JPS61105874A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS61105874A
JPS61105874A JP22759984A JP22759984A JPS61105874A JP S61105874 A JPS61105874 A JP S61105874A JP 22759984 A JP22759984 A JP 22759984A JP 22759984 A JP22759984 A JP 22759984A JP S61105874 A JPS61105874 A JP S61105874A
Authority
JP
Japan
Prior art keywords
active layer
semiconductor active
layer
gate electrode
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22759984A
Other languages
Japanese (ja)
Inventor
Yutaka Matsuoka
裕 松岡
Naoki Kato
加藤 直規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22759984A priority Critical patent/JPS61105874A/en
Publication of JPS61105874A publication Critical patent/JPS61105874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to manufacture a field-effect transistor using the source region and the drain region as the electrodes with a symmetrical inner side surface as seen from the gate electrode by a method wherein the inclination of an implantation direction of impurity ions is set in a perpendicular direction to a direction that links the source region with the drain region. CONSTITUTION:Mask layers 11 with a window 10 are formed on the main surface of a semiconductor substrate 1 and a semiconductor active layer 2 is formed in the side of the main surface performing the ion-implantation treatment of such an N-type impurity as Si, S and Se. Then, a gate electrode 3 is formed on the main surface using a photolithographic technique in such a way that a Schottky junction 4 is formed between the active layer 2 and the gate electrode 3. Moreover, the ion-implantation to ion-implant such an N-type impurity as Si, S and Se in the semiconductor active layer 2 using the gate electrode 3 as a mask is performed in a state that the ion- implantation direction to the semiconductor active layer 2 is slightly inclined in a direction that links a source region 5 with a drain region 6 to the normal line to a contact point on the surface of the active layer 2. According to such a way, the field-effect transistor can be easily manufactured using the source and drain regions 5 and 6 as the electrodes with a symmetrical inner side surface as seen from the gate electrode 3.

Description

【発明の詳細な説明】 産−纂一上の一刊一用か一野 本発明は、電界効宋トランジスタの製法(こ関す”る。[Detailed description of the invention] Production - Ichika Ichino The present invention relates to a method for manufacturing a field effect transistor.

ji %、、−Q掬蒲 電9.1効宋1ヘランジスタどして、第1図を伴なつ(
次に述へる原理的構成を有り−るものが提案されている
ji %,,-Q 掬蒲电9.1 实召責电电9.1实附1HERANGISTOR, etc., accompanied by Fig. 1 (
A device having the following basic configuration has been proposed.

す7iわち、半絶縁性半導体L(板1を有し、その主面
側に、所要のパターンを有し且つ例えばn型不純物を低
FIWにしか含んでい<’にい半11本能動層2が形成
されている。
7i That is, a semi-insulating semiconductor L (having a plate 1, having a required pattern on its main surface side, and containing, for example, n-type impurities only at a low FIW) Layer 2 is formed.

しかして、半絶縁性半導体基板1の1:面上に、所要の
パターンを有し1つ半導体能動層2を・ぞの艮ざ方向の
中央部にd3いて幅方向に横切って延長しているゲート
電極3が、半導体能動層2どの間でショットキ接合4を
形成するように、形成されている。
Thus, on the 1: side of the semi-insulating semiconductor substrate 1, one semiconductor active layer 2 having a required pattern is located at the center of the semiconductor substrate 1 in the width direction and extends across the width. A gate electrode 3 is formed to form a Schottky junction 4 between the semiconductor active layers 2 .

また、半導体能動層2内に、グーミル電極3を挾んだ両
位置において、半導体能動層2と同じn型不純物を半導
体能動層2に比し高い1間mに含んでいるソース領域5
及びドレイン領域6が半絶縁性半導体基板1の主面側の
表面から、所望の深さ、例えば半絶縁性半導体基板1の
半導体能動層2下の領域に達する深さに形成されている
Further, in the semiconductor active layer 2, source regions 5 containing the same n-type impurity as the semiconductor active layer 2 in a higher distance than the semiconductor active layer 2 at both positions sandwiching the goo mill electrode 3.
A drain region 6 is formed at a desired depth from the main surface side of the semi-insulating semiconductor substrate 1, for example, to a depth that reaches the region below the semiconductor active layer 2 of the semi-insulating semiconductor substrate 1.

この場合、ソース領域5及びドレイン領域6の内側面は
、ゲート電tri 3側からみて、グー1−電極3のソ
ース領域5及びドレイン領域6を結ぶブノ向の両側側面
どほぼ一致した面上またはその近1カの百1−にある。
In this case, the inner surfaces of the source region 5 and the drain region 6 are on surfaces that substantially coincide with both side surfaces in the direction connecting the source region 5 and the drain region 6 of the electrode 3 when viewed from the gate electrode tri 3 side. It's located at 101-100-100-1000 in the neighborhood.

さら(、−、ソース領域5及びドレイン領域6に、ソー
ス電極7及びドレイン電極8がそれぞれオーミックに連
結されている。
Furthermore, a source electrode 7 and a drain electrode 8 are ohmically connected to the source region 5 and the drain region 6, respectively.

jメ1−/]り、従来提案されている電W効果i・ラン
ジスクの原理的な構成であるに の」、)な174成を右する電界効果1〜ランジスタに
よれば、ソース電極5及びグー1へ電極3間に制御型n
を印加させることによって、ショット4接合4から、半
導体能動層2内に、半絶縁性半導体基板1の半導体能I
JJ層2下2下域に向=)−’C拡がっているまたは拡
がる空乏層の拡がりを、制御電圧の値に応じて制御する
ことができる。
According to the field effect 1~rangistor which determines the 174 configuration, the source electrode 5 and Control type n between electrode 3 to goo 1
By applying the voltage to the semiconductor active layer 2 from the shot 4 junction 4,
The expansion of the depletion layer that is expanding or expanding toward the lower region of the JJ layer 2 can be controlled in accordance with the value of the control voltage.

従って、予め、ソース電極7及び1ニレイン電極8間に
、f−1’rjiを通じて、所要の電源を接続しCいる
状態で、ソース電極5及びゲート電1!i3間に制御電
圧を印加させることによって、角i′I+1に、制御重
重−の顧に応じた飴の電流を供給さUることができる、
というIdl!fit:を♀ザる。
Therefore, in advance, a required power source is connected between the source electrode 7 and the gate electrode 8 through f-1'rji, and the source electrode 5 and the gate electrode 1! By applying a control voltage across i3, a candy current can be supplied to the angle i'I+1 according to the control load.
Idol! fit:

第1図に示す電界効果トランジスタと原理的に同様な電
界効果1ヘランジスタの製法として、従来、第2図をr
になって次に述べる原理的なプラ法が提案されている。
Conventionally, as a manufacturing method for a field effect transistor which is similar in principle to the field effect transistor shown in FIG. 1, the method shown in FIG.
The following principle plastic method has been proposed.

すなわち、第1図で上述したと同様の半絶縁性半導体基
板1を予め用意覆る(第2図A)。
That is, a semi-insulating semiconductor substrate 1 similar to that described above in FIG. 1 is prepared in advance and covered (FIG. 2A).

しかして、半絶縁f1半導体基板1の主面Fに第1図で
1−述した半導体能IJJ E 2と同じパターンの窓
10を右するマスク層11を形成する(第2図B)。
Thus, a mask layer 11 is formed on the main surface F of the semi-insulating f1 semiconductor substrate 1, forming a window 10 having the same pattern as the semiconductor layer IJJE2 described in FIG. 1 (FIG. 2B).

次に、半絶縁性半導体基板1の主面側に、第1図で上述
したと同様の半導体能動M2を、Si 、3. Scな
どのn型不純物のイオン打込処理を行って形成する(第
2図C)。
Next, on the main surface side of the semi-insulating semiconductor substrate 1, a semiconductor active M2 similar to that described above in FIG. 1 is formed using Si, 3. It is formed by ion implantation of n-type impurities such as Sc (FIG. 2C).

次に、半絶縁f1半導I4基板1の主面上に、第1図で
上述1ノだと同様のグー1〜電極3を、半導体能動層2
どの間でショットキ接合4を形成4るように、フl、1
トリソグラーノイ法を用いて形成する(第2図D)。
Next, on the main surface of the semi-insulating f1 semiconductor I4 substrate 1, electrodes 1 to 3 similar to those in No. 1 described above in FIG. 1 are placed on the semiconductor active layer 2.
to form a Schottky junction 4 between 4, 1 and 1
It is formed using the Trisoglanoy method (Fig. 2D).

次に、半導体能動層2に対するグー1〜電極3をマスク
とするs+ 、s、seなどのn型の不純物イオンの打
込処理を、半絶縁性半導体基板1の]三面側の表面から
行って、半導体能動層2内に、第1図で上述したど同様
のソース領域5及びドレイン電極6を形成り−る。
Next, implantation of n-type impurity ions such as s+, s, and se into the semiconductor active layer 2 using the goo 1 to the electrode 3 as a mask is performed from the three surfaces of the semi-insulating semiconductor substrate 1. , a source region 5 and a drain electrode 6 similar to those described above in FIG. 1 are formed in the semiconductor active layer 2.

この場合、不純物イオンの打込処理を、不純物イオンの
打込方向が、半導体能動層2の表面の方線に対して、後
述するように、傾斜している状態で行う。
In this case, the impurity ion implantation process is performed in a state where the implantation direction of the impurity ions is inclined with respect to the normal to the surface of the semiconductor active layer 2, as will be described later.

次に、ソース領域5及びドレイン領域6に、第1図で上
述したど同様のソース電極7及びドレイン電極8を、フ
A1〜リソグラフィ方法を用いで形成する(第2図[)
Next, a source electrode 7 and a drain electrode 8 similar to those described above in FIG. 1 are formed in the source region 5 and drain region 6 by using the lithography method (FIG. 2).
.

以トのようにして、第1図で1−述したど同様の電界効
果1〜ランジスタを製造する。
In the following manner, a field effect transistor 1 similar to that described in FIG. 1 is manufactured.

まlご、従来、第1図に示す電界効果l〜ランジスタど
原理的に同様イf電界効果I・ランジスタの製法どして
、第3図を伴なって次に)ホベる1法も提案され−Cい
る。
In the past, we have proposed a method for manufacturing a field effect I transistor that is similar in principle to the field effect I transistor shown in Figure 1, but also proposed a method that follows (next) with Figure 3. There is -C.

すなわち、第2図への場合と同様に、第1図の場合と同
様の半絶縁付半導体基板1を予め用意する(第3図A)
That is, as in the case of FIG. 2, a semi-insulating semiconductor substrate 1 similar to that of FIG. 1 is prepared in advance (FIG. 3A).
.

しかして、その半絶縁性半導体基板1の主面側に、第2
図Bの場合ど同様の窓10を右り−るマスク層10を用
いて、第2図Cの場合ど同(1;の半導体能Ir111
層2を形成する(第3図B)。
Therefore, a second layer is formed on the main surface side of the semi-insulating semiconductor substrate 1.
In the case of FIG.
Form layer 2 (Figure 3B).

次に、マスク@10を除去覆る(第3図C)。Next, the mask @10 is removed and covered (FIG. 3C).

次に、”+=絶絶縁性根板1主面上に、例えばSi3N
4でなる絶縁層20を形成するとともに、その絶縁層2
0−Lに1伺えばフエ1〜レジメ1〜層でなる層21と
例えばTi 、AI 、Si O2などでなる層21ど
は責なる月別の層22とがそれらの順にされている積層
体23を形成する(第3図D)。
Next, on the main surface of the root plate 1 with ``+=insulation, for example, Si3N
4, and the insulating layer 2
0-L is a laminate 23 in which a layer 21 made up of layers 1 to 1 and layers 1 to 1 and layers 21 made of, for example, Ti, AI, SiO2, etc. are arranged in that order. (Fig. 3D).

次に、積層体23 Lに、絶縁層20及び積層体23の
1く導体能動層2−Fの領域を外部に臨ませる2つの窓
24及び25を有する例えばフAトレジス1〜で<Tる
マスクl1126を、その窓24及び25間の領域27
が第1図で上述したグー1〜電極3ど同様のパターン幅
をイjしでいるものどじて形成りる(第3図1)。
Next, the laminated body 23L has two windows 24 and 25 that allow the insulating layer 20 and the area of the conductive active layer 2-F of the laminated body 23 to be exposed to the outside. mask l1126 in the area 27 between its windows 24 and 25;
However, the same pattern width as the electrodes 1 to 3 described above in FIG. 1 is formed (FIG. 3, 1).

次(3二、積腟体23に対Jるマスク層26をマスクど
する■ツヂング処理にJ、って、積層体23から、マス
ク層26と同じパターンを右づるマスク層28を形成す
る(第3図F)。
Next (32. Mask the mask layer 26 against the vaginal laminate 23). In the tweezing process, form the mask layer 28 from the laminate 23 with the same pattern as the mask layer 26 ( Figure 3F).

次(こ、事々体能動層2に対Jるマスク盾26及び27
をマスクどするs; 、S、seなどの「1ハリ不純物
イΔンの打込処理を、第2図の揚台ど同様に、118絶
縁性半11A 基板1のニド面側の表面から絶縁1i’
、i 20を介して行な−)−C1半導体能動層2内に
、第1図で上述したと同様のソース領域5及び′ドレイ
ン領域6を形成する(第3図G)。
Next (Mask shields 26 and 27 for active layer 2)
118 Insulating half 11A 118 Insulating semi-conductor 11A from the surface of the diode side of the substrate 1. 1i'
, i 20-)-C1 In the semiconductor active layer 2, a source region 5 and a drain region 6 similar to those described above in FIG. 1 are formed (FIG. 3G).

この場合、不純物イオンの打込処理を、第2図の場合と
同様に、不純物、イオンの11込方向が、崖導体能1f
11j層20の表面の′h線に対して、後述りるように
、傾斜しでいる状態で行う、。
In this case, the impurity ion implantation process is performed in the same way as in the case of FIG.
11j The surface of the layer 20 is tilted with respect to the 'h line, as will be described later.

次に、fI′1層1ホ2 Bの絶縁11η21に対1J
る−[ツJング処理にJ、す、絶縁層21にマスク層2
6の窓27′l及び25よりも 1廻り大ぎな窓29及
び30を形成する(第3図1−1 > 。
Next, for the insulation 11η21 of fI′1 layer 1ho2B, 1J
- [To process the mask layer 2 on the insulating layer 21.
Windows 29 and 30 are formed one size larger than the windows 27'l and 25 of No. 6 (see Fig. 3, 1-1).

次に、J、、 li /)目らの絶縁材のIffff卵
処理って、絶縁層26の、絶縁層21の窓29及び30
に臨む仝域1−1及びマスク肋26上に延長している例
えばS f 02でイiる絶縁層31を形成する(第3
図I)。
Next, J,, li /) Iffff egg treatment of the insulation material of the eyes, the windows 29 and 30 of the insulation layer 26 and the insulation layer 21 are
For example, an insulating layer 31 of S f 02 is formed extending over the area 1-1 facing the area 1-1 and the mask rib 26 (the third
Figure I).

次に、積層体23の絶縁層21を溶去することに、」、
って、絶縁層31の、窓29及び30内の領域のみを、
絶縁層32どして、絶縁層20−Lに残り(第3図■)
Next, in dissolving the insulating layer 21 of the laminate 23,
Therefore, only the area within the windows 29 and 30 of the insulating layer 31 is
The insulating layer 32 remains on the insulating layer 20-L (Fig. 3 ■)
.

次に、積層体23の絶縁層21を溶去することによって
、絶縁層31の、窓29及び30内の領域のみを、絶縁
層32として、絶縁層20上に残ずく第3図J )。
Next, by dissolving the insulating layer 21 of the laminate 23, only the regions of the insulating layer 31 within the windows 29 and 30 remain on the insulating layer 20 as the insulating layer 32 (FIG. 3J).

次に、熱処理によって、ソース領域え5及び6を活1ノ
1化して後、絶縁層30及び32に対するエッヂング処
理に」、って、半導IA fjl: IIJI層2の、
ソース領域5及びドレイン領域6間の領域を外部に臨ま
せる窓33ど、ソース領域5及び6をE3− それぞれ外部に臨まける窓35及び36とを形成する(
第3図K)。
Next, after the source regions 5 and 6 are activated by heat treatment, the insulating layers 30 and 32 are etched.
A window 33 which exposes the region between the source region 5 and the drain region 6 to the outside, and windows 35 and 36 which respectively expose the source regions 5 and 6 to the outside are formed (
Figure 3K).

次に、半導体fil: lfj層2に、窓33を通じ(
、グー1〜電極3を、半導体能動層2どの間でシ」ッ1
ヘキ接合4を形成J−るようにト1し、J′た、ソース
領域5及びドレイン領域6を−ξれぞれシース電極7及
びドレイン電極8をA−ミックに付す(第3図L)。
Next, the semiconductor fil: lfj layer 2 is exposed through the window 33 (
, between the goo 1 and the electrode 3 and the semiconductor active layer 2
Form the junction 4, then attach the source region 5 and drain region 6 to the sheath electrode 7 and the drain electrode 8, respectively (Fig. 3L). .

以上のようにして、81!′!1図で−に連したと同様
の電界効果1ヘランジスタを製造り−る。
As above, 81! ′! A field effect 1 helangistor similar to that connected to - in Fig. 1 is manufactured.

V述した電界効果トランジスタの製法によれば、ソース
領域5及びドレイン領域6を、グー1〜電極3をマスク
とした不純物イオンの打込を行って形成しているので、
イのソース領i或5及びドレイン領域6が、ゲート電極
3によって位置決めされて形成されている。従って、電
界ダj果トランジスタを、高粘庶に、良好な1’、l 
t、’lをもするものとして製)告することができる。
According to the manufacturing method of the field effect transistor described above, the source region 5 and the drain region 6 are formed by implanting impurity ions using the goo 1 to the electrode 3 as a mask.
A source region i or 5 and a drain region 6 are positioned and formed by the gate electrode 3. Therefore, the electric field effect transistor can be made with high viscosity and good 1', l
t, 'l can also be declared as having the same name.

しかしながら、第2図で上述した従来の電界効果1〜ラ
ンジスタの製法の場合、ソース領IX 5及びドレイン
領域6が、グーI・電極3からみて、Elf: 9J称
シイ1内側を右Jるものとして形成される。
However, in the case of the conventional field effect transistor manufacturing method described above in FIG. is formed as.

この1.:め、電界効果(・ランジスタが、ソース電M
li7及びドレイン電極8をそれぞれ本来のソース電極
及びドレイン電極とl)で用いI、:どぎの電界効果ト
ランジスタの特11ど、それとは逆にそれぞれドレイン
電極及びソース電極として用いIこと2〜の電界効果ト
ランジスタの特性どの間に差を右りるものとして製造さ
れる。従って、電界りITトランジスタが、ソース電極
7及びドレイン電極8を、それぞれソース電極及びドレ
イン電極としC用いたどきの特性と、でれどけ逆にそれ
ぞれドレイン電極及びソース電極として用いたどさ″の
電界効果トランジスタの特性との間に差があることを認
識した上で、使用しな(Jればならない、という電界効
果1〜ランジスタの1小用1−の制限を右覆るものどじ
で、製造される、という欠点を有していた。。
This 1. : Me, field effect (・The transistor has a source electric current M
li7 and drain electrode 8 are used as the original source electrode and drain electrode, respectively. Effect transistors are manufactured with different characteristics depending on the characteristics. Therefore, the electric field IT transistor has the same characteristics as when the source electrode 7 and the drain electrode 8 are used as the source electrode and the drain electrode, respectively, and vice versa. Recognizing that there is a difference between the characteristics of field-effect transistors, manufacturing It had the disadvantage of being

よって、本発明は、1−述した欠点のイ<い、新規な電
界効果1ヘランジスタの製法を提案ぜんとするものであ
る。
Accordingly, the present invention aims to propose a novel method for manufacturing a field effect single field effect transistor which overcomes the above-mentioned drawbacks.

本発明による電界効果1ヘランジスタの製法によれば、
第2図で上述した従来の原理的イ1電界効果1〜ランジ
スタの製法の場合と同様に、半絶縁性半導体基板の主面
側に、所要のパターンを有し1つ所定の導電型を与える
不純物を低温度にしか含んでいない半導体能動層を形成
する■稈と、半絶縁v1半導体幇板の主面−1に、所要
のパターンを有して上記半導体能動層を子の長さ方向の
中央部において幅方向に横切って延長しているグー1〜
電極またはマスク層を形成するJ稈と、 上記半導体能動層に対Jる1−記グー1〜電極またはマ
スク層をマスクどする半導体能動層と同じ導電型を与え
る不純物イオンの打込処理を、上記半絶縁性半導体基板
の主面側の表面から行って、上記T置体能動層内に、上
記ゲート電極またはマスク層を挾んだ両位置において、
上記半導体能動層ど同じ導電型を与える不純物を1−開
平導体能動層に比し高濃度に含んでいるソース領域及び
ドレイン領域を、上記半絶縁性半導体基板の主面側の表
面から所望の深さに形成するV稈どを含んでいる。
According to the manufacturing method of the field effect 1 helangistor according to the present invention,
As in the case of the conventional principle A1 field effect 1~ transistor manufacturing method described above in FIG. Forming a semiconductor active layer containing impurities only at low temperatures ■ The semiconductor active layer is formed with a desired pattern on the main surface -1 of the semi-insulating V1 semiconductor shield plate in the longitudinal direction of the culm. Goo 1~ which extends across the width direction in the central part
Implanting treatment of impurity ions giving the same conductivity type as the semiconductor active layer forming the electrode or mask layer and the semiconductor active layer forming the electrode or mask layer, Starting from the main surface side of the semi-insulating semiconductor substrate, at both positions in the T-mounted active layer, sandwiching the gate electrode or mask layer,
A source region and a drain region containing impurities that give the same conductivity type as the semiconductor active layer at a higher concentration than the 1-square-square conductor active layer are formed at a desired depth from the main surface side of the semi-insulating semiconductor substrate. It contains a V culm that forms in the middle.

しかしイrがら、本発明による電界効果1〜ランジスタ
のツ1法は、このJ:うむ工程を含む電界効!i!1〜
ランジスタの製法において、そのソース領1戊及びドレ
イン領域を形成1”る]−稈における、不純物イオンの
打込処理を、上記不純物イオンの打込方向が、上記半導
体能動層の表面の方線にり1して、上記ソース領域及び
ドレイン領域を結ぶ方向ど垂直な方向に、僅かに傾斜し
ている状態で行う。
However, in contrast, the field effect method 1 to transistor method 1 according to the present invention is a field effect method including this J: process. i! 1~
In the method for manufacturing a transistor, the implantation of impurity ions in the culm is performed such that the direction of implantation of the impurity ions is perpendicular to the surface of the semiconductor active layer. 1, in a state slightly inclined in a direction perpendicular to the direction connecting the source region and the drain region.

f′Uユ川 こ用ため、本発明による製法によれば、ソース領域及び
ドレイン領域が、チャンネリング現象を生ぜしめること
なしに、グー]・電極からみて対称イT内側面を右覆る
ものとして形成される。
Therefore, according to the manufacturing method according to the present invention, the source region and the drain region can be formed without causing a channeling phenomenon by covering the inner surface of the symmetrical T as seen from the electrode. It is formed.

1−IJjp□□1111ノーfi 従って、本発明による電界効果]ヘランジスタの製法に
よれば、ソース領域及びドレイン領域に含んでいる不純
物原子がソース領域及びドレイン電極の深さ方向にみた
ときが不純物イオンの打込方向に沿った紳士に配列され
ているので、チャンネリング効果の生じIIIいものと
して形成され、それでいて、ソース領域及びドレイン領
域をそれぞれソース領域及びドレイン領域どじて用いた
どぎの電界効果1〜ランジスタの特1′!1ど、それと
は逆にそれぞれドレイン領域及びソース領域として用い
たときの電界効果トランジスタの特性との間に差を有し
ないものどじて形成される。
1-IJjp□□1111Nofi Therefore, according to the method of manufacturing a helangister according to the field effect according to the present invention, impurity atoms contained in the source region and drain region become impurity ions when viewed in the depth direction of the source region and drain electrode. Since they are arranged in a straight line along the implantation direction, a channeling effect can be produced. ~Langister special 1'! On the other hand, on the contrary, a region having no difference in characteristics from that of a field effect transistor when used as a drain region and a source region, respectively, is formed.

従って、知チレンネル効果が生じ動く、目っ使用上の制
限しないものとして製造することができる、という特徴
を有する。
Therefore, it has the characteristics that it can be manufactured without any restrictions in terms of its use, since it produces a chilennel effect and moves.

割LL 第2図または第3図で−[述したど同様の工程をとって
第1図で−に連したと同様の電界効果トランジスタをシ
J造する。ただし、この場合のイオン打込処即を、発明
が解決しようとする問題点で述べたようにして行う。
A field effect transistor similar to that shown in FIG. 2 or 3 is fabricated using the same steps as those described in FIG. 1. However, the ion implantation process in this case is performed as described in the problem to be solved by the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1:1、電界効果l・ランジスタの原理的な路線
的断面図ぐある。 ff12図及び第3図は、電W効果1ヘランジスタの製
法を示1J順次の■稈におIJる路線的断面図である。
Figure 1:1 is a cross-sectional diagram of the principle of a field effect transistor. Fig. ff12 and Fig. 3 are sectional views showing the manufacturing method of the electric W effect 1 helangistor, taken along the culm of 1J sequentially.

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性半導体基板の主面側に、所要のパターンを有
し且つ所定の導電型を与える不純物を低濃度にしか含ん
でいない半導体能動層を形成する工程と、半絶縁性半導
体基板の主面上に、所要のパターンを有して上記半導体
能動層をその長さ方向の中央部において幅方向に横切っ
て延長しているゲート電極またはマスク層を形成する工
程と、上記半導体能動層に対する上記ゲート電極または
マスク層をマスクとする半導体能動層と同じ導電型を与
える不純物イオンの打込処理を、上記半絶縁性半導体基
板の主面側の表面から行って、上記半導体能動層内に、
上記ゲート電極またはマスク層を挾んだ両位置において
、上記半導体能動層と同じ導電型を与える不純物を上記
半導体能動層に比し高濃度に含んでいるソース領域及び
ドレイン領域を、上記半絶縁性半導体基板の主面側の表
面から所望の深さに形成する工程を含んでいる電界効果
トランジスタの製法において、上記ソース領域及びドレ
イン領域を形成する工程における、不純物イオンの打込
処理を、上記不純物イオンの打込方向が、上記半導体能
働層の表面の方線に対して、上記ソース領域及びドレイ
ン領域を結ぶ方向と垂直な方向に僅かに傾斜している状
態で行うことを特徴とする電界効果トランジスタの製法
A step of forming a semiconductor active layer having a desired pattern and containing only a low concentration of impurities that give a predetermined conductivity type on the main surface side of the semi-insulating semiconductor substrate; forming a gate electrode or a mask layer having a desired pattern and extending widthwise across the semiconductor active layer at a central portion thereof in the longitudinal direction; Implanting impurity ions giving the same conductivity type as the semiconductor active layer using an electrode or a mask layer as a mask is performed from the main surface side of the semi-insulating semiconductor substrate into the semiconductor active layer,
At both positions sandwiching the gate electrode or mask layer, a source region and a drain region containing an impurity having the same conductivity type as the semiconductor active layer at a higher concentration than the semiconductor active layer are connected to the semi-insulating layer. In a manufacturing method for a field effect transistor, which includes a step of forming a field effect transistor to a desired depth from the surface on the main surface side of a semiconductor substrate, the impurity ion implantation process in the step of forming the source region and the drain region is performed by implanting the impurity ions. An electric field characterized in that the ion implantation direction is slightly inclined in a direction perpendicular to the direction connecting the source region and the drain region with respect to the normal to the surface of the semiconductor active layer. Method for manufacturing effect transistors.
JP22759984A 1984-10-29 1984-10-29 Manufacture of field-effect transistor Pending JPS61105874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22759984A JPS61105874A (en) 1984-10-29 1984-10-29 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22759984A JPS61105874A (en) 1984-10-29 1984-10-29 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPS61105874A true JPS61105874A (en) 1986-05-23

Family

ID=16863454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22759984A Pending JPS61105874A (en) 1984-10-29 1984-10-29 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS61105874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035693A (en) * 1989-06-01 1991-01-11 Ulvac Corp Vacuum heating furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860574A (en) * 1981-10-06 1983-04-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS59121199A (en) * 1982-12-24 1984-07-13 Hitachi Micro Comput Eng Ltd Method and apparatus for ion implantation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860574A (en) * 1981-10-06 1983-04-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS59121199A (en) * 1982-12-24 1984-07-13 Hitachi Micro Comput Eng Ltd Method and apparatus for ion implantation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035693A (en) * 1989-06-01 1991-01-11 Ulvac Corp Vacuum heating furnace

Similar Documents

Publication Publication Date Title
US3653978A (en) Method of making semiconductor devices
JPS6276645A (en) Structure of composite semiconductor crystal
JPS6042626B2 (en) Manufacturing method of semiconductor device
JPS6156874B2 (en)
JP4009331B2 (en) MOS transistor and manufacturing method thereof
KR910003838A (en) Thin Film Field Effect Transistors and Manufacturing Method Thereof
JPH04268767A (en) Semiconductor device
US6486512B2 (en) Power semiconductor device having high breakdown voltage and method for fabricating the same
KR940001505B1 (en) Semiconductor device
JPS5974674A (en) Insulation gate semiconductor device and manufacture thereof
JPS6395669A (en) Manufacture of semiconductor integrated circuit device
JP3294001B2 (en) Method for manufacturing insulated gate semiconductor device
JPS61105874A (en) Manufacture of field-effect transistor
USRE28704E (en) Semiconductor devices
JPS61210673A (en) Mis type semiconductor device
KR920009751B1 (en) Semiconductor device and its manufacturing method with field plate
JPS61119078A (en) Mos semiconductor device
JPS622706B2 (en)
JP3079618B2 (en) Semiconductor device and manufacturing method thereof
JPS628568A (en) Longitudinal type semiconductor device and manufacture thereof
JPS6146990B2 (en)
JPS61168254A (en) High withstand voltage mos field effect semiconductor device
JPS6055995B2 (en) Junction field effect transistor
JPS61125084A (en) Semiconductor integrated circuit device
JPS59124755A (en) Semiconductor device