JPS61106235A - Substrate for polyimide circuit - Google Patents

Substrate for polyimide circuit

Info

Publication number
JPS61106235A
JPS61106235A JP22991984A JP22991984A JPS61106235A JP S61106235 A JPS61106235 A JP S61106235A JP 22991984 A JP22991984 A JP 22991984A JP 22991984 A JP22991984 A JP 22991984A JP S61106235 A JPS61106235 A JP S61106235A
Authority
JP
Japan
Prior art keywords
polyimide
film
polyimide film
circuit board
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22991984A
Other languages
Japanese (ja)
Inventor
正雄 中村
石塚 隆志
和秀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP22991984A priority Critical patent/JPS61106235A/en
Publication of JPS61106235A publication Critical patent/JPS61106235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属箔の表面に、抵抗体層を介しもしくは介さ
ずにポリイミド絶縁層が形成された構造を有するフレキ
シブル印刷回路等の作製に用いるポリイミド回路用基板
に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is used for manufacturing flexible printed circuits, etc., which have a structure in which a polyimide insulating layer is formed on the surface of a metal foil with or without a resistor layer. This invention relates to a polyimide circuit board.

(従来の技術) 従来、この種の回路用基板に用いる絶縁フィルムとして
は、ポリイミドフィルム、ポリエステルフィルムおよび
エポキシ樹脂含浸ガラスフOXが知られている。
(Prior Art) Conventionally, polyimide films, polyester films, and epoxy resin-impregnated glass films have been known as insulating films used in circuit boards of this type.

(発明が解決しようとする問題点) このうち、エポキシ樹脂含浸ガラスクロスは寸法安定性
や耐熱性は比較的良好であるが、可とう性に劣る欠点が
あり、またポリエステルフィルムは耐熱性に劣るという
問題がある0 これに対し、ポリイミドフィルムは耐熱性、電気絶縁性
、耐薬品性、耐放射線性、機械的強度などに非常にすぐ
れ、特に回路用基板として必須の要件となるハンダ耐熱
性、耐溶剤性および耐屈曲性をいずれも満足することか
ら、回路用基板の絶縁フィルλとしてもうとも注目され
ている。
(Problems to be solved by the invention) Of these, epoxy resin-impregnated glass cloth has relatively good dimensional stability and heat resistance, but has the disadvantage of poor flexibility, and polyester film has poor heat resistance. On the other hand, polyimide film has excellent heat resistance, electrical insulation, chemical resistance, radiation resistance, mechanical strength, etc. In particular, it has excellent solder heat resistance, which is an essential requirement for circuit boards. Since it satisfies both solvent resistance and bending resistance, it is attracting attention as an insulating film λ for circuit boards.

ところで、上記ポリイミドフィルムは、無水ピロメリッ
ト酸と芳香族ジアミンを反応されて得られたもので、そ
れ自体では接着性を有しないため、ポリアクリル酸アル
キルエステル系、ゴム−エポキシ系、ポリエステル樹脂
系等の熱硬化塁接着剤を用いて金属箔に接着していたO 而して、これら接着剤の耐熱性は、ポリイミドフィルム
のそれよりも劣っており、ポリイミドフィルムを用いて
いるにも拘らず、得られた回路用基板ニおいては該フィ
ルムの優れた耐熱性全充分に発揮できない憾みがあった
0 (問題点を解決するための手段) 本発明者達は上記現状に鑑み鋭意検討の結果、特定のポ
リイミドフィルムが熱接着性を示して金属箔と強固に接
合し得ることを見出して、本発明を完成するに至ったも
のである。
By the way, the above-mentioned polyimide film is obtained by reacting pyromellitic anhydride and aromatic diamine, and does not have adhesive properties by itself, so polyimide films based on polyacrylic acid alkyl ester, rubber-epoxy, and polyester resin are used. However, the heat resistance of these adhesives is inferior to that of polyimide film, and even though polyimide film is used, However, in the circuit board obtained, there was a regret that the excellent heat resistance of the film could not be fully demonstrated. As a result, they discovered that a specific polyimide film exhibits thermal adhesive properties and can be firmly bonded to metal foil, leading to the completion of the present invention.

即ち、本発明は金属箔表面に、抵抗体層を介しもしくは
介さずに下記一般式 で示される繰返し単位を主成分とするポリイミドフィル
ムが接合されていることを特徴とするポリイミド回路用
基板に係るものである。
That is, the present invention relates to a polyimide circuit board characterized in that a polyimide film whose main component is a repeating unit represented by the following general formula is bonded to the surface of a metal foil, with or without a resistor layer. It is something.

本発明において用いられるポリイミドフィルムは、前記
一般式で示される繰返し単位を主成分とするものであり
、下記に示す3.3’、4.4’−ピフェニルデトラカ
ルボン酸二無水物(以下、5−BPDAと称す)と2.
2−ビス(4−(4−アミノフェノキシ)フェニル〕プ
ロパン(以下、BAPPと称す)を主原料として得られ
る。
The polyimide film used in the present invention is mainly composed of repeating units represented by the above general formula, and contains 3.3', 4.4'-piphenyldetracarboxylic dianhydride (hereinafter referred to as , 5-BPDA) and 2.
It is obtained using 2-bis(4-(4-aminophenoxy)phenyl)propane (hereinafter referred to as BAPP) as the main raw material.

本発明に用いるポリイミドフィルムを製造する好ましい
方法には、次の2通りの方法があるO先ず一つの方法は
、S −BPDAとBAPPを略等モル有機極性溶媒中
で反応させてポリアミド酸などのポリイミド前駆体とし
、このポリイミド前駆体の溶液からポリイミド前駆体の
フィルムを成形したのち、このフィルムを加熱してイミ
ド化するものである。゛ 前記の有機極性溶媒としては、N−メチル−2−ピロリ
ドン、N−N−ジメチルホルムアミド、N−N−ジメチ
ルアセトアミド、ジメチルスルホキシド、テトラメチル
尿素、メタクレゾール、バラクレゾール、メタクレゾー
ル、パラクレゾール、キシレノール、フェノールなどの
ポリイミド前駆体を溶解しうる溶媒を挙げることができ
る。この有機極性溶媒の使用量は、上記の両成分の濃度
が通常5〜30重量%となるようにするのがよい。
There are two preferred methods for producing the polyimide film used in the present invention: The first method involves reacting S-BPDA and BAPP in approximately equimolar organic polar solvents to produce polyamic acid, etc. A polyimide precursor is used, a polyimide precursor film is formed from a solution of this polyimide precursor, and then this film is heated to imidize it.゛The organic polar solvents include N-methyl-2-pyrrolidone, N-N-dimethylformamide, N-N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, metacresol, baracresol, metacresol, paracresol, Examples include solvents that can dissolve the polyimide precursor, such as xylenol and phenol. The amount of the organic polar solvent to be used is preferably such that the concentration of both of the above components is usually 5 to 30% by weight.

この有機極性溶媒中で上記の両成分を略等モル通常0〜
80℃で1〜10時間反応させてポリイミド前駆体の溶
液とする。このとき得られるポリイミド前駆体は、対数
粘度(N−メチル−2−ピロリドン中0.5 g/10
0 mlの濃度で30℃で測定)が通常は1.5〜6の
範囲内にある高分子量のものであることが好ましい。こ
の値が小さすぎると得られるポリイミドフィルムの機械
的強度が低くなり好ましくない。なお、この対数粘度と
は次の式で計算される。
In this organic polar solvent, the above two components are mixed in approximately equal moles, usually 0 to 0.
The reaction is carried out at 80° C. for 1 to 10 hours to obtain a polyimide precursor solution. The polyimide precursor obtained at this time has a logarithmic viscosity (0.5 g/10 in N-methyl-2-pyrrolidone).
High molecular weights (measured at 30 DEG C. at a concentration of 0 ml) are preferred, usually in the range 1.5 to 6. If this value is too small, the resulting polyimide film will have a low mechanical strength, which is not preferred. Note that this logarithmic viscosity is calculated using the following formula.

このようにして得られたポリイミド前駆体の溶液からポ
リイミド前駆体のフィルムを形成するには、すでに公知
の成形方法によって行うことができる。すなわち、ポリ
イミド前駆体の溶液をそのまま或いは希釈してステンレ
ス板、ガラス板、アルミ板、銅板などの平滑な平板上に
流して皮膜を形成し、加熱によりこの皮膜から徐々に溶
媒を除去スる方法、6るいはエンドレスステンレスベル
ト上にこの溶液を流して皮膜を形成して加熱炉に導き、
徐々に溶媒を除去する方法などがある。このようにして
得られたポリイミド前駆体のフィルムを通常100〜3
50℃で約30〜300分間加熱してイミド化反応させ
ることにより、この発明に用いる熱接着性を有するポリ
イミドフィルムを得ることができる。なお、ポリイミド
前駆体の溶液からフィルムを成形する際の溶媒の除去お
よびイミド化反応のための加熱は連続して行ってもよく
、また溶媒除去の後半とイミド化反応の前半とが同時に
行われてもよい。
Forming a polyimide precursor film from the polyimide precursor solution obtained in this manner can be performed by a known molding method. That is, a method in which a solution of a polyimide precursor is poured directly or diluted onto a smooth flat plate such as a stainless steel plate, a glass plate, an aluminum plate, a copper plate, etc. to form a film, and the solvent is gradually removed from this film by heating. , 6 or an endless stainless steel belt to form a film by pouring this solution and introducing it into a heating furnace.
There are methods to gradually remove the solvent. The film of the polyimide precursor thus obtained is usually 100 to 3
By heating at 50° C. for about 30 to 300 minutes to cause an imidization reaction, a polyimide film having thermal adhesive properties used in the present invention can be obtained. Note that when forming a film from a polyimide precursor solution, the removal of the solvent and the heating for the imidization reaction may be performed continuously, or the second half of the solvent removal and the first half of the imidization reaction may be performed simultaneously. It's okay.

本発明に用いるポリイミドフィルムの他の製造方法は、
本発明者らが熱接着性を有するポリイミドフィルムを得
るために検討する中で、前記一般式で示される繰返し単
位を主成分とするポリイミドが溶媒可溶性であることを
知り、これに基づいて見い出されたものである。
Other methods for producing the polyimide film used in the present invention include:
While the present inventors were studying to obtain a polyimide film having thermal adhesive properties, they learned that polyimide whose main component is a repeating unit represented by the above general formula is soluble in solvents. It is something that

すなわち、この製造方法では、前記の5−BPDAとB
APPとを略等モル、フェノール系溶媒中で反応させて
溶剤可溶性のポリイミドを得、このポリイミドの溶液か
らポリイミドのフィルムを成形するO この製造方法によるとフィルムに成形後、イミド化のた
めの高温処理の工程を必要とせず、フィルムにイミド化
反応時の脱水などによるボイドの発生がないため品質の
良好なフィルムを得ることができる。
That is, in this manufacturing method, the above-mentioned 5-BPDA and B
Approximately equimolar amounts of APP are reacted in a phenolic solvent to obtain a solvent-soluble polyimide, and a polyimide film is formed from this polyimide solution. A film of good quality can be obtained since no processing steps are required and no voids are generated in the film due to dehydration during the imidization reaction.

この製造方法におけるフェノール系溶媒中での反応は、
アミド化反応などのポリイミド前駆体を生成する反応と
これに引き続くイミド化反応とからなる重縮合反応であ
り、通常80〜220℃の温度で1〜7時間行わせるも
のである。ポリイミド前駆体がポリアミド酸の場合には
イミド化反応時に水が副生ずるのでこの水は反応系外に
留去して取り除く。水の除去は反応率を高め高分子量の
ポリイミドの生成に好結果を与える0 フェノール系溶媒は水と相溶しにくいために副生ずる水
の留去が容易となり、また経済的でしかも皮膜形成時に
揮散させやすい0ピロリドンの如き極性溶媒は上記観点
からこの反応には不適当である0フエノール系溶媒とし
てはメタクレゾール、パラクレゾール、キシレノール、
フェノールおよびこれらの混合溶媒などが用いられる。
The reaction in a phenolic solvent in this production method is
It is a polycondensation reaction consisting of a reaction to produce a polyimide precursor, such as an amidation reaction, and a subsequent imidization reaction, and is usually carried out at a temperature of 80 to 220°C for 1 to 7 hours. When the polyimide precursor is polyamic acid, water is produced as a by-product during the imidization reaction, and this water is removed by distillation out of the reaction system. Removal of water increases the reaction rate and gives good results for the production of high molecular weight polyimide. Phenolic solvents are difficult to miscible with water, making it easy to distill off the by-product water, and it is economical and easy to use during film formation. Polar solvents such as pyrrolidone, which easily volatilize, are unsuitable for this reaction from the above point of view.Phenolic solvents include metacresol, paracresol, xylenol,
Phenol and mixed solvents thereof are used.

これらのフェノール系溶媒と共に水と共沸しゃすいキシ
レン、トルエンなどの芳香族溶媒を併用して水の留去を
より容易にさせることは好ましい手段であるOこのよう
にして得られる重合反応物は、はぼ完全にイミド化され
かつN−メチル−2−ピロリドン中0.5 g/100
 mlの濃度で30℃下で測定される対数粘度が約1.
5〜6の範囲にある高分子量のポリイミドとされたもの
である0 このポリイミドは重合反応時に用いたフェノール系溶媒
の溶液としてそのまま使用に供することができ、また必
要なら一旦アセトンやメタノール中に沈でんさせてろ過
乾燥して精製したのち、クレゾールその他のフェノール
系溶剤やN−メチル−2−ピロリドン、ジメチルアセト
アミド、ジメチルホルムアミド、ヘキサメチレンホスホ
ルアミドなどの各種有機溶媒に溶解させて使用に供する
ことができる。
It is a preferable method to use an aromatic solvent such as xylene or toluene, which is azeotropic with water, in combination with these phenolic solvents to facilitate distillation of water.The polymerization reaction product obtained in this way is , almost completely imidized and 0.5 g/100 in N-methyl-2-pyrrolidone
The logarithmic viscosity measured at 30°C at a concentration of about 1.
This polyimide has a high molecular weight in the range of 5 to 6.0 This polyimide can be used as it is as a solution in the phenolic solvent used during the polymerization reaction, or if necessary, it can be precipitated in acetone or methanol. After purification by filtering and drying, it can be used by dissolving it in various organic solvents such as cresol and other phenolic solvents, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, and hexamethylene phosphoramide. can.

使用時の固形分濃度はとくに規定されるものではなく、
用途目的に応じて適宜選択することができるが、通常は
25重量%以下とするのがよい。この固型分検反が高す
ぎるとポリイミドが不溶化したり保存中ににとりが生じ
たりするので好ましくない。なお、このポリイミドの溶
液は保存安定性が良好で通常6〜12力月は安定に保存
される0この溶剤可溶性のポリイミドの溶液からポリイ
ミドのフィルムを成形するには、ガラス板などの平滑な
平板上にこの溶液を流して皮膜を形成し、加熱により徐
々に溶媒を除去する方法などにより行う。
The solid content concentration during use is not particularly specified;
It can be selected as appropriate depending on the purpose of use, but it is usually preferably 25% by weight or less. If the solid fraction is too high, the polyimide may become insolubilized or it may become bitter during storage, which is not preferable. Note that this polyimide solution has good storage stability and is normally stored stably for 6 to 12 months.To form a polyimide film from this solvent-soluble polyimide solution, a smooth flat plate such as a glass plate is used. This is carried out by pouring this solution on top to form a film and gradually removing the solvent by heating.

かようにして得られるポリイミドフィルムは前記一般式
で示される繰返し単位を主成分とするものであり、従来
用いられていたフィルム、例えば、ピロメリット酸と芳
香族ジアミンを反応させて得られるフィルムと異なり、
驚ろくべきことに、良好な熱接着性を示すものである。
The polyimide film obtained in this manner is mainly composed of repeating units represented by the above general formula, and is different from conventionally used films, such as films obtained by reacting pyromellitic acid and aromatic diamine. Unlike,
Surprisingly, it shows good thermal adhesion.

本発明においては、金属箔が抵抗体層を介しもしくは介
さずに上記ポリイミドフィルムと接合せしめられる。両
者の接合・はポリイミドフィルムが熱接着性を示すため
、容易に行なうことができ、その接着力は下記実施例に
も示されているように大きなものである。
In the present invention, the metal foil is bonded to the polyimide film with or without a resistor layer. The bonding between the two can be easily carried out because the polyimide film exhibits thermal adhesive properties, and its adhesive strength is great as shown in the following examples.

金属箔とポリイミドフィルムを熱接着せしめる際の加熱
加圧条件は、温度がポリイミドフィルムのガラス転移点
以上、熱分解温度以下、好ましくは300〜400℃で
あり、圧力が3 kQ/lx”以上好ましくは5〜50
#/菌!である〇 第1図は本発明に係るフレキシブル印刷回路用基板を示
しており、銅、アルミニウム等から成る厚さ約15〜7
0μmの導電性の金属箔1の片面に、厚さ約5〜250
μmのポリイミドフィルム2が熱接着せしめられている
The heating and pressing conditions when thermally bonding the metal foil and the polyimide film are such that the temperature is above the glass transition point of the polyimide film and below the thermal decomposition temperature, preferably 300 to 400°C, and the pressure is preferably 3 kQ/lx" or above. is 5-50
#/Bacteria! 〇 Figure 1 shows a flexible printed circuit board according to the present invention, which is made of copper, aluminum, etc. and has a thickness of approximately 15 to 7 mm.
A conductive metal foil 1 with a thickness of about 5 to 250 μm is coated on one side of the conductive metal foil 1 of 0 μm.
A μm polyimide film 2 is thermally bonded.

また、本発明においては、第2゛図に示す如く、金属箔
1の表面に、メッキ等の手段により、ニッケル、スズ−
ニッケル、ス′ズーニッケルー硫黄、スス−ニッケルー
鋼−硫黄等から成る厚さ約0.01〜10μmの抵抗体
層3を設け、この抵抗体層3を介してポリイミドフィル
ム1を熱接着せしめた構造とすることもできる。
Further, in the present invention, as shown in FIG. 2, nickel, tin, etc.
A resistor layer 3 of about 0.01 to 10 μm thick made of nickel, tin-nickel-sulfur, tin-nickel-steel-sulfur, etc. is provided, and a polyimide film 1 is thermally bonded through this resistor layer 3. You can also.

かような本発明に係るポリイミド回路用基板は、例えば
金属箔をエツチングしてパターン形成することにより、
所望の印刷回路を得ることができる。
Such a polyimide circuit board according to the present invention can be produced by, for example, etching a metal foil to form a pattern.
A desired printed circuit can be obtained.

(実施例) 以下、実施例により本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 11のセパラブルフラスコにN−メチル−2−ピロリド
ン282gとBAPP 41 g(0,1モル)を入れ
、BAPPが溶解するまで室温でよく混合する。
Example 1 282 g of N-methyl-2-pyrrolidone and 41 g (0.1 mol) of BAPP are placed in a 11 separable flask and mixed well at room temperature until BAPP is dissolved.

次に、撹拌しながら29.49 (0,1モル)の5−
BPDAを約10分間かけてフラスコ中に徐々に添加す
る。なお、この際フラスコを水冷し、温度上昇を抑制す
る。この間溶液の粘度は徐々に上昇した。
Next, while stirring, 29.49 (0.1 mol) of 5-
BPDA is slowly added into the flask over about 10 minutes. At this time, the flask is cooled with water to suppress the temperature rise. During this time, the viscosity of the solution gradually increased.

その後、室温で5時間撹拌を続け、対数粘度1.5のポ
リアミド酸を主成分とするポリイミド前駆体溶液を得る
Thereafter, stirring was continued for 5 hours at room temperature to obtain a polyimide precursor solution containing polyamic acid as a main component and having a logarithmic viscosity of 1.5.

次に、この溶液をガラス板上に流して皮膜を形成し、熱
風乾燥機に入れ、温度120℃および180℃で30分
間ずつ順次乾燥し、更に250℃で3時間加熱してイミ
ド化せしめ、厚さ50μmのポリイミドフィルムを得る
。このポリイミドフィルムのガラス転移点および熱分解
温度は、242℃および450℃であった。
Next, this solution was poured onto a glass plate to form a film, placed in a hot air dryer, dried at temperatures of 120°C and 180°C for 30 minutes each, and further heated at 250°C for 3 hours to imidize. A polyimide film with a thickness of 50 μm is obtained. The glass transition point and thermal decomposition temperature of this polyimide film were 242°C and 450°C.

次いで、このポリイミドフィルムを縦、横各々20cI
Iの寸法に切断し、厚さ35μm1 縦、横が各々20
11である電解鋼箔(福田金属社製)の電解面上に重ね
合わせ、温度300℃、圧力30#/(x”の条件で1
0分間加熱加圧することにより、両者を熱接着せしめ、
第1図と同構造のポリイミド回路用基板(試料番号1)
を得た。
Next, this polyimide film was coated with 20 cI each in the vertical and horizontal directions.
Cut to size I, thickness 35 μm 1, length and width 20 each
11 on the electrolytic surface of electrolytic steel foil (manufactured by Fukuda Kinzoku Co., Ltd.) under the conditions of a temperature of 300°C and a pressure of 30#/(x'').
By applying heat and pressure for 0 minutes, the two are thermally bonded,
Polyimide circuit board with the same structure as in Figure 1 (sample number 1)
I got it.

更に、これとは別に銅箔とポリイミドフィルムとを熱接
着せしめる際の条件を下記第1表に示すように設定する
以外は、全て試料番号1の場合と同様に作業して、試料
番号2および3の回路用基板を得た。
Furthermore, apart from this, except for setting the conditions for thermally bonding the copper foil and polyimide film as shown in Table 1 below, all operations were performed in the same manner as in the case of sample number 1, and sample numbers 2 and 2 were prepared. A circuit board of No. 3 was obtained.

これら回路用基板における銅箔とポリイミドフィルムと
の接着力をASTM −D −1876に準じて測定し
て得た結果を第1表に示す。
Table 1 shows the results obtained by measuring the adhesive strength between the copper foil and the polyimide film in these circuit boards according to ASTM-D-1876.

実施例2 11のセパラブルフラスコにメタクレゾール2269、
パラクレゾール46q1キシレン10g、5−BPDA
29.49 (0,1モル)$−よびBAPP 41 
g(0,1モル)を入れる。
Example 2 Metacresol 2269 was placed in 11 separable flasks.
para-cresol 46q1 xylene 10g, 5-BPDA
29.49 (0.1 mol) $- and BAPP 41
g (0.1 mol) is added.

これら混合物を撹拌しながら加熱し、60分間で温度を
150℃まで上昇させる。この昇温中に温度140〜1
45℃のとき脱水反応が生じ、系外に水とキシレンの共
沸混合物が留出する。
The mixture is heated with stirring and the temperature is increased to 150° C. in 60 minutes. During this heating up, the temperature was 140~1
A dehydration reaction occurs at 45°C, and an azeotropic mixture of water and xylene is distilled out of the system.

温度を150℃に維持したまま3時間撹拌を続けながら
反応させ、対数粘度1.7のポリアミド酸を主成分とす
る黒褐色のポリイミド前駆体溶液を得る0 次に、この溶液をガラス板上に流して皮膜を形成し、熱
風乾燥機中で120℃および200°Cで30分間ずつ
順次加熱することにより、厚さ50μmのポリイミドフ
ィルムを得る。このポリイミドフィルムのガラス転移点
および熱分解温度は242°Cおよび450℃であうた
The temperature was maintained at 150°C and the reaction was continued for 3 hours with stirring to obtain a dark brown polyimide precursor solution containing polyamic acid as the main component and having a logarithmic viscosity of 1.7.Next, this solution was poured onto a glass plate. A polyimide film with a thickness of 50 μm is obtained by sequentially heating the film at 120° C. and 200° C. for 30 minutes each in a hot air dryer. The glass transition point and thermal decomposition temperature of this polyimide film were 242°C and 450°C.

次いで、このポリイミドフィルムを使用し、加熱加圧条
件を第1表に示すように設定する以外は、全て試料番号
1の場合と同様に作業し、試料番号4〜6のポリイミド
回路用基板を得た。
Next, using this polyimide film, all operations were carried out in the same manner as in the case of sample number 1, except that the heating and pressurizing conditions were set as shown in Table 1, to obtain polyimide circuit boards of sample numbers 4 to 6. Ta.

これら回路用基板における銅箔とポリイミドフィルムと
の接着力を第1表に示す。
Table 1 shows the adhesive strength between the copper foil and the polyimide film in these circuit boards.

実施例3 厚さ50μmのアルミニウム箔を使用することおよび圧
力を20kq/am”とすること以外は全て試料番号l
の場合と同様に作業して、ポリイミド回路用基板(試料
番号7)を得た。
Example 3 All sample numbers were the same except that aluminum foil with a thickness of 50 μm was used and the pressure was 20 kq/am”.
A polyimide circuit board (sample number 7) was obtained by working in the same manner as in the case of .

この回路用基板におけるアルミニウム箔とポリイミドフ
ィルムとの接着力を第1表に示す。
Table 1 shows the adhesive strength between the aluminum foil and the polyimide film in this circuit board.

実施例4 銅箔の片面にメツ牛により厚さ0.5μmのニッケル抵
抗体層を設け、この抵抗体層上にポリイミドフィルムを
重ね合わせる以外は、全て試料番号2の場合と同様に作
業して、ポリイミド回路用基板(試料番号8)を得た口 この回路用基板における抵抗体層とポリイミドフィルム
との接着力を第1表に示す〇 /l 比較例 無水ピロメリット酸と4,4′−ジアミノジフェニルエ
ーテルを反応させて得られた厚さ50μmの市販ポリイ
ミドフィルムと、実施例で用いた電解鋼箔を、アクリル
系接着剤を用いて温度170”C1圧力IQ&g/cm
“の粂件で30分間加熱することにより接着し、回路用
基板(試料番号9)を得た。
Example 4 A nickel resistor layer with a thickness of 0.5 μm was provided on one side of the copper foil using a metal foil, and a polyimide film was overlaid on this resistor layer. Table 1 shows the adhesive strength between the resistor layer and the polyimide film on the polyimide circuit board (sample number 8) obtained from the polyimide circuit board (sample number 8). Comparative Example Pyromellitic anhydride and 4,4'- A commercially available polyimide film with a thickness of 50 μm obtained by reacting diaminodiphenyl ether and the electrolytic steel foil used in the example were bonded together using an acrylic adhesive at a temperature of 170” C1 pressure IQ & g/cm.
The circuit board (sample number 9) was obtained by bonding by heating for 30 minutes.

この回路用基板における銅箔とポリイミドフィルムとの
接着力を第1表に示す。
Table 1 shows the adhesive strength between the copper foil and the polyimide film in this circuit board.

第     1     表 (発明の効果) 本発明はポリイミドフィルムと銅箔が抵抗体層を介しも
しくは介さずに熱接着されており、従来品の如く接着剤
を使用していないので、ポリイミドフィルムの有する優
れた耐熱性を充分に発揮でき、また実施例からも判るよ
うに、ポリイミドフィルムと銅箔或いは抵抗体層との熱
接着による接合強度が大きいという特徴を有する。
Table 1 (Effects of the Invention) In the present invention, the polyimide film and the copper foil are thermally bonded with or without a resistor layer, and unlike conventional products, an adhesive is not used. Furthermore, as can be seen from the examples, the polyimide film and the copper foil or the resistor layer have a high bonding strength due to thermal adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれも本発明に係るフレキシブ
ル印刷回路用基板の実例を示す側面図である。 1・・・金属箔  2・・・ポリイミドフィルム3・・
・抵抗体層
FIG. 1 and FIG. 2 are both side views showing an example of a flexible printed circuit board according to the present invention. 1...Metal foil 2...Polyimide film 3...
・Resistor layer

Claims (1)

【特許請求の範囲】 金属箔表面に、抵抗体層を介しもしくは介さずに、下記
一般式 ▲数式、化学式、表等があります▼ で示される繰返し単位を主成分とするポリイミドフィル
ムが接合されていることを特徴とするポリイミド回路用
基板。
[Claims] A polyimide film whose main component is a repeating unit represented by the following general formula ▲Mathematical formula, chemical formula, table, etc.▼ is bonded to the surface of a metal foil with or without a resistor layer. A polyimide circuit board characterized by:
JP22991984A 1984-10-30 1984-10-30 Substrate for polyimide circuit Pending JPS61106235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22991984A JPS61106235A (en) 1984-10-30 1984-10-30 Substrate for polyimide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22991984A JPS61106235A (en) 1984-10-30 1984-10-30 Substrate for polyimide circuit

Publications (1)

Publication Number Publication Date
JPS61106235A true JPS61106235A (en) 1986-05-24

Family

ID=16899792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22991984A Pending JPS61106235A (en) 1984-10-30 1984-10-30 Substrate for polyimide circuit

Country Status (1)

Country Link
JP (1) JPS61106235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281495A (en) * 1988-09-19 1990-03-22 Mitsui Toatsu Chem Inc Flexible double-sided metal-foil laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281495A (en) * 1988-09-19 1990-03-22 Mitsui Toatsu Chem Inc Flexible double-sided metal-foil laminated sheet

Similar Documents

Publication Publication Date Title
JPH0231516B2 (en)
JP7429519B2 (en) multilayer polyimide film
JPH0354971B2 (en)
KR100714952B1 (en) Polyimide Composition Having Improved Peel Strength
KR100820221B1 (en) Method for preparing substrate for flexible print wiring board and substrate for flexible print wiring board
US6828390B2 (en) Polyimide substrates having an interpenetrating network morphology and methods relating thereto
JPH0686534B2 (en) Flexible printed circuit board manufacturing method
JPH04207094A (en) Flexible printed-circuit board and its manufacture
JPS61143433A (en) Moisture-resistant polyimide
EP1313795B1 (en) Polyimide film, method of manufacture, and metal interconnect board with polyimide film substrate
JP2006269558A (en) Method of producing flexible laminate substrate
US20060009615A1 (en) Polyamic acids, polyimide films and polymide-metal laminates and methods for making same
JPS61106235A (en) Substrate for polyimide circuit
JP2927531B2 (en) Flexible printed circuit board and method of manufacturing the same
JPH0152843B2 (en)
JP2910796B2 (en) Polyamic acid copolymer, polyimide film comprising the same, and methods for producing them
JP3493363B2 (en) Novel copolymer and its production method
US5167985A (en) Process for producing flexible printed circuit board
JP3805546B2 (en) Manufacturing method of heat-resistant bonding sheet
JPH0848795A (en) Mew polyimide film and its production
JPS61195832A (en) Polyimide-metallic foil composite film
JP2008238788A (en) Laminated polyimide film, its manufacturing process, and flexible circuit board
JP3456256B2 (en) Polyimide copolymer and method for producing the same
CN115505262B (en) Polymer film and method for producing same
JP2001139807A (en) Method of manufacturing heat-resistant bonding sheet