 2 μm. On the other hand, unlike the hydrogen atmosphere, the boron concentration change after the above heat treatment conditions were performed in an oxygen and nitrogen atmosphere, and no outward diffusion of boron was observed. Similar results were obtained with the phosphorus-doped silicon substrate.

【0015】実施例1 ボロンドープされたシリコンウェーハを100%水素雰
囲気下で1120℃、2時間熱処理を施し、引き継ぎ、
熱処理温度1120℃で、水素流量60l/min中に
塩化水素を1l/min、3分間導入することにより基
板表面層を2μm程度除去した後、二次イオン質量分析
計によりドーパントの外方拡散長を調査した。測定結果
を図1に示すように水素雰囲気下1120℃、2時間の
熱処理後に生じたドーパント外方拡散領域が除去され、
深さ方向に均一なドーパント濃度基板を提供できる。ま
た、りんドープされたシリコンウェーハに関しても上記
と同様の結果が得られた。
Example 1 A boron-doped silicon wafer was heat-treated in a 100% hydrogen atmosphere at 1120 ° C. for 2 hours and taken over.
At a heat treatment temperature of 1120 ° C., hydrogen chloride was introduced at 1 l / min for 3 minutes at a hydrogen flow rate of 60 l / min to remove the substrate surface layer by about 2 μm, and then the outward diffusion length of the dopant was measured by a secondary ion mass spectrometer. investigated. As shown in FIG. 1, the measurement result shows that the dopant out-diffusion region generated after the heat treatment at 1120 ° C. for 2 hours in a hydrogen atmosphere is removed,
It is possible to provide a substrate having a uniform dopant concentration in the depth direction. Also, the same results as above were obtained for the phosphorus-doped silicon wafer.

【0016】実施例2 ボロンドープ半導体シリコン基板を水素100%雰囲気
下で熱処理温度900℃〜1200℃の範囲で10分間
熱処理を施したサンプルの表面ラフネス測定及びパーテ
ィクル、カウントを実施した。評価装置にはTenco
r社、surfscan4500 パーティクルカウン
ターを用いた。図3に示すように低温域では表面ラフネ
スの劣下が著しく製品としては不合格である。次に、こ
れらのサンプルを熱処理温度、1000℃〜1300℃
の範囲で水素流量60l/min、塩化水素流量1l/
min、3分間熱処理を実施し、上記と同様に表面ラフ
ネス評価を実施した。結果を図4に示す様に基板表面ラ
フネスの著しい向上が観察された。しかし、塩化水素導
入によるエッチング温度1000℃〜1050℃の範囲
では塩化水素の基板に対するエッチング作用が異方性を
示すため、表面ラフネスの著しい改善はみられない。ま
た、1200℃以上の温度域になるとSi基板の強度が
著しく弱くなるため、塑性変化を起こす。従って、塩化
水素導入温度は1100℃〜1150℃が望ましい。
Example 2 A surface roughness measurement, particles, and counting of a sample obtained by heat-treating a boron-doped semiconductor silicon substrate in a 100% hydrogen atmosphere at a heat treatment temperature of 900 ° C. to 1200 ° C. for 10 minutes were performed. Tenco is the evaluation device
r company, surfscan4500 particle counter was used. As shown in FIG. 3, the surface roughness is remarkably deteriorated in the low temperature range, and the product is unacceptable. Next, these samples are heat-treated at a temperature of 1000 ° C to 1300 ° C.
Flow rate 60 l / min, hydrogen chloride flow rate 1 l /
Heat treatment was performed for 3 minutes for 3 minutes, and surface roughness evaluation was performed in the same manner as above. As shown in the results of FIG. 4, a significant improvement in the substrate surface roughness was observed. However, since the etching action of hydrogen chloride on the substrate exhibits anisotropy in the etching temperature range of 1000 ° C. to 1050 ° C. due to the introduction of hydrogen chloride, the surface roughness is not significantly improved. Further, in the temperature range of 1200 ° C. or higher, the strength of the Si substrate is significantly weakened, causing plastic change. Therefore, the hydrogen chloride introduction temperature is preferably 1100 ° C to 1150 ° C.

【0017】次に、基板に固着したパーティクル総数
は、水素アニール直後で169個(散乱断面積0.00
9μm2以上をカウントした。)塩化水素導入後で19
個と通常の製品基板並みにすることが可能となる。
Next, the total number of particles adhering to the substrate was 169 (scattering cross-section area 0.00) immediately after hydrogen annealing.
9 μm 2 or more was counted. ) After introducing hydrogen chloride 19
It is possible to make it as individual as a normal product board.

【0018】実施例3 ボロンドープされた複数のシリコンウェーハを100%
水素雰囲気下で900〜1100℃間での種々の加熱温
度で、10分間熱処理を施した後、その酸化膜耐圧の測
定を行い、測定結果を図5に○で示す。上記の水素高温
熱処理に引き継ぎ、熱処理温度1100℃で、水素流量
60l/min中に塩化水素を2l/min、2分間導
入した後、各シリコンウェーハの酸化膜耐圧の測定を行
い、測定結果を図5に△で示す。塩化水素の導入により
基板表面層を2μm程度エッチング除去したが、図5に
明らかなように、この発明のエッチングによる酸化膜耐
圧の劣化は見られない。なお、900℃で水素高温熱処
理したシリコンウェーハは、エッチング後の酸化膜耐圧
が向上しているが、これはエッチング処理時の1100
℃の高温熱処理による効果であると考えられる。
Example 3 100% of a plurality of boron-doped silicon wafers
After performing heat treatment for 10 minutes at various heating temperatures between 900 and 1100 ° C. in a hydrogen atmosphere, the breakdown voltage of the oxide film was measured, and the measurement results are shown by ◯ in FIG. Following the above high-temperature hydrogen heat treatment, at a heat treatment temperature of 1100 ° C., after introducing hydrogen chloride at a hydrogen flow rate of 60 l / min for 2 l / min for 2 minutes, the oxide film breakdown voltage of each silicon wafer was measured, and the measurement results are shown. 5 shows with a triangle. Although the surface layer of the substrate was removed by etching by about 2 μm by the introduction of hydrogen chloride, as is clear from FIG. 5, the deterioration of the oxide film withstand voltage due to the etching of the present invention is not observed. It should be noted that the silicon wafer that has been subjected to the high-temperature hydrogen heat treatment at 900 ° C. has an improved oxide film withstand voltage after etching.
It is considered that this is an effect of the high temperature heat treatment at ℃.

【0019】[0019]

【発明の効果】この発明は、水素又は水素含有雰囲気下
での高温熱処理後に、引き続いてハロゲン化物ガスにて
半導体ウェーハ表面にエッチングを実施することによ
り、水素高温熱処理に伴う基板表面近傍ドーパント濃度
低下領域及び表面清浄度等の問題を解消するもので、す
なわち、特定条件のエッチングにより半導体素子能動領
域であるウェーハ表面近傍の結晶性を向上させることが
でき、表面清浄度と表面ラフネスを向上させ、表面近傍
領域の高抵抗化を防止して半導体ウェーハの特性及び歩
留りを飛躍的に向上させることを可能とし、得られるデ
バイス特性向上、プロセスに於ける歩留向上等の利点を
得ることができる。
According to the present invention, after the high temperature heat treatment in hydrogen or a hydrogen-containing atmosphere, the semiconductor wafer surface is subsequently etched with a halide gas to reduce the dopant concentration in the vicinity of the substrate surface accompanying the high temperature hydrogen heat treatment. In order to solve problems such as area and surface cleanliness, that is, it is possible to improve crystallinity in the vicinity of the wafer surface which is a semiconductor element active area by etching under specific conditions, improve surface cleanliness and surface roughness, It is possible to prevent the resistance in the region near the surface from becoming high and to dramatically improve the characteristics and yield of the semiconductor wafer, and obtain advantages such as improved device characteristics and improved yield in the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるエッチング処理を行ったシリコ
ンウェーハの表面からの深さとドーパント濃度との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the depth from the surface of a silicon wafer that has been subjected to an etching treatment according to the present invention and the dopant concentration.

【図2】従来の水素高温熱処理を行ったままのシリコン
ウェーハの表面からの深さとドーパント濃度との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the depth from the surface of a silicon wafer that has been subjected to conventional high-temperature hydrogen heat treatment and the dopant concentration.

【図3】従来の水素高温熱処理を行った直後の導入温度
と基板表面ラフネス(ヘイズレベル)との関係として表
したグラフである。
FIG. 3 is a graph showing a relationship between an introduction temperature and a substrate surface roughness (haze level) immediately after a conventional high temperature hydrogen heat treatment.

【図4】この発明による処理を受けたシリコンウェーハ
のエッチング温度と表面ラフネス(ヘイズレベル)との
関係として表したグラフである。
FIG. 4 is a graph showing the relationship between the etching temperature and the surface roughness (haze level) of a silicon wafer that has been treated according to the present invention.

【図5】水素雰囲気下での熱処理実施後及びこの発明に
よる処理を施したシリコンウェーハの酸化膜耐圧との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship with the oxide film breakdown voltage of a silicon wafer after the heat treatment in a hydrogen atmosphere and after the treatment according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素雰囲気下または水素を含む雰囲気下
で、シリコンウェーハに施す高温熱処理後に引き続い
て、エッチングガスによる該ウェーハの表面エッチング
を行うことを特徴とする半導体シリコンウェーハの製造
方法。
1. A method for producing a semiconductor silicon wafer, which comprises subjecting a silicon wafer to a high temperature heat treatment in a hydrogen atmosphere or an atmosphere containing hydrogen, and subsequently performing surface etching of the wafer with an etching gas.
【請求項2】 1000℃〜1300℃の温度域でエッ
チングガスを導入することを特徴とする請求項1記載の
半導体シリコンウェーハの製造方法。
2. The method for producing a semiconductor silicon wafer according to claim 1, wherein the etching gas is introduced in a temperature range of 1000 ° C. to 1300 ° C.
JP35671192A 1992-12-22 1992-12-22 Manufacture of semiconductor silicon wafer Pending JPH06196459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35671192A JPH06196459A (en) 1992-12-22 1992-12-22 Manufacture of semiconductor silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35671192A JPH06196459A (en) 1992-12-22 1992-12-22 Manufacture of semiconductor silicon wafer

Publications (1)

Publication Number Publication Date
JPH06196459A true JPH06196459A (en) 1994-07-15

Family

ID=18450402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35671192A Pending JPH06196459A (en) 1992-12-22 1992-12-22 Manufacture of semiconductor silicon wafer

Country Status (1)

Country Link
JP (1) JPH06196459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041227A1 (en) * 1998-12-28 2000-07-13 Shin-Etsu Handotai Co.,Ltd. Method for thermally annealing silicon wafer and silicon wafer
JP2002190478A (en) * 2000-12-22 2002-07-05 Komatsu Electronic Metals Co Ltd Method for heat-treating boron-doped silicon wafer
JP2002324801A (en) * 2001-04-26 2002-11-08 Shin Etsu Handotai Co Ltd Method for gas flow pattern recognition in furnace
WO2002044763A3 (en) * 2000-11-28 2003-04-17 Lightcross Inc Formation of a smooth surface on an optical component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041227A1 (en) * 1998-12-28 2000-07-13 Shin-Etsu Handotai Co.,Ltd. Method for thermally annealing silicon wafer and silicon wafer
US6573159B1 (en) 1998-12-28 2003-06-03 Shin-Etsu Handotai Co., Ltd. Method for thermally annealing silicon wafer and silicon wafer
US6809015B2 (en) 1998-12-28 2004-10-26 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafers and silicon wafer
US7011717B2 (en) 1998-12-28 2006-03-14 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafers and silicon wafer
WO2002044763A3 (en) * 2000-11-28 2003-04-17 Lightcross Inc Formation of a smooth surface on an optical component
JP2002190478A (en) * 2000-12-22 2002-07-05 Komatsu Electronic Metals Co Ltd Method for heat-treating boron-doped silicon wafer
JP2002324801A (en) * 2001-04-26 2002-11-08 Shin Etsu Handotai Co Ltd Method for gas flow pattern recognition in furnace

Similar Documents

Publication Publication Date Title
EP0030457B1 (en) Method of manufacturing a silicon wafer with interior microdefects capable of gettering
EP0503816B1 (en) Heat treatment of Si single crystal
JPH0620896A (en) Manufacture of semiconductor wafer
WO2000041227A1 (en) Method for thermally annealing silicon wafer and silicon wafer
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH11168106A (en) Treatment method of semiconductor substrate
US6599816B2 (en) Method of manufacturing silicon epitaxial wafer
JPH06196459A (en) Manufacture of semiconductor silicon wafer
US5817174A (en) Semiconductor substrate and method of treating semiconductor substrate
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
US5702973A (en) Method for forming epitaxial semiconductor wafer for CMOS integrated circuits
JP4151876B2 (en) Silicon wafer manufacturing method
US4954189A (en) Silicon wafers for producing oxide layers of high breakdown strength and process for the production thereof
JP2002343800A (en) Silicon semiconductor device and its manufacturing method
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH11288942A (en) Manufacture of semiconductor device
JP3565068B2 (en) Heat treatment method for silicon wafer and silicon wafer
JPH11297704A (en) Evaluation method for oxygen deposit density
JP4149014B2 (en) Manufacturing method of semiconductor device
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JP2602598B2 (en) Semiconductor substrate processing method
JP2504558B2 (en) Method of forming thermal oxide film
JP3188810B2 (en) Silicon wafer manufacturing method
KR20090116646A (en) Silicon wafer and production method thereof