JPS61104610A - End station - Google Patents

End station

Info

Publication number
JPS61104610A
JPS61104610A JP22658284A JP22658284A JPS61104610A JP S61104610 A JPS61104610 A JP S61104610A JP 22658284 A JP22658284 A JP 22658284A JP 22658284 A JP22658284 A JP 22658284A JP S61104610 A JPS61104610 A JP S61104610A
Authority
JP
Japan
Prior art keywords
chamber
wafer
carrier
processing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22658284A
Other languages
Japanese (ja)
Other versions
JPH0680718B2 (en
Inventor
Yasuo Suzuki
泰雄 鈴木
Koji Matsunaga
幸二 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP59226582A priority Critical patent/JPH0680718B2/en
Publication of JPS61104610A publication Critical patent/JPS61104610A/en
Publication of JPH0680718B2 publication Critical patent/JPH0680718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Abstract

PURPOSE:To enable rough vacuuming hrs., which is an obstacle to improvement of processing capability, to shorten equivalently by a method wherein wafers are carried mutually from two carrier lines and are processed. CONSTITUTION:Directional control chamber 70 and 80 are kept the same high vacuum as a processing chamber 60. A carrier belt 71 between carrier chambers 20, 30 intersects to a carrier belt 72 to the processing chamber 60 in the directional control chamber 70, and either one of the said carrier belts e.g. the carrier belt 71 is ascended and descended by up and down driving mechanism. The carrier belt 71 can be backlashed, and thereby either one of carrier belt 22, 32 can receive a wafer W. The wafer W from the primary and the secondary carrier chambers 20, 30 is carried mutually to the processing chamber 60 by the primary directional control chamber 70 and the wafer W from the processing chamber 60 is carried mutually to the primary and the secondary carrier chamber 40, 50 by the secondary directional control chamber 80. In this case, rough vacuuming of the primary and the secondary carrier chamber 20, 30 and the primary and the secondary carrier chamber 50, 60 is performed independently (or partially in common with these said chambers).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大気中のウェハを低真空の搬入室を経て高
真空の処理室に搬送し、そこでイオン注入等の処理の後
低真空の搬出室を経て大気中に取り出すエンドステーシ
ョンに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention transports a wafer in the atmosphere through a low-vacuum loading chamber to a high-vacuum processing chamber, where it is processed in a low-vacuum state after processing such as ion implantation. It relates to an end station that takes out air through an unloading chamber.

〔従来の技術〕[Conventional technology]

第4図は、従来のエンドステーションの概略を示す平面
図である。このエンドステーションは、一つのウェハ搬
送ラインから成り、高真空(例えばI O−5〜10−
7To r r)の処理室2と、処理室2への大気の直
接の流入を防止するための低真空(例えば] (1’〜
40−’To r r)の予備室である搬入室1および
搬出室3から構成されている。
FIG. 4 is a plan view schematically showing a conventional end station. This end station consists of one wafer transfer line and is equipped with a high vacuum (e.g. IO-5 to 10-
7 Tor r r) and a low vacuum (for example) (1'~
It consists of a carry-in room 1 and a carry-out room 3, which are preliminary rooms for 40-' Torr).

搬入室1、処理室2および搬出室3はそれぞれ真空排気
系を有している。大気と搬入室1との間、搬入室1と処
理室2との間、処理室2と搬出室3との間および搬出室
3と大気との間には、それぞれ、ゲートバルブ4.5.
6.7が設けられており、これによってウェハWの搬送
時以外は真空気密が保たれる。尚ウェハWの搬送は、搬
送ヘルド8.9.10.11.12によって行われる。
The loading chamber 1, the processing chamber 2, and the loading chamber 3 each have a vacuum exhaust system. Gate valves 4.5, .
6.7 is provided, thereby maintaining vacuum tightness except when the wafer W is being transported. The wafer W is transported by a transport heald 8.9.10.11.12.

第5図は、第4図の装置の概略動作を示すタイノ、チャ
ー[である。ウェハWは、大気中に置かれた複数枚のウ
ェハを装着したキャリアまたは他の1般送ラインから1
枚ずつ1般人室1に1殿入され(図中(c))i搬入室
1を真空排気(真空荒引き)後(図中(d))処理室2
に1般送され(図中(b))、処理室2においてイオン
注入等の処理が行われろ(図中(a))。その後ウェハ
Wは、搬出室3へII送され(図中(b))、搬出室3
をガスリークの後円び大気中へ1般出される(図中((
))。
FIG. 5 is a diagram schematically showing the operation of the apparatus shown in FIG. The wafer W is transferred from a carrier with multiple wafers placed in the atmosphere or from another general transport line.
One sheet at a time is loaded into the general room 1 ((c) in the figure). After the loading chamber 1 is evacuated (rough vacuum evacuation) ((d) in the figure) the processing chamber 2.
((b) in the figure), and undergoes processing such as ion implantation in the processing chamber 2 ((a) in the figure). Thereafter, the wafer W is transported to the unloading chamber 3 ((b) in the figure), and
After a gas leak, it is released into the atmosphere (in the figure ((
)).

尚、1叉1°のようなエンドステーションの一例が特開
昭57−205955号公報に示されている。
Incidentally, an example of an end station having an angle of 1° and 1° is shown in Japanese Patent Laid-Open No. 57-205955.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

子連のようなエンドステーションでは、ウェハの処理能
力(中位時間当りの処理枚数)6才、主として、処理室
2における注入時間および搬入室1.搬出室3における
真空排気(真空荒引き)時間によって決定される。例え
ば、ウェハ交換時間を7秒とした場合、注入時間が10
秒の場合は処理能力は200枚/時程度であり、注入時
間が5秒の場合は処理能力は300枚/時程度である。
In an end station such as a subsidiary chain, the wafer processing capacity (medium number of wafers processed per time) is 6 years old, mainly due to the injection time in processing chamber 2 and the loading chamber 1. It is determined by the vacuum evacuation (rough vacuum evacuation) time in the unloading chamber 3. For example, if the wafer exchange time is 7 seconds, the implantation time is 10 seconds.
If the injection time is 5 seconds, the processing capacity is about 200 sheets/hour, and if the injection time is 5 seconds, the processing capacity is about 300 sheets/hour.

ところが近年のイオンビーJ、の大面積、入電流化に伴
い注入時間の短縮化(例えば1〜2秒)が可能になって
きたが、−1−述したエンドステージ−Iンでは、たと
え注入時間が5秒以下となっても処理能力は主として搬
入室1.搬出室3のy(空荒引き時間によって制限され
、処理能力を大幅に改善させることば非常に難しい(第
5図参照)。ごの場合荒引き時間を非常に短くすること
は、()1気系が巨大になりスペース、コスト等の面か
ら非現実的である。
However, in recent years, with the large area and current input of IonBee J, it has become possible to shorten the injection time (for example, 1 to 2 seconds). Even if the time is less than 5 seconds, the processing capacity is mainly limited to 1. It is very difficult to significantly improve the processing capacity (refer to Figure 5), as it is limited by the roughing time of the unloading room 3. The system becomes huge and is unrealistic in terms of space, cost, etc.

従ってこの発明は、荒引き時間が隘路になっている点を
解決し、ウェハの処理能力を向」ニさせることを目的と
する。
Therefore, it is an object of the present invention to solve the problem of roughing time being a bottleneck and to improve wafer throughput.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のエンドステーションは、第1および第2の搬
入室と、相対的に高真空に保たれていて、第1および第
2の搬入室からウェハを交互に受け取りそれを処理室に
搬送する機構を有する第1の方向制御室と、第1および
第2の搬出室と、相対的に高真空に保たれていて、処理
室からウェハを受む月Il!りそれを第1および第2の
搬出室に交互に1般送する機(1Nを有する第2の方向
制御室とを備えている。
The end station of the present invention has a first and second loading chamber, which are maintained at a relatively high vacuum, and a mechanism for alternately receiving wafers from the first and second loading chambers and transporting them to the processing chamber. A first direction control chamber having a wafer and a first and second unloading chamber are kept at a relatively high vacuum and receive wafers from the processing chamber. The machine is equipped with a machine (a second direction control room having a capacity of 1N) and a machine (a second direction control room having a capacity of 1N) for transporting it to the first and second unloading rooms alternately.

〔作用〕[Effect]

第1の方向制御室によって第1および第2の搬入室から
の1′)エバは交互に処理室に搬送され、かつ、第2の
方向制御室によって処理室からのウェハは第1および第
2の搬出室に交互に搬送される。
1') The wafers from the first and second loading chambers are alternately transported to the processing chamber by the first direction control chamber, and the wafers from the processing chamber are transported to the first and second loading chambers by the second direction control chamber. The materials are transported alternately to the unloading room.

この場合、第1および第2の搬入室並びに第1および第
2の搬出室の真空荒引きは独立に(又は一部具:ff1
Lで)行うことができる。これによって、処理能力向上
の隘路となっている真空荒引き時間が等測的に短縮され
る。
In this case, the rough vacuuming of the first and second loading chambers and the first and second loading chambers is carried out independently (or by one part: ff1
L) can be done. As a result, the vacuum roughing time, which is a bottleneck in improving throughput, is isometrically shortened.

〔実施例〕〔Example〕

第1図は、この発明の一実施例の概略を示す平面図であ
る。このエンドステーションは、処理室をノ!、通とす
る2系統のウェハ搬送ラインから成る。
FIG. 1 is a plan view schematically showing an embodiment of the present invention. This end station is a processing room! It consists of two wafer transfer lines, one for each line.

即ら、このエンドステーションは、低真空(例えばI 
O−’〜I 0−3To r r)の第1の搬入室、例
えば搬入室20および第2の搬入室、例えば搬入室30
と、第1の方向制御室、例えば方向制御室70と、高真
空(例えば] 0−5− I O−7T o rr)の
共通の処理室60と、第2の方向制御室、例えば方向制
御室80と、低真空(例えば10−1〜1O−3Tor
r)の第1の搬出室、例えば搬出室40および第2の搬
出室、例えば搬出室50とから構成されている。
That is, this end station is in a low vacuum (e.g. I
O-'~I 0-3Torr) A first loading chamber, e.g. loading chamber 20, and a second loading chamber, e.g. loading chamber 30.
, a first direction control chamber, e.g. a direction control chamber 70, a common processing chamber 60 of high vacuum (e.g. 0-5-IO-7T o rr), and a second direction control chamber, e.g. a direction control chamber. chamber 80 and a low vacuum (e.g. 10-1 to 1O-3 Torr).
r) is composed of a first unloading chamber, for example unloading chamber 40, and a second unloading chamber, for example unloading chamber 50.

搬入室20および30は、それぞれ、第4図で示した従
来のものと同様であり、搬送ヘルド22.32およびゲ
ートバルブ23.24.33.34が設けられており、
かつ入口部には搬送ベルト21.31が設けられており
、うエバWは大気中から1枚ずつ搬入される。搬出室4
0および50も、それぞれ第4図に示した従来のものと
同様であり、ウェハWは大気中に1枚ずつ搬出される。
The loading chambers 20 and 30 are each similar to the conventional one shown in FIG. 4, and are provided with a transport heald 22.32 and a gate valve 23.24.33.34.
Further, a conveyor belt 21.31 is provided at the entrance, and the wafers W are brought in one by one from the atmosphere. Unloading room 4
0 and 50 are also similar to the conventional one shown in FIG. 4, and the wafers W are carried out one by one into the atmosphere.

方向制御室70および80は、それぞれ、搬入室20と
搬入室30との間、および搬出室40と搬出室50との
間に設けられており、かつゲートバルブ等を介さずに処
理室60に直接通しており、これによって処理室60と
同一の高真空に保たれている。方向制御室70において
は、搬入室20.30間の搬送ヘルド71および処理室
60への搬送ヘルド72が交差しており、一方の搬送ヘ
ルド、例えば!殻送ベルト71は上下駆動機構(図示省
略)によりW降させられる。また、搬送ベルト71G;
1逆回転可能であり、これによってウェハWを11送ヘ
ルド22および32のいずれからでも受け取ることがで
きる。
The direction control chambers 70 and 80 are provided between the loading chamber 20 and the loading chamber 30 and between the loading chamber 40 and the loading chamber 50, respectively, and are connected to the processing chamber 60 without using a gate valve or the like. The process chamber 60 is kept at the same high vacuum level as the processing chamber 60. In the direction control room 70, the transfer heald 71 between the loading chambers 20, 30 and the transfer heald 72 to the processing chamber 60 intersect, and one of the transfer healds, for example! The shell conveying belt 71 is lowered by a vertical drive mechanism (not shown). In addition, the conveyor belt 71G;
It is possible to rotate the wafer W in one reverse direction, thereby allowing the wafer W to be received from any of the 11 feeding healds 22 and 32.

第2図は、第1図の線n−nに沿う部分断面図であり、
上昇位置の11送ヘルドを符号71で示し、降下位置の
搬送ヘルドを符号71′で示す。−ト昇位置の搬送ヘル
1−71と搬送ヘルド22および32とは同レベルにあ
り、この状態でウェハWを搬送ベルト22または32か
ら受け取る。1般送ヘルド72は降下位置の搬送ヘル1
−71′よりも上に位置しており、搬送ベルト72と搬
送ヘルド61ば同レベルにあり、この状態でウェハWを
処理室60に搬送する。このようにして方向制御室70
は、搬入室20および搬入室30からウェハWを交互に
受取りそれを処理室60へ搬送する。
FIG. 2 is a partial cross-sectional view taken along line nn in FIG. 1;
The 11 feed heald in the raised position is designated by the reference numeral 71, and the transport heald in the lowered position is designated by the reference numeral 71'. - The conveyor belt 1-71 in the raised position and the conveyor healds 22 and 32 are at the same level, and in this state the wafer W is received from the conveyor belt 22 or 32. The first general transport heald 72 is the transport heald 1 in the lowered position.
-71', the conveyor belt 72 and the conveyor heald 61 are at the same level, and the wafer W is conveyed to the processing chamber 60 in this state. In this way, the direction control room 70
receives the wafers W alternately from the loading chamber 20 and the loading chamber 30 and transports them to the processing chamber 60.

方向制御室80も方向制御室70と同様の機構を有し、
処理室60からウェハWを受取りそれを搬出室40およ
び搬出室50へ交互に1般送する。
The direction control room 80 also has the same mechanism as the direction control room 70,
The wafer W is received from the processing chamber 60 and transported to the unloading chamber 40 and the unloading chamber 50 alternately.

この場合、ウェハWを搬出室40と搬出室50のどちら
へ搬送するかは、予めプログラムで定めておくことも可
能であり、或いは搬出室40および搬出室50の真空度
を検出しで早く真空度が良くなった方へ)般送すること
も可能である。尚、」二記の搬送制御は、搬入室20お
よび搬入室30に′ついても同様である。
In this case, it is possible to determine in advance whether the wafer W is to be transported to the unloading chamber 40 or 50 by a program, or the degree of vacuum in the unloading chamber 40 and the unloading chamber 50 can be detected and the vacuum can be quickly transferred. It is also possible to send it to the general public (for those who have improved). Note that the transport control described in ``2'' also applies to the carry-in chamber 20 and the carry-in chamber 30.

搬入室20.30、搬出室40.50および処理室60
は、それぞれ独立した真空排気系を有する。但し、搬入
室20.30および搬出室40.50の真空荒引き系は
、排気時期が完全に一致する部屋については、或いは排
気時期が少しも重複しない部屋についてはバルブ切り換
えにより、それぞれ共用可能である。
Carrying-in room 20.30, carrying-out room 40.50 and processing room 60
have independent vacuum pumping systems. However, the rough vacuum systems for the loading room 20.30 and the loading room 40.50 can be shared by switching valves for rooms where the exhaust timings completely match, or for rooms where the exhaust timings do not overlap at all. be.

第3図は、第1図の装置の動作の一例を示すタイムチャ
ートである。制御手段(図示省略)によりこのような制
御が行われる。この場合、ウェハWの位置検出、各部屋
の真空度検出等は、エンドステーションに設けられたフ
ォトセンサ、真空度計等で行われる。
FIG. 3 is a time chart showing an example of the operation of the apparatus shown in FIG. Such control is performed by a control means (not shown). In this case, detection of the position of the wafer W, detection of the degree of vacuum in each room, etc. are performed using a photosensor, a vacuum degree gauge, etc. provided at the end station.

この発明の動作の一例を第3図に従って説明すると、ま
ず搬入室20に窒素ガスを入れてガスリークさせ大気圧
にしく図中(a)’) 、そこヘウェハWを1枚搬入し
く図中(b))、搬入室20の荒引きを行う (図中(
C))。荒引きが完了するとウェハWを方向制御室70
へ搬送する(図中(d))。その後ウェハWを待機場所
73へ搬送する(図中(e))と同時に、搬入室20の
ガスリークが行われ(図中(a))そこで次の動作が開
始される。ウェハWはその後搬送ベルト61によって注
入場所62へ搬送され(図中(f))、そこでイオン注
入等の処理が行われる(図中(g))。この場合のイオ
ンビームは、イオン源(図示省略)から第1図の紙面に
垂直に飛来してくるが、ウェハWを立てらせる等すれば
紙面に平行に飛来してきてもよい。処理が完了したウェ
ハWは方向制御室80へ搬送され(図中(h))、更に
搬出室40へ搬送され(図中(i)) 、搬出室40の
ガスリーク(図中(j))の後、ウェハWは大気中に搬
出される(図中(k))。その後搬出室40の荒引きが
行われる(図中(1))。
An example of the operation of the present invention will be explained with reference to FIG. 3. First, nitrogen gas is introduced into the loading chamber 20 to cause the gas to leak and the pressure is reduced to atmospheric pressure ((a)' in the figure), and one wafer W is loaded therein ((b) in the figure). )), carry out a rough removal of the loading room 20 (in the figure (
C)). When the rough pulling is completed, the wafer W is transferred to the direction control chamber 70.
((d) in the figure). Thereafter, the wafer W is transported to the standby place 73 ((e) in the figure), and at the same time, gas leaks from the carry-in chamber 20 ((a) in the figure), and the next operation is then started. The wafer W is then transported by the transport belt 61 to an implantation site 62 ((f) in the figure), where processing such as ion implantation is performed ((g) in the figure). In this case, the ion beam comes from an ion source (not shown) perpendicular to the plane of the paper in FIG. 1, but it may also come in parallel to the plane of the paper if the wafer W is made to stand up. The processed wafer W is transferred to the direction control chamber 80 ((h) in the figure) and further transferred to the unloading chamber 40 ((i) in the figure) to prevent gas leakage in the unloading chamber 40 ((j) in the figure). Thereafter, the wafer W is carried out into the atmosphere ((k) in the figure). Thereafter, the unloading chamber 40 is roughly cleared ((1) in the figure).

以後同様の動作が繰り返され、かつ他の搬送ラインにお
いても同様の動作が並行して行われている。
Thereafter, similar operations are repeated, and similar operations are performed in parallel on other conveyance lines.

このように、このエンドステーションにおいては、二つ
の搬送ラインにおいて搬入室20.30および搬出室4
0.50での真空荒引きは独立に(または一部具通して
)行うことが可能な為、二つの搬送ラインから交互にウ
ェハWを搬送して処理することにより、処理能力向上の
妨げとなっている真空荒引き時間を等測的に短縮するこ
とができる。例えば第3図において各部屋20.30.
40.50の荒引き時間が従来と同程度の時間、例えば
6〜7秒程程度あっても、イオン注入時間が1〜2秒程
程度おいては、期間Tは13秒程度となる。この期間中
にイオン注入が2回行われているから、処理能力は50
0枚/時以上となる。
In this way, in this end station, the loading chamber 20.30 and the loading chamber 4 are arranged on the two conveyor lines.
Since the vacuum roughing at 0.50 can be performed independently (or through a part of the equipment), by alternately transporting and processing the wafers W from the two transport lines, it is possible to prevent the improvement of processing capacity. The vacuum roughing time can be reduced isometrically. For example, in FIG. 3, each room 20.30.
Even if the roughing time of 40.50 is about the same as the conventional one, for example about 6 to 7 seconds, the period T is about 13 seconds if the ion implantation time is about 1 to 2 seconds. Since ion implantation was performed twice during this period, the processing capacity was 50%.
0 sheets/hour or more.

尚、このエンドステーションにおいては、処理室が共1
1な為一つの処理段(rHでよく、しかも処理室G11
一つの搬送ラインを有するエンドステーションと同しで
あるから構造が特に複♀(1になることはない。また、
方向制御室70.80での搬送機構を除いて従来と同様
の搬送機構が適用でき、しかも2系統の搬送ラインは略
同様の動作を行う為これの制御系は同一のものが使用で
きる。また、この実施例のように方向制御室70には処
理室60で処理するためのウェハWの待機場所73を設
けることができる故、ウェハWの搬送時間に伴う処理能
力の減少を防くことができる。更に、ウェハWは1枚ず
つ搬送するため、他の装置との1般送ラインの結合によ
り連続処理が可能である。尚、ウェハWの1般送シ:1
、上記のようにヘルドに限定されることなく、ローラ、
チェーン、ギヤ等によって行っても良い。
Note that this end station has one processing chamber.
1, so there is only one processing stage (rH is sufficient, and processing chamber G11
Since it is the same as an end station with one conveyance line, the structure is particularly complex (it cannot be one. Also,
The same conveyance mechanism as the conventional one can be applied except for the conveyance mechanism in the direction control room 70, 80, and since the two conveyance lines operate in substantially the same way, the same control system can be used for the two conveyance lines. Furthermore, as in this embodiment, the direction control chamber 70 can be provided with a waiting area 73 for the wafers W to be processed in the processing chamber 60, so that reduction in processing capacity due to the transport time of the wafers W can be prevented. I can do it. Furthermore, since the wafers W are transported one by one, continuous processing is possible by connecting one general transport line with other devices. In addition, 1 general feed of wafer W: 1
, without being limited to Held as above, Laura,
This may be done using a chain, gear, etc.

〔発明の効果〕〔Effect of the invention〕

以−1−のようにこの発明によれば、処理能力向上の妨
げとなっている真空荒引き時間を等測的に短縮でき、こ
れによってウェハの処理能力を大幅に向上さ廿るごとが
できる。
As described in -1- above, according to the present invention, the vacuum roughing time, which is an impediment to improving processing capacity, can be isometrically shortened, thereby making it possible to significantly improve wafer processing capacity. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の概略を示す平面図であ
る。第2図は、第1図の綿II −TIに沿う部分断面
図である。第3図は、第1図の装jRの動作の一例を示
ずタイムチャー1・である。第41ソ目、1、従来のエ
ン1゛ステーシヨンの概略を示ず゛1′曲図である。第
5図は、第4図の装置の概略動11を小ずタイムチャ=
1・である。 W・・・ウェハ、20,30.・・搬入室、40゜50
・・・搬出室、60・・・処理室、7N+、lid、。 、方向制御室
FIG. 1 is a plan view schematically showing an embodiment of the present invention. FIG. 2 is a partial cross-sectional view taken along line II-TI in FIG. 1. FIG. 3 does not show an example of the operation of the device shown in FIG. 1, but is a time chart 1. No. 41, 1. This is a 1' music diagram which does not schematically show the conventional engine 1 station. FIG. 5 shows the schematic operation 11 of the device shown in FIG.
It is 1. W...Wafer, 20, 30. ... Loading room, 40°50
... Carrying out room, 60... Processing room, 7N+, lid. , direction control room

Claims (1)

【特許請求の範囲】[Claims] (1)大気中のウェハを相対的に低真空の搬入室を経て
相対的に高真空の処理室に搬送し、そこで処理の後相対
的に低真空の搬出室を経て大気中に取り出すエンドステ
ーションにおいて、 第1および第2の搬入室と、 相対的に高真空に保たれていて、第1および第2の搬入
室からウェハを交互に受け取りそれを処理室に搬送する
機構を有する第1の方向制御室と、第1および第2の搬
出室と、 相対的に高真空に保たれていて、処理室からウェハを受
け取りそれを第1および第2の搬出室に交互に搬送する
機構を有する第2の方向制御室とを備えることを特徴と
するエンドステーション。
(1) An end station where a wafer in the atmosphere is transported through a relatively low-vacuum loading chamber to a relatively high-vacuum processing chamber, and after being processed there, it is taken out into the atmosphere through a relatively low-vacuum loading chamber. a first and second loading chamber, and a first chamber that is maintained at a relatively high vacuum and has a mechanism for alternately receiving wafers from the first and second loading chambers and transporting them to the processing chamber; a direction control chamber, first and second unloading chambers, which are maintained at a relatively high vacuum and have a mechanism for receiving wafers from the processing chamber and alternately conveying them to the first and second unloading chambers; An end station characterized by comprising: a second direction control room.
JP59226582A 1984-10-27 1984-10-27 End station Expired - Lifetime JPH0680718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59226582A JPH0680718B2 (en) 1984-10-27 1984-10-27 End station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226582A JPH0680718B2 (en) 1984-10-27 1984-10-27 End station

Publications (2)

Publication Number Publication Date
JPS61104610A true JPS61104610A (en) 1986-05-22
JPH0680718B2 JPH0680718B2 (en) 1994-10-12

Family

ID=16847428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226582A Expired - Lifetime JPH0680718B2 (en) 1984-10-27 1984-10-27 End station

Country Status (1)

Country Link
JP (1) JPH0680718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097973B2 (en) * 2012-05-10 2017-03-22 株式会社昭和真空 Vacuum device with rotation introduction mechanism

Also Published As

Publication number Publication date
JPH0680718B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
KR0170411B1 (en) Processing system
JPH04229633A (en) Apparatus and method for vacuum conveyance and treatment of wafer
AU2002365591A1 (en) Wafer handling apparatus and method
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
EP0095980B1 (en) Method and apparatus for transporting and treating an article in vacuum
JPH01251734A (en) Semiconductor manufacturing apparatus
JPS61104610A (en) End station
JPS61113766A (en) End station
JPH07176592A (en) Carrying in/out apparatus for object to be treated
JPS609103B2 (en) Continuous sputtering equipment
JPS62996B2 (en)
JPS6328863A (en) Vacuum treatment device
JPH01135015A (en) Semiconductor wafer treating device
JP2690971B2 (en) Processing method
JPH0237742A (en) Semiconductor device manufacturing equipment
JPS60102744A (en) Vacuum treater
JPH05326666A (en) Conveyor
JP3420712B2 (en) Processing system
JP3082148B2 (en) Compound type wafer processing equipment
JPS609102B2 (en) Continuous vacuum processing equipment
JPH01120811A (en) Semiconductor wafer treatment equipment
JPS61113767A (en) End station
JP2639093B2 (en) Ion processing equipment
JPS61104636A (en) End station
JPH0636198U (en) Vacuum processing device