JP3001513B2 - Manufacturing method of semiconductor wafer - Google Patents

Manufacturing method of semiconductor wafer

Info

Publication number
JP3001513B2
JP3001513B2 JP10189479A JP18947998A JP3001513B2 JP 3001513 B2 JP3001513 B2 JP 3001513B2 JP 10189479 A JP10189479 A JP 10189479A JP 18947998 A JP18947998 A JP 18947998A JP 3001513 B2 JP3001513 B2 JP 3001513B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
diffusion
oxide film
impurities
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10189479A
Other languages
Japanese (ja)
Other versions
JP2000021794A (en
Inventor
和浩 斎藤
浩 仲野
Original Assignee
山形日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山形日本電気株式会社 filed Critical 山形日本電気株式会社
Priority to JP10189479A priority Critical patent/JP3001513B2/en
Publication of JP2000021794A publication Critical patent/JP2000021794A/en
Application granted granted Critical
Publication of JP3001513B2 publication Critical patent/JP3001513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェーハへ
の不純物拡散方法に係わり、特に不純物拡散工程におけ
る半導体ウェーハの製造方法に関する。
The present invention relates to a method for diffusing impurities into a semiconductor wafer, and more particularly to a method for manufacturing a semiconductor wafer in an impurity diffusion step.

【0002】[0002]

【従来の技術】半導体集積回路などの半導体素子は、ウ
ェーハプロセスにおいて多数の素子が半導体ウェーハの
表面上に形成され、パターン形成と熱処理との繰り返し
により仕上げられる。このような半導体ウェーハは、単
結晶であり原子が整然と並んだ構造を有するが、高温で
熱処理すると温度差や表面状態によって結晶のある面で
スリップが発生する。このスリップが発生すると電気特
性が不良になるか、あるいはリーク電流の多い低品質の
半導体素子となってしまう。この現象を解決するため種
々の方法が提案されているが、その中から以下に示す6
件の従来技術について説明する。
2. Description of the Related Art In semiconductor devices such as semiconductor integrated circuits, many devices are formed on the surface of a semiconductor wafer in a wafer process, and are finished by repeating pattern formation and heat treatment. Such a semiconductor wafer is a single crystal and has a structure in which atoms are arranged in an orderly manner. However, when heat treatment is performed at a high temperature, slip occurs on a crystal surface due to a temperature difference or a surface state. When this slip occurs, the electrical characteristics become poor, or a low-quality semiconductor device with a large amount of leak current results. Various methods have been proposed to solve this phenomenon.
Related art will be described.

【0003】初めに、特開昭58−207642号公報
(以下「文献1」と称す。)に関して図5を参照して説
明すると、シリコン基板1上に炭素を中央部分より外周
部が高濃度(10%以上)になるように、イオン注入法
等で高濃度炭素領域11を形成する。その結果、シリコ
ン基板1の外周部の高濃度炭素領域11に形成された結
晶欠陥が、シリコン基板1の最外周から伸びるスリップ
の伝播を阻止する技術が記載されている。
[0003] First, with reference to Japanese Patent Application Laid-Open No. 58-207642 (hereinafter referred to as "Document 1") with reference to FIG. The high-concentration carbon region 11 is formed by ion implantation or the like so that the concentration becomes 10% or more. As a result, a technique is described in which crystal defects formed in the high-concentration carbon region 11 on the outer peripheral portion of the silicon substrate 1 prevent propagation of slip extending from the outermost periphery of the silicon substrate 1.

【0004】特開昭58−74044号公報(以下「文
献2」と称す。)では、熱処理時に半導体ウェーハの面
内温度差によって発生しやすい外周部からのスリップ
を、その部分に一様な幅及び深さの加工歪層又は凹部を
機械的に形成することにより、ある結晶面方位に応力が
加ってもその部分で分散させたり又は吸収することで、
スリップが内部に伸びるのを阻止する技術が記載されて
いる。
In Japanese Patent Application Laid-Open No. 58-74044 (hereinafter referred to as "Document 2"), a slip from an outer peripheral portion, which is likely to be generated due to a temperature difference in a plane of a semiconductor wafer during a heat treatment, has a uniform width. By mechanically forming a strained layer or recess with a depth of and by dispersing or absorbing in that part even if stress is applied to a certain crystal plane orientation,
Techniques are described for preventing slip from extending into the interior.

【0005】特開昭62−143432号公報(以下
「文献3」称す)では、熱応力の影響を最も受け易い半
導体ウェーハの外周部だけに、Siの機械的強度を増加
させるN原子を含ませてスリップの抑制を行う技術が記
載されている。特開平1−274420号公報(以下
「文献4」と称す。)では、基板の外周部近傍に高濃度
の不純物を導入し、光吸収率の高い層を形成してスリッ
プ線の発生を抑制する技術が記載されている。
In Japanese Patent Application Laid-Open No. Sho 62-143432 (hereinafter referred to as "Document 3"), only an outer peripheral portion of a semiconductor wafer which is most susceptible to thermal stress contains N atoms which increase the mechanical strength of Si. There is described a technique for suppressing slippage. In Japanese Patent Application Laid-Open No. 1-274420 (hereinafter referred to as "Document 4"), high-concentration impurities are introduced in the vicinity of the outer periphery of a substrate to form a layer having a high light absorptivity, thereby suppressing the generation of slip lines. The technology is described.

【0006】特開平1−274422号公報(以下「文
献4」称す。)では、基板の外周部近傍に光吸収率の高
い材料からなる膜(タングステン)を堆積させて、スリ
ップ線の発生を抑制する技術が記載されている。特開平
3−66114号公報(以下「文献6」と称す。)で
は、石英バスケットと接触する半導体ウェーハの外周部
を、梨地にすることで熱放散度を向上させ、石英バスケ
ットに収容された状態での半導体ウェーハの熱歪の発生
を防止し、スリップを抑制する技術が記載されている。
In Japanese Patent Application Laid-Open No. 1-274422 (hereinafter referred to as "Document 4"), a film (tungsten) made of a material having a high light absorptivity is deposited near the outer periphery of a substrate to suppress the generation of slip lines. The technology to do this is described. In Japanese Patent Application Laid-Open No. 3-66114 (hereinafter referred to as "Document 6"), the outer peripheral portion of a semiconductor wafer that is in contact with a quartz basket is matted to improve heat dissipation, and is accommodated in the quartz basket. A technique is described in which thermal distortion of a semiconductor wafer is prevented from occurring at the same time and slip is suppressed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
従来技術を用いると、以下に示すような課題が残る。文
献1では、高濃度の炭素をドーピングする事で結晶欠陥
核が発生し、それが起点となり半導体ウェーハの中央部
の方へスリップが伸びて、低品質の半導体素子となる恐
れがある。文献2では、加工歪層又は凹部の形成方法を
ダイヤモンドペンなどを使い機械的に形成している為、
加工する工程で逆に半導体ウェーハの外周部が弱くな
り、その状態で熱処理等を行った場合、熱処理中に半導
体ウェーハが炉芯管内で割れたり、又カケが生じて装置
トラブルを引き起こす恐れがある。
However, when the above-mentioned prior art is used, the following problems remain. In Document 1, crystal defect nuclei are generated by doping with a high concentration of carbon, and the slips extend toward the center of the semiconductor wafer as a starting point, which may result in a low-quality semiconductor element. In Document 2, since the method of forming the processing strain layer or the concave portion is mechanically formed using a diamond pen or the like,
Conversely, in the processing step, the outer peripheral portion of the semiconductor wafer is weakened, and if heat treatment or the like is performed in that state, the semiconductor wafer may be broken in the furnace core tube during heat treatment, or chipping may occur, which may cause equipment trouble. .

【0008】更に、文献3では、熱応力の影響を最も受
け易い半導体ウェーハの外周部だけに、Siの機械的強
度を増加させるNイオンを打込む方法が、文献4では、
半導体ウェーハの外周部に高濃度の不純物を導入し、光
吸収率の高い層を形成する方法が、文献5では、半導体
ウェーハの外周部に光吸収率の高い材料からなる膜(タ
ングステン)を堆積する内容が開示されている。これら
の文献の共通点は、事前に半導体ウェーハの外周部に、
何らかの不純物を導入又は堆積して、熱処理時に発生す
るスリップを抑制していることである。
Further, in Reference 3, a method of implanting N ions for increasing the mechanical strength of Si only into the outer peripheral portion of a semiconductor wafer which is most susceptible to the effect of thermal stress is disclosed in Reference 4.
The method of forming a layer having a high light absorption by introducing a high concentration of impurities into the outer periphery of a semiconductor wafer is disclosed in Reference 5, and a film (tungsten) made of a material having a high light absorption is deposited on the outer periphery of the semiconductor wafer. To be disclosed. The common point of these documents is that the outer periphery of the semiconductor wafer is
This means that some impurities are introduced or deposited to suppress the slip generated during the heat treatment.

【0009】そのために現状の工程にフォトリソグラフ
工程を追加する必要があり、その結果、工期が長期化
し、半導体ウェーハの単価が上昇することが懸念され
る。又、半導体ウェーハの外周部へのNイオンの打込
み、高濃度不純物の導入、光吸収率の高い材料からなる
膜(タングステン)を堆積させることにより、万が一に
製品領域へ不純物が入り込んだ場合、その領域は不良と
なり、製品歩留まりが悪化する恐れがある。又、文献6
の梨地形成領域が製品領域まで入った場合も同様であ
る。本発明の目的は、上記のように半導体ウェーハの外
周部に不純物等の導入又は堆積をさせないで、スリップ
の発生を容易に回避する方法を提供すると共に、高性能
な半導体装置の半導体ウェーハを製造できるようにする
ものである。
For this purpose, it is necessary to add a photolithographic process to the current process. As a result, there is a concern that the construction period will be prolonged and the unit price of the semiconductor wafer will increase. In addition, by implanting N ions into the outer peripheral portion of the semiconductor wafer, introducing high-concentration impurities, and depositing a film (tungsten) made of a material having a high light absorption rate, if impurities enter the product area, The area becomes defective, and the product yield may be deteriorated. Reference 6
The same applies to the case where the satin-finished region reaches the product region. An object of the present invention is to provide a method for easily avoiding the occurrence of slip without introducing or depositing impurities or the like on the outer peripheral portion of a semiconductor wafer as described above, and to manufacture a semiconductor wafer for a high-performance semiconductor device. To make it possible.

【0010】[0010]

【課題を解決するための手段】このために、本発明の半
導体ウェーハの製造方法は、半導体ウェーハの表面上に
おいて、前記表面の不純物拡散層を形成させる領域の酸
化膜を除去し、不純物の拡散時にスリップを防止するた
めの十分な厚みを有する酸化膜を前記半導体ウェーハの
外周部の不純物を拡散させない領域に残して拡散マスク
を形成する第1の工程と、前記半導体ウェーハ表面の全
面に不純物を含有する塗布溶液を塗布して熱処理を施す
ことにより前記不純物を拡散させる領域に不純物を熱拡
散させて不純物拡散層を形成し、前記半導体ウェーハの
外周部に不純物を拡散させない領域を形成する第2の工
から構成される。前記拡散マスクを形成するための酸
化膜の厚みは、2000オングストローム以上あること
が好ましい。
For this purpose, a method for manufacturing a semiconductor wafer according to the present invention comprises the steps of:
In the region where the impurity diffusion layer on the surface is formed.
To prevent slip during diffusion of impurities.
An oxide film having a sufficient thickness for the semiconductor wafer.
Diffusion mask, leaving in the area where the impurities on the outer periphery do not diffuse
A first step of forming the entire surface of the semiconductor wafer
Apply a coating solution containing impurities to the surface and perform heat treatment
As a result, the impurity is thermally spread to the region where the impurity is diffused.
To form an impurity diffusion layer,
Second step for forming a region in which impurities are not diffused in the outer peripheral portion
It consists of steps. Acid for forming the diffusion mask
The thickness of the passivation film must be 2000 Å or more
Is preferred.

【0011】前記半導体ウェーハの外周部に酸化膜を残
す第1の工程には、前記半導体ウェーハ表面の全面にネ
ガレジストを塗布した状態でウェーハの外周部のみに
辺露光装置で紫外線を照射することにより、現像時にネ
ガレジストが溶解しないように設定する。
An oxide film remains on the outer peripheral portion of the semiconductor wafer.
In the first step , the negative resist is dissolved at the time of development by irradiating only the outer peripheral portion of the wafer with ultraviolet light with a peripheral exposure device in a state where the negative resist is applied to the entire surface of the semiconductor wafer. Set not to.

【0012】以上の方法で製造された半導体ウェーハ
に、不純物含有の塗布溶液を塗布して熱処理を施し不純
物を熱拡散させても、最も熱応力を受け易い半導体ウェ
ーハ表面の外周部に残っている酸化膜が拡散マスクとな
り、拡散されない領域にしてスリップ発生を防止するこ
とができる。
Even if a coating solution containing impurities is applied to the semiconductor wafer manufactured by the above method and subjected to heat treatment to thermally diffuse the impurities, the impurities remain on the outer peripheral portion of the surface of the semiconductor wafer which is most susceptible to thermal stress. The oxide film serves as a diffusion mask, and it is possible to prevent a slip from occurring in a region not diffused.

【0013】[0013]

【発明の実施の形態】次に、本発明の一実施の形態につ
いて図1から図4まで参照して説明する。初めに、図1
の工程フローに基づいて本発明の概略を説明する。図1
に示すように、半導体ウェーハ全面にパターン形成用並
びに拡散マスク用となる酸化膜を形成する。ここで、拡
散マスク用の酸化膜厚は次のような手順で決定される。
いくつかの種類の酸化膜厚を有する半導体ウェーハのサ
ンプルに、拡散源であるポリボロンフィルム(PBF)
を塗布して、不純物拡散層を形成するための熱処理条
件、例えば拡散温度が1100℃、拡散時間が1時間の
層抵抗6Ω/□狙いの条件で処理する場合、どのくらい
の酸化膜厚が必要であるかを調べた結果である図2を用
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS. First, FIG.
The outline of the present invention will be described based on the process flow of (1). FIG.
As shown in (1), an oxide film for pattern formation and diffusion mask is formed on the entire surface of the semiconductor wafer. Here, the oxide film thickness for the diffusion mask is determined by the following procedure.
Polyboron film (PBF) is used as a diffusion source for semiconductor wafer samples having several types of oxide film thickness.
Is applied, a heat treatment condition for forming an impurity diffusion layer, for example, when the treatment is performed under a target condition of a layer resistance of 6Ω / □ at a diffusion temperature of 1100 ° C. and a diffusion time of 1 hour, how much oxide film thickness is required. A description will be given with reference to FIG.

【0014】図2に示すように、いくつかの種類の酸化
膜厚を有する半導体ウェーハに、前記熱処理条件で処理
した時の層抵抗の推移結果より、酸化膜厚が2000オ
ングストローム未満では、半導体ウェーハの抵抗値は拡
散層の層抵抗又は遷移領域を示すことより拡散されてい
る為、拡散マスクとしての効果はない。但し、酸化膜厚
が2000オングストローム以上では、半導体ウェーハ
の抵抗値は拡散前の半導体ウェーハの層抵抗と同等を示
すことより拡散されていないことが判明し、拡散マスク
としての効果があることがわかる。
As shown in FIG. 2, the results of changes in the layer resistance when the semiconductor wafers having several types of oxide film thicknesses are treated under the above heat treatment conditions show that when the oxide film thickness is less than 2000 angstroms, Is diffused by indicating the layer resistance of the diffusion layer or the transition region, and thus has no effect as a diffusion mask. However, when the oxide film thickness is 2000 Å or more, the resistance value of the semiconductor wafer is equivalent to the layer resistance of the semiconductor wafer before diffusion, indicating that the oxide film is not diffused, indicating that it has an effect as a diffusion mask. .

【0015】以上の結果と後工程の熱履歴を考慮して、
拡散マスク用の酸化膜厚は余裕をみて、3000〜50
00オングストローム位が妥当である。次に、フォトリ
ソグラフィ技術とエッチング技術を用いて、前記で半導
体ウェーハの全面に形成した酸化膜を開口する。ここ
で、半導体ウェーハの面内で拡散層を形成させる領域は
酸化膜を除去し、拡散させない領域は酸化膜を残す。
Considering the above results and the heat history of the post-process,
The oxide film thickness for the diffusion mask should be 3000 to 50
A value of about 00 angstroms is appropriate. Next, an opening is formed in the oxide film formed on the entire surface of the semiconductor wafer by using a photolithography technique and an etching technique. Here, the oxide film is removed in the region where the diffusion layer is formed in the surface of the semiconductor wafer, and the oxide film is left in the region where the diffusion layer is not diffused.

【0016】次に、ボロン不純物を含むポリボロンフィ
ルム(PBF)塗布溶液を半導体ウェーハ上に回転塗布
する。次に、半導体ウェーハを窒素雰囲気中又は酸素を
数%含む窒素雰囲気中の拡散炉内で熱処理を行い、拡散
層形成を行う。この熱処理工程では、上記雰囲気中でボ
ロンガラス層から所望濃度のボロン不純物を半導体ウェ
ーハ内へ拡散させる。本発明のより具体的かつ詳細な実
施例について、以下に図3を参照して具体的に説明す
る。
Next, a polyboron film (PBF) coating solution containing boron impurities is spin-coated on the semiconductor wafer. Next, a heat treatment is performed on the semiconductor wafer in a diffusion furnace in a nitrogen atmosphere or a nitrogen atmosphere containing several% of oxygen to form a diffusion layer. In this heat treatment step, a desired concentration of boron impurities is diffused from the boron glass layer into the semiconductor wafer in the atmosphere. A more specific and detailed embodiment of the present invention will be specifically described below with reference to FIG.

【0017】[0017]

【実施例1】図3は本発明による場合のボロンの不純物
拡散までの工程順の断面図である。図3(a)に示すよ
うに、導電型がN型のシリコン基板1の表面を1000
℃パイロジェニックスガス雰囲気中で酸化させて、拡散
マスク効果のある3000〜5000オングストロー
ム、例えば4000オングストロームの酸化膜2を形成
する。次に、図3(b)に示すように、シリコン基板1
上の酸化膜2の全面に、スピン塗布法によりネガレジス
ト3を塗布する。その後、図3(c)に示すように、シ
リコン基板1の外周部を拡散マスク領域にする為、例え
ば周辺露光装置で周辺露光領域4に紫外線を照射して露
光する。又、他の方法として、マスク自体に外周部がブ
ランクとなるようにしてもよい。次に、ネガ現像処理を
行い、紫外線の当てていないネガレジスト6を除去す
る。更に、エッチング技術で酸化膜7をエッチングす
る。その結果、シリコン基板1上には周辺露光領域4と
拡散マスク5の領域だけが残る。
Embodiment 1 FIG. 3 is a cross-sectional view in the order of steps up to diffusion of boron impurities according to the present invention. As shown in FIG. 3A, the surface of the silicon substrate 1 having the N-type conductivity is 1000
The oxide film 2 is oxidized in a pyrogenic gas atmosphere at 3000 ° C. to form an oxide film 2 having a diffusion mask effect of 3000 to 5000 angstroms, for example, 4000 angstroms. Next, as shown in FIG.
A negative resist 3 is applied to the entire surface of the upper oxide film 2 by a spin coating method. Thereafter, as shown in FIG. 3C, in order to make the outer peripheral portion of the silicon substrate 1 a diffusion mask region, the peripheral exposure region 4 is exposed to ultraviolet rays by, for example, a peripheral exposure device. As another method, the outer periphery may be blank on the mask itself. Next, a negative developing process is performed to remove the negative resist 6 not exposed to ultraviolet rays. Further, the oxide film 7 is etched by an etching technique. As a result, only the peripheral exposure region 4 and the diffusion mask 5 remain on the silicon substrate 1.

【0018】最後に、シリコン基板1のレジスト除去を
行う事によって、レジストである周辺露光領域4が除去
されて、図3(d)に示すようにシリコン基板1の外周
部だけに拡散マスク5が残るようにする。次に、スピン
塗布法によりシリコン基板1と外周に残した酸化膜(拡
散マスク5)の表面に、ポリボロンフィルム(PBF)
8の塗布溶液を滴下させ、3000〜4000回転/分
させて2700オングストローム位の厚さに塗布する
と、図3(e)に示すような半導体ウェーハが形成され
る。
Finally, by removing the resist from the silicon substrate 1, the peripheral exposure region 4 which is a resist is removed, and a diffusion mask 5 is formed only on the outer peripheral portion of the silicon substrate 1 as shown in FIG. Let it remain. Next, a polyboron film (PBF) is formed on the surface of the silicon substrate 1 and the oxide film (diffusion mask 5) left on the outer periphery by the spin coating method.
When the coating solution of No. 8 is dropped and applied at 3000 to 4000 revolutions / minute to apply a thickness of about 2700 angstroms, a semiconductor wafer as shown in FIG. 3E is formed.

【0019】次に、前記のように形成した半導体ウェー
ハを2体積%の酸素ガスを含む窒素ガス雰囲気中の拡散
炉内で熱処理し、拡散層形成を行う。具体的には、3m
mピッチの石英ボートに半導体ウェーハをローディング
し、炉内温度850℃の状態で拡散炉内に入炉させて、
15分間炉内温度を安定させてからランピング方式で温
度上昇をする。その後、拡散温度1100℃で所定の時
間たとえば1時間ボロン不純物を拡散する。拡散後は、
炉内温度をランピング方式で入炉前と同じ850℃に温
度下降して出炉させ、石英ボートが冷却したら半導体ウ
ェーハを取り出す。最後に、半導体ウェーハ表面のボロ
ンガラス層をフッ酸水溶液等でエッチング除去して、層
抵抗が6Ω/□程度の図3(f)に示すような拡散層9
を形成する。
Next, the semiconductor wafer formed as described above is heat-treated in a diffusion furnace in a nitrogen gas atmosphere containing 2% by volume of oxygen gas to form a diffusion layer. Specifically, 3m
A semiconductor wafer is loaded on a m-pitch quartz boat, and the furnace is allowed to enter a diffusion furnace at a temperature of 850 ° C.,
After the furnace temperature has been stabilized for 15 minutes, the temperature is increased by a ramping method. Thereafter, boron impurities are diffused at a diffusion temperature of 1100 ° C. for a predetermined time, for example, one hour. After spreading,
The temperature in the furnace is lowered to 850 ° C., which is the same as before entering, by a ramping method, and the furnace is taken out. When the quartz boat cools, the semiconductor wafer is taken out. Finally, the boron glass layer on the surface of the semiconductor wafer is removed by etching with a hydrofluoric acid aqueous solution or the like, and the diffusion layer 9 having a layer resistance of about 6 Ω / □ as shown in FIG.
To form

【0020】以上のような工程で製造した半導体装置の
評価について、表1及び図4に基づいて説明する。ここ
で、表1は、図3(c)で説明した周辺露光領域4を形
成する周辺露光幅をそれぞれ変化させて、図4に示すよ
うにシリコン基板1の面内を、5mm□幅10で、計5
40個に区分して測定したシリコン基板1上のスリップ
率を示している。
The evaluation of the semiconductor device manufactured by the above steps will be described with reference to Table 1 and FIG. Here, Table 1 shows that the peripheral exposure width for forming the peripheral exposure region 4 described with reference to FIG. , Total 5
The slip ratio on the silicon substrate 1 measured for 40 sections is shown.

【0021】[0021]

【表1】 [Table 1]

【0022】実際の製品の中で拡散領域が最も広い製品
(半導体ウェーハの面内約62%)を拡散温度1100
℃、拡散時間1時間で熱処理を行い、図4に示すように
5mm□幅10に区分してスリップ率を測定した結果を
表1に示す。表1の結果より、周辺露光領域4の形成工
程では、周辺露光幅が1.5mm以上あればスリップ率
が0%になる。すなわち、周辺露光幅が1.5mm以上
であればスリップは全く皆無となる。但し、実際の製品
外周部の切り捨て幅が2mm幅であることを考慮すれ
ば、周辺露光幅は1.9mm位が妥当である。
A product having the widest diffusion region (about 62% in the plane of a semiconductor wafer) among actual products has a diffusion temperature of 1100.
Heat treatment was carried out at a temperature of 1 ° C. for a diffusion time of 1 hour, and the results of measuring the slip ratio for each 5 mm square width 10 as shown in FIG. 4 are shown in Table 1. From the results shown in Table 1, in the step of forming the peripheral exposure region 4, if the peripheral exposure width is 1.5 mm or more, the slip ratio becomes 0%. That is, if the peripheral exposure width is 1.5 mm or more, there is no slip at all. However, considering that the actual cut-off width of the outer peripheral portion of the product is 2 mm, the peripheral exposure width of about 1.9 mm is appropriate.

【0023】半導体ウェーハの最外周部を拡散マスク領
域にすることでスリップが抑制される現象については、
現在のところ、理論的な解釈は完全にはできていない
が、現時点では、最もスリップが発生しやすく、かつ、
応力がかりやすい半導体ウェーハの外周部に拡散マスク
となる酸化膜を残し、拡散させない領域とすることによ
り、半導体ウェーハの外周部の応力が緩和されてスリッ
プが抑制されるのではないかと考えられる。
The phenomenon that the slip is suppressed by making the outermost peripheral portion of the semiconductor wafer a diffusion mask region is described below.
At this time, the theoretical interpretation has not been completely completed, but at this time, slippage is most likely to occur,
It is considered that by leaving an oxide film serving as a diffusion mask on the outer peripheral portion of the semiconductor wafer where stress is likely to be applied and making the region not to be diffused, the stress on the outer peripheral portion of the semiconductor wafer is relaxed and the slip is suppressed.

【0024】以上に説明したように、本発明の目的であ
る半導体ウェーハのスリップの大幅な低減は、素子部の
パターン形成又は拡散マスクとして全面に成長させた酸
化膜の外周幅1.9mm位を残るように周辺露光を行う
と非常に効果的となる。また、上記の実態の形態では、
ポリボロンフィルム(PBF)を拡散源として説明され
ているが、本発明においては、PあるいはAsなどの拡
散源を含む塗布溶液、又はPBr3、POCl3、BCl
3などを用いた拡散方法でも同様にスリップ率が低減す
るという効果が生ずる。従って、これらの技術も、本発
明の範囲内に入るものとされる。
As described above, the object of the present invention is to largely reduce the slip of the semiconductor wafer by forming the pattern of the element portion or as a diffusion mask by the outer peripheral width of about 1.9 mm of the oxide film grown on the entire surface. It is very effective to perform peripheral exposure so as to remain. Also, in the above-described embodiment,
Although a polyboron film (PBF) is described as a diffusion source, in the present invention, a coating solution containing a diffusion source such as P or As, or PBr 3 , POCl 3 , BCl
Similarly, the diffusion method using 3 or the like has the effect of reducing the slip ratio. Therefore, these techniques are also included in the scope of the present invention.

【0025】[0025]

【発明の効果】以上の説明のように、本発明の半導体ウ
ェーハへのボロン拡散方法では、熱応力の影響を最も受
け易く、更にローディング時にボート溝と接触して発生
しやすい半導体ウェーハの外周部のキズ等を、拡散製造
ライン内の設備である周辺露光装置で紫外線を1.9m
m幅に設定して照射させ、その部分の酸化膜を残し拡散
マスクの働きをさせて、応力が緩和することで拡散時に
発生するスリップを防止することができる。このことに
より、半導体ウェーハのリーク不良等の特性変動も大幅
に低減され、製品の良品歩留まりが向上すると同時に高
性能な半導体ウェーハが製造できるようになる。
As described above, in the method for diffusing boron into a semiconductor wafer according to the present invention, the outer peripheral portion of the semiconductor wafer which is most susceptible to the influence of thermal stress and which is liable to contact with the boat groove at the time of loading. 1.9 m of ultraviolet light was irradiated by a peripheral exposure device which is a facility in the diffusion manufacturing line.
Irradiation is performed with the width set to m, and the oxide film is left in that portion to function as a diffusion mask, thereby alleviating the stress and preventing the slip generated at the time of diffusion. As a result, characteristic fluctuations such as leak failure of the semiconductor wafer are greatly reduced, and the yield of non-defective products is improved, and at the same time, a high-performance semiconductor wafer can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態として示した半導
ウェーハの製造方法を説明するための工程フロー図で
ある。
FIG. 1 is a process flow chart for describing a method for manufacturing a semiconductor wafer shown as a first embodiment of the present invention.

【図2】 本発明の拡散マスクとなる膜厚を説明するた
めの図である。
FIG. 2 is a diagram for explaining a film thickness serving as a diffusion mask of the present invention.

【図3】 本発明の実施の形態の具体的な実施例を説明
するための工程順を示す断面図である。
FIG. 3 is a cross-sectional view showing a process order for describing a specific example of the embodiment of the present invention.

【図4】 本発明の半導体ウェーハの製造方法を用いた
場合のスリップ率を説明するための図である。
FIG. 4 is a diagram for explaining a slip ratio when the method of manufacturing a semiconductor wafer according to the present invention is used.

【図5】 従来の技術を説明するための図である。FIG. 5 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化膜 3 ネガレジスト 4 周辺露光領域(ネガレジスト) 5 拡散マスク(酸化膜) 6 ネガレジスト除去部分 7 酸化膜除去部分 8 ポリボロンフィルム(PBF) 9 拡散層 10 5mm□幅 11 高濃度炭素領域 DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Oxide film 3 Negative resist 4 Peripheral exposure area (negative resist) 5 Diffusion mask (oxide film) 6 Negative resist removal part 7 Oxide film removal part 8 Polyboron film (PBF) 9 Diffusion layer 10 5 mm □ width 11 High Concentration carbon region

フロントページの続き (56)参考文献 特開 昭50−138768(JP,A) 特開 昭58−103139(JP,A) 特開 昭52−55860(JP,A) 特開 昭53−29665(JP,A) 特開 昭53−83576(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/22 - 21/24 Continuation of front page (56) References JP-A-50-138768 (JP, A) JP-A-58-103139 (JP, A) JP-A-52-55860 (JP, A) JP-A-53-29665 (JP) JP-A-53-83576 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/22-21/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体ウェーハの表面上において、前記
表面の不純物拡散層を形成させる領域の酸化膜を除去
し、不純物の拡散時にスリップを防止するための十分な
厚みを有する酸化膜を前記半導体ウェーハの外周部の不
純物を拡散させない領域に残して拡散マスクを形成する
第1の工程と、 前記半導体ウェーハ表面の全面に不純物を含有する塗布
溶液を塗布して熱処理を施すことにより前記不純物を拡
散させる領域に不純物を熱拡散させて不純物拡散層を形
成し、前記半導体ウェーハの外周部に不純物を拡散させ
ない領域を形成する第2の工程とを具備してなる半導体
ウェーハの製造方法。
1. The method according to claim 1, further comprising:
Removal of oxide film in the region where the impurity diffusion layer on the surface is formed
Sufficient to prevent slippage during the diffusion of impurities
An oxide film having a thickness is applied to the outer peripheral portion of the semiconductor wafer.
Forming a diffusion mask while leaving the pure substance in the area that does not diffuse
A first step, expanding the impurities by subjecting the coating solution was applied heat treatment containing impurities on the entire surface of the semiconductor wafer surface
Thermal diffusion of impurities into the diffusion region to form an impurity diffusion layer.
And diffusing impurities into the outer peripheral portion of the semiconductor wafer.
Semiconductor formed by and a second step of forming a free area
Wafer manufacturing method.
【請求項2】 前記拡散マスクを形成するための酸化
膜の厚みは、2000オングストローム以上あることを
特徴とする請求項1記載の半導体ウェーハの製造方法。
2. A thickness of the oxide film for forming the diffusion mask, a method of manufacturing a semiconductor wafer according to claim 1, wherein the more than 2000 angstroms.
【請求項3】 前記半導体ウェーハの外周部に酸化膜を
残す第1の工程には、前記半導体ウェーハ表面の全面に
ネガレジストを塗布した状態でウェーハの外周部のみに
紫外線を照射することにより、現像時にネガレジストが
溶解しないようにすることを特徴とする請求項1又は2
に記載の半導体ウェーハの製造方法。
3. A first step of leaving an oxide film on an outer peripheral portion of the semiconductor wafer, by irradiating only the outer peripheral portion of the wafer with ultraviolet rays in a state where a negative resist is applied on the entire surface of the semiconductor wafer, 3. The method according to claim 1, wherein the negative resist is not dissolved during the development.
3. The method for manufacturing a semiconductor wafer according to item 1.
JP10189479A 1998-07-03 1998-07-03 Manufacturing method of semiconductor wafer Expired - Fee Related JP3001513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10189479A JP3001513B2 (en) 1998-07-03 1998-07-03 Manufacturing method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10189479A JP3001513B2 (en) 1998-07-03 1998-07-03 Manufacturing method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2000021794A JP2000021794A (en) 2000-01-21
JP3001513B2 true JP3001513B2 (en) 2000-01-24

Family

ID=16241960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10189479A Expired - Fee Related JP3001513B2 (en) 1998-07-03 1998-07-03 Manufacturing method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP3001513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858843B2 (en) * 2010-12-14 2014-10-14 Innovalight, Inc. High fidelity doping paste and methods thereof
JP2013038411A (en) * 2011-07-14 2013-02-21 Nippon Synthetic Chem Ind Co Ltd:The Method for producing semiconductor

Also Published As

Publication number Publication date
JP2000021794A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
CN103498196B (en) Method for fabricating silicon wafer
JPH10209168A (en) Manufacture of semiconductor device
JPH09223698A (en) Semiconductor substrate and method for manufacturing semiconductor device using it
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JPS6174350A (en) Manufacture of semiconductor device
US20080242067A1 (en) Semiconductor substrate and method of manufacture thereof
JP3417665B2 (en) Method for manufacturing semiconductor device
JPH04123435A (en) Manufacture of semiconductor device
JPS6120337A (en) Manufacture of semiconductor device
US4213807A (en) Method of fabricating semiconductor devices
JPH05206145A (en) Manufacture of semiconductor device
JPH06196459A (en) Manufacture of semiconductor silicon wafer
JPH05102184A (en) Formation method of ldd sidewall by resist
JP3282265B2 (en) Method for manufacturing semiconductor device
JPH01196836A (en) Manufacture of semiconductor element
JPS5974638A (en) Manufacture of semiconductor wafer
JPH01151232A (en) Manufacture of semiconductor device
JPH0661234A (en) Production of semiconductor device
JP2685401B2 (en) Method for forming silicon oxide isolation region
JPH04721A (en) Manufacture of semiconductor device
KR0154191B1 (en) Method of forming non-defect area for semiconductor device
JPS60233824A (en) Treating method for semiconductor substrate
JPH0334425A (en) Manufacture of semiconductor device
JPS61114537A (en) Silicon semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991026

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees