JPS61104636A - End station - Google Patents

End station

Info

Publication number
JPS61104636A
JPS61104636A JP22658384A JP22658384A JPS61104636A JP S61104636 A JPS61104636 A JP S61104636A JP 22658384 A JP22658384 A JP 22658384A JP 22658384 A JP22658384 A JP 22658384A JP S61104636 A JPS61104636 A JP S61104636A
Authority
JP
Japan
Prior art keywords
chamber
carrier
wafers
wafer
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22658384A
Other languages
Japanese (ja)
Other versions
JPH0680719B2 (en
Inventor
Yasuo Suzuki
泰雄 鈴木
Koji Matsunaga
幸二 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP22658384A priority Critical patent/JPH0680719B2/en
Publication of JPS61104636A publication Critical patent/JPS61104636A/en
Publication of JPH0680719B2 publication Critical patent/JPH0680719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)

Abstract

PURPOSE:To enable the equivalent reduction in time of evacuation of draw per wafer by a method wherein every carrier loaded with a plurality of wafers is subjected to vacuum rough draw in a carrying chamber. CONSTITUTION:After a carrier C1 loaded with a plurality of wafers W is carried into the carry-in chamber 20, this chamber 20 is drawn to rough vacuum by closing a gate valve 23, and the carrier is carried to a wafer take-out chamber 70 by opening a gate valve 24. After vacuum-draw of a processing chamber 60, the wafers W are taken out one by one and processed by ion implantation and the like, and the processed wafers are loaded to a vacant carrier C2 lying in a wafer load chamber 80; at the same time, the next carrier C1 stands by in the carry-in chamber 20. When all the wafers W are completed in processing, the carrier C1 which has become vacant is carried to a carry-out chamber 30 with an ascent-descent table 76, and the gas is leaked into the atmospheric pressure; then, the carrier is carried under the atmospheric pressure by opening then, the carrier is carried under the atmospheric pressure by opening a gate value 33. During the other carrying line, a carrier C2 loaded with the post- processing wafers W is carried to a carry-out chamber 50, and then carried out under the atmospheric pressure after gas leakage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大気中のウェハを低真空の搬入室を経て高
真空の処理室に搬送し、そこでイオン注入等の処理の後
低真空の搬出室を経て大気中に取り出すエンドステーシ
ョンに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention transports a wafer in the atmosphere through a low-vacuum loading chamber to a high-vacuum processing chamber, where it is processed in a low-vacuum state after processing such as ion implantation. It relates to an end station that takes out air through an unloading chamber.

〔従来の技術〕[Conventional technology]

第6図は、従来のエンドステーションの概略を示す平面
図である。このエンドステーションは、一つのウェハ搬
送ラインから成り、高真空(例えば10−5〜10−7
To r r)の処理室2と、処理室2への大気の直接
の流入を防止するための41(真空(例えばI O−’
 〜I O−”ro r r)の予備室である搬入室1
および搬出室3から構成されている。
FIG. 6 is a plan view schematically showing a conventional end station. This end station consists of one wafer transfer line and has a high vacuum (e.g. 10-5 to 10-7
41 (vacuum (e.g. I O-'
Loading room 1, which is a preliminary room for ~I O-"ro r r)
and an unloading room 3.

搬入室11処理室2および搬出室3G才それぞれ真空排
気系を有している。大気と搬入室1との間、搬入室1と
処理室2との間、処理室2と搬出室3との間および搬出
室3と大気との間には、それぞれ、ゲートバルブ4.5
.6.7が設けられており、これによってウェハWの1
般送時以外は真空気密が保たれる。尚ウェハWの搬送は
、1般送へ列用−8,9、】0.11、】2によって行
われる。
The loading chamber 11, the processing chamber 2, and the loading chamber 3G each have a vacuum exhaust system. Gate valves 4.5 are provided between the atmosphere and the loading chamber 1, between the loading chamber 1 and the processing chamber 2, between the processing chamber 2 and the unloading chamber 3, and between the unloading chamber 3 and the atmosphere.
.. 6.7 is provided, which allows one of the wafers W to be
Vacuum-tightness is maintained except during general transport. The wafer W is transported by the lines -8, 9, ]0.11, and ]2 for the first general feed.

第7図は、第6図の装置の概略動作を示すタイJ、チャ
ー1・である。ウェハWは、大気中に置かれた?!数枚
のウェハを装着したキャリアまたは他の1殿送ラインか
ら1枚ずつ搬入室1に搬入され(図中(c))、搬入室
1を真空排気(真空荒引き)後(図中(d))処理室2
に搬送され(図中(b))、処理室2においてイオン注
入等の処理が行われる(図中(a))。その後ウェハW
は、1般出室3へ搬送され(図中(b)) 、搬出室3
をガスリークの後再び人気中へ1般出される(図中(C
))。
FIG. 7 shows tie J and chart 1, which schematically show the operation of the apparatus shown in FIG. Was the wafer W placed in the atmosphere? ! Several wafers are loaded one by one into the loading chamber 1 from a carrier or another transfer line ((c) in the figure), and after the loading chamber 1 is evacuated (rough vacuum evacuation) ((d) in the figure). )) Processing room 2
((b) in the figure), and processes such as ion implantation are performed in the processing chamber 2 ((a) in the figure). Then wafer W
is transported to the first general unloading room 3 ((b) in the figure), and then to the unloading room 3.
After the gas leak, it became popular again (in the figure (C)
)).

尚、以上のようなエンドステーションの一例が′1シ間
昭57−205955号公報に示されている。
Incidentally, an example of the above-mentioned end station is shown in '1 Shima Sho 57-205955.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のようなエンドステーションでは、ウェハの処理能
力(単位時間当りの処理枚数)は、主として、処理室2
にお&−する注入時間および搬入室1.1般出室3にお
t−する真空IJI気(真空荒引き)時間によって決定
される。例えば、ウェハ交換時間を7秒とした場合、注
入時間が10秒の場合は処理能力は200枚/時程度で
あり、注入時間が5秒の場合は処理能力は300枚/時
程度である。
In the end station described above, the wafer processing capacity (the number of wafers processed per unit time) is mainly determined by the processing chamber 2.
It is determined by the injection time for the loading chamber 1.1 and the vacuum IJI (rough vacuum pumping) time for loading the loading chamber 1.1 and the general discharge chamber 3. For example, when the wafer exchange time is 7 seconds, the processing capacity is about 200 wafers/hour when the injection time is 10 seconds, and the processing capacity is about 300 wafers/hour when the injection time is 5 seconds.

ところが近年のイオンヒームの大面積、大電流化に伴い
注入時間の短縮化(例えば1〜2秒)が可能になってき
たが、上述したエンドステーションでは、たとえ注入時
間が5秒以下となっても処理能力は主として搬入室1、
搬出室3の真空荒引き時間によって制限され、処理能力
を大幅に改善させることは非常に離しい(第7図参照)
。この場合荒引き時間を非常に短くすることは、ti+
気系が巨大になりスペース、コメ1−等の面から非現実
的である。
However, in recent years, with the large area and large current of ion beams, it has become possible to shorten the injection time (for example, 1 to 2 seconds), but with the end station described above, even if the injection time is 5 seconds or less, The processing capacity is mainly in the loading room 1,
It is very difficult to significantly improve the processing capacity, as it is limited by the rough vacuum evacuation time of the unloading chamber 3 (see Figure 7).
. In this case, making the roughing time very short means that ti+
The air system becomes huge and it is unrealistic in terms of space, rice, etc.

従ってこの発明は、荒引き時間が隘路になっている点を
解決し、ウェハの処理能力を向」ニさせることを目的と
する。
Therefore, it is an object of the present invention to solve the problem of roughing time being a bottleneck and to improve wafer throughput.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明のエン1−ステーションは、複数枚のウェハを
装着可能な第1のキャリアを1般送する機構をそれぞれ
有する第1の搬入室及び第1の搬出室と、相対的に高真
空に保たれていて、第1の1般入室から第1のキャリア
を受け取り、そこに装着されているウェハを一枚ずつ取
り出してそれを処理室へ1般送し、かつ当該第1のキャ
リアを第1の搬出室へ搬送する機構を有するウェハ取出
し室と、複数枚のウェハを装着可能な第2のキャリアを
搬送する機構をそれぞれ有する第2の搬入室及び第2の
搬出室と、相対的に高真空に保たれていて、第2の搬入
室から第2のキャリアを受け取り、そこに処理室からの
ウェハを一枚ずつ装着し、かつ当該第2のキャリアを第
2のIIl出室へ1般送する機構を有するウェハ装着室
とを備えている。
The en-1 station of the present invention has a first carrying-in chamber and a first carrying-out chamber each having a mechanism for transporting a first carrier capable of mounting a plurality of wafers, and a first carrying-in chamber and a first carrying-out chamber that are kept in a relatively high vacuum. A first carrier is received from the first general entrance chamber, and the wafers mounted thereon are taken out one by one and sent to the processing chamber, and the first carrier is transferred to the first general entrance chamber. A wafer unloading chamber having a mechanism for transporting a second carrier to the unloading chamber, a second loading chamber and a second unloading chamber each having a mechanism for transporting a second carrier onto which a plurality of wafers can be mounted, and It is maintained in a vacuum, receives a second carrier from the second loading chamber, loads wafers from the processing chamber thereon one by one, and transports the second carrier to the second unloading chamber. The wafer loading chamber has a wafer loading mechanism.

〔作用〕[Effect]

第1のキャリアに複数枚のウェハを装着し、当該第1の
キャリアを大気中から第1の1般入室を経てウェハ取出
し室へ搬送する。ウェハ取出し室において第1のキャリ
アからウェハが一枚ずつ取り出され処理室へ搬送される
。一方、例えば空の第2のキャリアを大気中から第2の
1般入室を経てウェハ装着室へ搬送する。ウェハ装着室
において処理室からのウェハが一枚ずつ第2のキャリア
に装着される。ウェハを取り出された第1のキャリアは
第1の搬出室を経て大気中に取り出され、ウェハを装着
された第2のキャリアは第2の搬出室を経て大気中に取
り出される。この場合、複数枚のウェハを装着したキャ
リア毎に搬入室において真空荒引きを行うことができる
為、ウェハ一枚当たりの真空荒引き時間が等測的に短縮
される。
A plurality of wafers are mounted on a first carrier, and the first carrier is transported from the atmosphere to a wafer unloading chamber via a first general admission chamber. In the wafer unloading chamber, wafers are taken out one by one from the first carrier and transported to the processing chamber. On the other hand, for example, an empty second carrier is transported from the atmosphere to the wafer mounting chamber via the second general admission chamber. In the wafer mounting chamber, wafers from the processing chamber are mounted one by one onto the second carrier. The first carrier from which the wafer has been taken out is taken out into the atmosphere through the first unloading chamber, and the second carrier with the wafer mounted thereon is taken out into the atmosphere through the second unloading chamber. In this case, since rough vacuuming can be performed in the loading chamber for each carrier on which a plurality of wafers are mounted, the rough vacuuming time per wafer is reduced isometrically.

〔実施例〕〔Example〕

第1図は、この発明の一実施例の概略を示す平面図であ
る。このエンドステーションは、一つの処理室と2系統
のキャリアI殿送ラインから成る。
FIG. 1 is a plan view schematically showing an embodiment of the present invention. This end station consists of one processing chamber and two carrier I delivery lines.

即ち、このエンドステーションは、低真空(例えば10
  ’〜10−’To r r)の第1の搬入室、例え
ば1般入室20および第1の1般出室、例えば搬出室3
0と、ウェハ取り出し室70と、高真空(例えば] 0
−5〜10−7To r r)の処理室60と、低真空
(例えばI O−’〜10−3T o r r)の第2
の搬入室、例えば搬入室40および第2の搬出室、例え
ば1般出室50と、ウェハ装着室80とから構成されて
いる。
That is, this end station is placed under a low vacuum (e.g. 10
'~10-' Tor r
0, the wafer unloading chamber 70, and a high vacuum (for example) 0
-5 to 10-7 Torr) processing chamber 60 and a second processing chamber 60 of low vacuum (e.g. I O-' to 10-3 Torr).
It is comprised of a loading chamber such as a loading chamber 40, a second loading chamber such as a primary loading chamber 50, and a wafer mounting chamber 80.

1般入室20には、キャリア1般送ベルト22及びゲー
トバルブ23.24が設けられており、かつ入11部に
はギヤリア搬送ヘルド21が設けられており、例えばウ
ェハWを複数枚装着したキャリア01が大気中から搬入
されかつ次の部屋へ搬送される。搬入室40も搬入室2
0と同様の機構を有するが、そこにばウェハWを複数枚
装着可能な例えば空の;1′ヤリアC2が大気中から搬
入される。
The 1st general entrance chamber 20 is provided with a carrier 1 general conveyance belt 22 and gate valves 23, 24, and the 11th entrance section is provided with a gear rear transfer heald 21. 01 is brought in from the atmosphere and transported to the next room. Loading room 40 is also loading room 2
It has the same mechanism as 0, but for example, an empty 1' Yaria C2 to which a plurality of wafers W can be mounted is carried in from the atmosphere.

搬出室30には、キャリア搬送ヘルド32及びゲートバ
ルブ33.34が設けられており、かつ出1」部にII
キャリア1r&送ヘルド31が設けられており、キャリ
アC1を前の部屋から受け取りかつそれを大気中へI搬
出する。搬出室50も搬出室30と同様の機構を有し、
キャリアC2を前の部屋から受け取りかつそれを大気中
へ搬出する。
The unloading chamber 30 is provided with a carrier transport heald 32 and gate valves 33 and 34, and a
A carrier 1r & transport heald 31 is provided to receive the carrier C1 from the previous room and carry it out into the atmosphere. The unloading chamber 50 also has the same mechanism as the unloading chamber 30,
Receive carrier C2 from the previous room and carry it out into the atmosphere.

ウェハ取出し室70及びウェハ装着室80は、それぞれ
、搬入室20と搬出室30との間、及び搬入室40と搬
出室50との間に設けられており、かつゲートバルブ等
を介さずに処理室60に直接通じており、これによって
処理室60と同一の高真空に保たれている。
The wafer unloading chamber 70 and the wafer mounting chamber 80 are provided between the loading chamber 20 and the unloading chamber 30, and between the loading chamber 40 and the unloading chamber 50, respectively, and perform processing without using a gate valve or the like. It communicates directly with the chamber 60, thereby maintaining the same high vacuum as the processing chamber 60.

第2図は第1図のウェハ取出し室70の概略を拡大して
示す平面図であり、第3図は第2図のlll−l11方
向に見た側面図である。昇降台76 L:t、胃降機構
(図示省略)により昇降させられる。−1−ヤリア搬送
ヘルド71及び73は、;1−セ最速1般送ヘルド22
及び32と同レベルに固定されている。
2 is an enlarged plan view schematically showing the wafer unloading chamber 70 shown in FIG. 1, and FIG. 3 is a side view taken in the direction 11-11 of FIG. Lifting table 76 L:t, lifted and lowered by a stomach descent mechanism (not shown). -1- Yaria transport healds 71 and 73 are; 1-Se fastest 1 general transport heald 22
and 32 are fixed at the same level.

キャリア搬送ヘルド72は、−1−下駆動機構(図示省
略)により昇降させられ、」二胃位置のギヤリア搬送ヘ
ルドを符号72で示し、降下位置のキャリア搬送ヘルド
を符号72′で示す。−に肩位置の−1−セリア11送
ヘルド72とキャリア1liff送ヘル[71及び73
とは同レベルにあり、この状態でキャリアC1を4−ヤ
リア搬送ベルト71から受け取り、かつキャリア搬送ヘ
ルド73へ1般送する。降下位置のキャリア搬送ヘルド
72′は昇降台76の上面よりも常に下に位置しており
、この状態でキャリアC1をに肩位置にある昇降台76
−トに載置する。ウェハ搬送ヘルド74ば、上昇位置の
キャリア1般送ヘルド72と上界位置の昇降台76との
間に位置しており、ウェハ1般送ヘルド61と同レベル
に固定されている。尚、符号77は昇降台76に設+)
られた切欠きである。
The carrier conveyance heald 72 is raised and lowered by a -1-lower drive mechanism (not shown), and the gear rear conveyance heald in the digastric position is indicated by reference numeral 72, and the carrier conveyance heald in the lowered position is indicated by reference numeral 72'. -1- Seria 11 feeding heald 72 and carrier 1liff feeding heel [71 and 73
In this state, the carrier C1 is received from the 4-wheel conveyor belt 71 and is generally transported to the carrier conveyor heald 73. The carrier conveyance heald 72' in the lowered position is always located below the upper surface of the lifting table 76, and in this state, the carrier C1 is moved to the lifting table 76 in the shoulder position.
-Place it on the tray. The wafer transport heald 74 is located between the carrier 1 general transport heald 72 in the raised position and the lifting table 76 in the upper limit position, and is fixed at the same level as the wafer 1 general transport heald 61. In addition, the code 77 is installed on the lifting platform 76+)
This is the cutout.

第4図は、ウェハ取出し室の作用を説明する為の概略図
である。昇降台76の初期位置は、上昇位置である。キ
ャリア1般送ヘルド71等によって搬送されてきたキャ
リアCIをキャリア搬送ベルト72を降下させることに
よって昇降台76上に載置する。この状態で昇降台76
を段階的に降下させてキャリアCIに装着されているウ
ェハWを一枚ずつウーハ−最速ヘルド74によって取り
出して処理室60へ搬送する。複数枚のウェハWの取り
出しが全て完了すると昇降台76を上昇位置まで上昇さ
せ、かつキャリア(最速ヘルド72も上昇位置まで上昇
させ、キャリア搬送ヘル1〜72.73によって空にな
ったキャリアC1を搬出室30へ搬送する。尚、キャリ
アC1の位置、ウェハWの存否等は、例えばフォトセン
サ等によって検出する。
FIG. 4 is a schematic diagram for explaining the function of the wafer unloading chamber. The initial position of the lifting platform 76 is the raised position. The carrier CI transported by the carrier 1 general transport heald 71 and the like is placed on the lifting platform 76 by lowering the carrier transport belt 72. In this state, the lifting platform 76
is lowered in stages, and the wafers W mounted on the carrier CI are taken out one by one by the woofer-fastest heald 74 and conveyed to the processing chamber 60. When all the wafers W have been taken out, the lifting table 76 is raised to the raised position, and the carrier (the fastest heald 72 is also raised to the raised position, and the empty carrier C1 is moved by the carrier transport hels 1 to 72.73). The wafer is transported to the unloading chamber 30.The position of the carrier C1, the presence or absence of the wafer W, etc. are detected by, for example, a photo sensor.

ウェハ装着室80もウェハ取出し室70と同様の機構を
有しており、II入室40からの空のキャリアC2を受
け取り、そこに処理室60からのウェハWを一枚ずつ装
着し、かつ複数枚のウェハWの装着が全て完了したキャ
リアC2を搬出室50へ搬送する。この場合、昇降台8
6の初期位置は降下位置であり、昇降台86は空のキャ
リアC2にウェハWを一枚ずつ装着する毎に段階的に−
に胃する。
The wafer loading chamber 80 also has the same mechanism as the wafer unloading chamber 70, receives the empty carrier C2 from the II entry chamber 40, loads thereon one wafer W from the processing chamber 60, and loads a plurality of wafers W thereon one by one. The carrier C2 on which all of the wafers W have been mounted is transported to the unloading chamber 50. In this case, the lifting platform 8
The initial position of 6 is the lowering position, and the lifting table 86 is moved step by step to - each time the wafers W are loaded onto the empty carrier C2 one by one.
I feel angry.

尚、キャリアを昇降させてそこからウェハを取り出す機
構は、例えば特開昭5Fl 214260号公報に示さ
れている。
Note that a mechanism for raising and lowering a carrier and taking out a wafer therefrom is shown in, for example, Japanese Patent Laid-Open No. 5F1214260.

搬入室20.40、搬出室30.50及び処理室60は
、それぞれ独立した真空排気系を有する。
The loading chamber 20.40, the loading chamber 30.50, and the processing chamber 60 each have an independent evacuation system.

但し、搬入室20.40及び1般出室30.50の真空
荒引き系は、排気時期が完全に一致する部屋については
、成いは排気時期が少しも重複しない部JW、について
はバルブ切り換えにより、それぞれ共用可能である。例
えば、搬入室20と1般入室40とは、並びに1般出室
30と搬出室50とは、それぞれ共用可能である。
However, for the rough vacuum system of the loading room 20.40 and the general exit room 30.50, the valves must be switched for rooms where the exhaust timings completely match, or for rooms where the exhaust timings do not overlap at all. Therefore, each can be shared. For example, the loading room 20 and the general entrance room 40, as well as the primary exit room 30 and the loading room 50, can be shared.

第5図は、第1図の装置の動作の一例を示すタイツ、チ
ャー1・である。制御手段(図示省略)によりこのよう
な制御が行われる。この場合、キャリアCI、C2の位
置検出、ウェハWの位置検出、各部屋の真空度検出等は
、エンドステーションに設(Jられた)−Aトセンザ、
真空度51等で行われる。
FIG. 5 shows tights, Char 1, showing an example of the operation of the apparatus shown in FIG. Such control is performed by a control means (not shown). In this case, the position detection of the carriers CI and C2, the position detection of the wafer W, the vacuum level detection of each room, etc. are carried out by a sensor installed at the end station.
The process is carried out at a vacuum level of 51 degrees.

この発明の動作の一例を第5図に従って説明ずろと、ま
ずゲートバルブ24を閉しておいて搬入室20に窒素ガ
スを入れてガスリークさせて大気j1にし、ゲートバル
ブ23を開く (図中(a))。
An example of the operation of the present invention will be explained with reference to FIG. 5. First, the gate valve 24 is closed, nitrogen gas is introduced into the carry-in chamber 20 to cause the gas to leak to atmosphere j1, and the gate valve 23 is opened (in the figure) a)).

そしてウェハWを複数枚、例えば25枚装着したキャリ
アCIを搬入室20へ搬入する(図中(1)))。その
後ケートバルブ23を閉して搬入室20の荒引きを行い
、それが完了するとケートバルブ24を開き(図中(C
))、キャリアC1をウェハ取出し室70へ1般送する
(図中(d))。
Then, the carrier CI loaded with a plurality of wafers W, for example, 25 wafers W, is carried into the carry-in chamber 20 ((1) in the figure). Thereafter, the gate valve 23 is closed and the loading chamber 20 is roughly cleaned, and when this is completed, the gate valve 24 is opened ((C)
)), the carrier C1 is generally transported to the wafer unloading chamber 70 ((d) in the figure).

ついで工程(e)においては、処理室600真空引きが
行われ、キャリアC1からウェハWが一枚ずつ取り出さ
れて処理室60へ搬送され、そこでイオン注入等の処理
が行われ、ウェハ装着室80に待機している空のキャリ
アC2に一枚ずつ装着される。この場合のイオンビーム
は、イオン源(図示省略)から第1図の紙面に垂直に飛
来してくるが、ウェハWを立てらせる等ずれば紙面に平
行に飛来してきてもよい。又、ウェハWの処理中には、
未処理のウェハWを装着した次のギヤリアC1が搬入室
20において待機している。全てのウェハWの処理が完
了すると、昇降台76をに男1させ(図中(f)) 、
空になったキャリアCIを1般出室30へ搬送する(図
中(g))。そしてケートバルブ34を閉じて搬出室3
0のガスリークを行い大気圧にしてゲートバルブ33を
開き(図中(h)) 、キャリアCIを大気中へ1殿送
する(図中(I))。そしてゲートバルブ33を閉じて
1殻出室30の荒引ぎを行い、それが完了するとゲート
バルブ34を開いて次の動作の為に待機する(図中(j
))。一方、もう一方のキャリア搬送ラインにおいても
同様の動作が並行して行われており、処理後の複数枚の
ウェハWを装着したキャリアC2ば搬出室50へ!搬送
され(図中(p))、ガスリークの後大気中へ1般出さ
れる(図中(r))。
Next, in step (e), the processing chamber 600 is evacuated, and the wafers W are taken out one by one from the carrier C1 and transported to the processing chamber 60, where processing such as ion implantation is performed, and the wafer mounting chamber 80 The sheets are loaded one by one onto the empty carrier C2 that is waiting. In this case, the ion beam comes from an ion source (not shown) perpendicular to the plane of the paper in FIG. 1, but it may also come in parallel to the plane of the paper if the wafer W is made to stand up. Also, during the processing of the wafer W,
The next gear rear C1 loaded with unprocessed wafers W is waiting in the loading chamber 20. When all the wafers W have been processed, the lifting table 76 is moved to the upper position ((f) in the figure).
The empty carrier CI is transported to the first general discharge room 30 ((g) in the figure). Then, close the gate valve 34 and
The gate valve 33 is opened ((h) in the figure), and the carrier CI is sent into the atmosphere ((I) in the figure). Then, the gate valve 33 is closed and the one-shell extraction chamber 30 is rough-hulled, and when that is completed, the gate valve 34 is opened and the system waits for the next operation ((j) in the figure.
)). On the other hand, a similar operation is being performed in parallel on the other carrier transport line, and the carrier C2 carrying a plurality of processed wafers W is transferred to the unloading chamber 50! It is transported ((p) in the figure) and released into the atmosphere after a gas leak ((r) in the figure).

このように、このエンドステーションにおいては、複数
枚、例えば25枚のウェハWを装着したキャリアC1毎
に搬入室20等において荒引きを行う。このため、ウェ
ハWを一枚だけ搬入する従来の搬入室等に比較して、ウ
ェハW一枚当たりの1最人室に占める体積は少なく見積
っても1/2以下となり、その結果ウェハWの一枚当た
りの等測的な荒引き時間も1/2以下に短縮される。従
って、従来の装置において荒引き時間によって制限され
ていた処理能力は本エンドステーションでは大幅に改善
される。例えば、第5図において、−枚のウェハのイオ
ン注入時間が2皮表度の場合、ウェハを25枚処理する
工程(e)全体は90秒程度となり、期間Tは120秒
程皮表なる。この間に25枚のウェハが処理されるから
、処理能力は75050枚装度となって高い処理能力が
得られる。
In this way, in this end station, roughing is performed in the loading chamber 20 or the like for each carrier C1 on which a plurality of wafers W, for example, 25 wafers W are mounted. Therefore, compared to a conventional loading room where only one wafer W is loaded, the volume occupied by one wafer W in the most crowded room is estimated to be less than 1/2, and as a result, The isometric roughing time per sheet is also reduced to 1/2 or less. Therefore, the throughput, which was limited by the roughing time in conventional equipment, is significantly improved in the present end station. For example, in FIG. 5, if the ion implantation time for - wafers is 2 cycles, the entire process (e) for processing 25 wafers will take about 90 seconds, and the period T will last about 120 seconds. Since 25 wafers are processed during this time, the processing capacity is 75,050 wafers, which is a high processing capacity.

又、このエンドステーションにおいては、搬入室及び1
般出室において非常にゆっくりガスリークさせることが
できる為、流入する空気のエアハンマ現象のようなもの
が防止され、これによってウェハの破損・損傷が防止さ
れる。しかも、処理後のウェハはウェハ装着室80にお
いてもすべての装着が完了するまで冷却されており、か
つ搬出室50においてゆっくりとガスリークさせる為、
冷却時間を非常に長く、少なくとも従来の装置の数倍以
上取ることができる。又、このエンドステーションにお
いては、一枚ずつウェハを搬送する従来のものと異なり
、ゲートバルブの開閉、真空操作の制御回数は大幅に減
少でき、これによって故障の原因を減らすことができる
In addition, this end station has a loading room and a
Since the gas can be leaked very slowly in the general release chamber, the phenomenon of air hammer caused by the incoming air is prevented, thereby preventing breakage and damage to the wafer. Moreover, the wafer after processing is cooled in the wafer mounting chamber 80 until all mounting is completed, and gas leaks slowly in the unloading chamber 50.
The cooling time can be very long, at least several times longer than conventional equipment. Furthermore, unlike the conventional end station in which wafers are transferred one by one, the number of times the gate valve is opened and closed and the vacuum operation is controlled can be significantly reduced, thereby reducing the causes of failure.

尚、−1−記説明ではキャリアC2はキャリアC1と逆
方向に1般送していたが、これに限ることはなくキャリ
アC2をキャリアC1と同方向にlla送するようにし
ても良い。その場合は、部屋50が搬入室となり、部屋
40が1般出室となる。又、キャリア01.02の1殻
送並びにウェハWの搬送は、上記のようにヘル1に限定
されることなく、ローラ、チェーン、ギヤ等によって行
っても良い。
In addition, in the description of -1-, the carrier C2 is generally fed once in the opposite direction to the carrier C1, but the carrier C2 is not limited to this, and the carrier C2 may be sent lla in the same direction as the carrier C1. In that case, the room 50 becomes the loading room and the room 40 becomes the general exit room. Furthermore, the transport of one carrier 01.02 and the transport of the wafer W are not limited to the carrier 1 as described above, but may be performed using rollers, chains, gears, or the like.

〔発明の効果〕〔Effect of the invention〕

IJ I−のようにこの発明によれば、処理能力向−1
−のUjげとなっている真空荒引き時間を等測的に短i
inでき、これによってウェハの処理能力を大幅に向!
−さ一ロることができる。
According to this invention, like IJ I-1
- Isometrically shorten the vacuum roughing time resulting in Uj deviation
This greatly increases wafer processing capacity!
- I can do it all the time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図しl、この発明の一実施例の概略を示す平面し1
である。第2図は、第1図のウェハTfY出し室のll
j″i略を拡大して示す平面図である。第3図は、第2
図のl1l−Tll力向方向た側面図である。第4図1
、f、つlハ取出し室の作用を説明する為の概略図であ
る。第5図は、第1図の装置の動作の一例を示すタイム
チャー1・である。第6図ζJ、従来のエンドステーシ
ョンの概略を示す平面図である。第7図は、第6図の装
置の概略動作を示すタイJ、チャー1・である。 W・・・ウェハ、C1,C2,、、キャリア、20゜4
0・・・搬入室、30.50・・・1般出室、60.・
2処理室、70・1.ウェハ取出し室、80・0.ウェ
ハ装着室
FIG. 1 is a plan view schematically showing an embodiment of the present invention.
It is. Figure 2 shows the wafer TfY unloading chamber in Figure 1.
FIG. 3 is an enlarged plan view showing approximately
It is a side view taken in the l1l-Tll force direction of the figure. Figure 4 1
, f, and 1 are schematic diagrams for explaining the function of the extraction chamber. FIG. 5 is a time chart 1 showing an example of the operation of the apparatus shown in FIG. FIG. 6 ζJ is a plan view schematically showing a conventional end station. FIG. 7 shows tie J and chart 1, which schematically show the operation of the apparatus shown in FIG. W...Wafer, C1, C2,, carrier, 20°4
0... Loading room, 30.50... 1 General exit room, 60.・
2 processing room, 70.1. Wafer unloading room, 80.0. Wafer mounting room

Claims (1)

【特許請求の範囲】[Claims] (1)大気中のウェハを相対的に低真空の搬入室を経て
相対的に高真空の処理室に搬送し、そこで処理の後相対
的に低真空の搬出室を経て大気中に取り出すエンドステ
ーションにおいて、 複数枚のウェハを装着可能な第1のキャリアを搬送する
機構をそれぞれ有する第1の搬入室及び第1の搬出室と
、 相対的に高真空に保たれていて、第1の搬入室から第1
のキャリアを受け取り、そこに装着されているウェハを
一枚ずつ取り出してそれを処理室へ搬送し、かつ当該第
1のキャリアを第1の搬出室へ搬送する機構を有するウ
ェハ取出し室と、複数枚のウェハを装着可能な第2のキ
ャリアを搬送する機構をそれぞれ有する第2の搬入室及
び第2の搬出室と、 相対的に高真空に保たれていて、第2の搬入室から第2
のキャリアを受け取り、そこに処理室からのウェハを一
枚ずつ装着し、かつ当該第2のキャリアを第2の搬出室
へ搬送する機構を有するウェハ装着室とを備えることを
特徴とするエンドステーション。
(1) An end station where a wafer in the atmosphere is transported through a relatively low-vacuum loading chamber to a relatively high-vacuum processing chamber, and after being processed there, it is taken out into the atmosphere through a relatively low-vacuum loading chamber. , a first loading chamber and a first unloading chamber each having a mechanism for transporting a first carrier onto which a plurality of wafers can be mounted, and a first loading chamber that is maintained at a relatively high vacuum. from 1st
a wafer unloading chamber having a mechanism for receiving the carrier, taking out the wafers mounted thereon one by one and conveying them to the processing chamber, and conveying the first carrier to the first unloading chamber; a second carrying-in chamber and a second carrying-out chamber each having a mechanism for transporting a second carrier capable of mounting one wafer;
an end station comprising: a wafer mounting chamber having a mechanism for receiving a carrier, mounting wafers from the processing chamber thereon one by one, and transporting the second carrier to a second unloading chamber; .
JP22658384A 1984-10-27 1984-10-27 End station Expired - Fee Related JPH0680719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22658384A JPH0680719B2 (en) 1984-10-27 1984-10-27 End station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22658384A JPH0680719B2 (en) 1984-10-27 1984-10-27 End station

Publications (2)

Publication Number Publication Date
JPS61104636A true JPS61104636A (en) 1986-05-22
JPH0680719B2 JPH0680719B2 (en) 1994-10-12

Family

ID=16847445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22658384A Expired - Fee Related JPH0680719B2 (en) 1984-10-27 1984-10-27 End station

Country Status (1)

Country Link
JP (1) JPH0680719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599706A (en) * 2020-05-26 2020-08-28 上海华虹宏力半导体制造有限公司 Method for online detecting cavity leakage rate and semiconductor process machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599706A (en) * 2020-05-26 2020-08-28 上海华虹宏力半导体制造有限公司 Method for online detecting cavity leakage rate and semiconductor process machine

Also Published As

Publication number Publication date
JPH0680719B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
WO2003046958A3 (en) Wafer handling apparatus and method
US20100189532A1 (en) Inline-type wafer conveyance device
EP0095980B1 (en) Method and apparatus for transporting and treating an article in vacuum
JPS61104636A (en) End station
JPS6328863A (en) Vacuum treatment device
JPH0237742A (en) Semiconductor device manufacturing equipment
JPS61113766A (en) End station
JP4128973B2 (en) Vacuum processing apparatus and vacuum processing method
JP4229497B2 (en) Substrate processing apparatus and substrate processing method
JPS62216315A (en) Semiconductor processor
JP2690971B2 (en) Processing method
JPS61168934A (en) Wafer handling method
JPH05326666A (en) Conveyor
JPS61113767A (en) End station
JP3082148B2 (en) Compound type wafer processing equipment
JPH04298059A (en) Vacuum processor
JP2639093B2 (en) Ion processing equipment
JP4546556B2 (en) Vacuum processing apparatus and vacuum processing method
JPS61104610A (en) End station
JPH0230759A (en) Vacuum treatment equipment
JPH0636198U (en) Vacuum processing device
JPS6128030B2 (en)
JP3119098U (en) TFT array inspection equipment
JPH0590388A (en) Transferring apparatus
JP3944608B2 (en) Article pressurizing apparatus and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees