JPS61104276A - System for transmitting and receiving ultrasonic pulse - Google Patents

System for transmitting and receiving ultrasonic pulse

Info

Publication number
JPS61104276A
JPS61104276A JP59225668A JP22566884A JPS61104276A JP S61104276 A JPS61104276 A JP S61104276A JP 59225668 A JP59225668 A JP 59225668A JP 22566884 A JP22566884 A JP 22566884A JP S61104276 A JPS61104276 A JP S61104276A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
transmission
polarity
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59225668A
Other languages
Japanese (ja)
Other versions
JPH0148994B2 (en
Inventor
Yukio Yoshida
幸男 吉田
Yutaka Kashiwase
柏瀬 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59225668A priority Critical patent/JPS61104276A/en
Publication of JPS61104276A publication Critical patent/JPS61104276A/en
Publication of JPH0148994B2 publication Critical patent/JPH0148994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To remote the effect of an interference wave by the averaging effect of propagation time difference, by selectively outputting either one of positive and negative polarity transmission signals and setting the point of time when a receiving signal arrived a predetermined change point as the arrival time of an ultrasonic signal. CONSTITUTION:A transmission signal output means 10 is constituted of a pulse generation circuit 11, a drive circuit 12, a transmitting and amplifying circuit 13 consisting of transistors 13A, 13B and a transmission terminal 14 connected to ultrasonic transmitter receivers 2, 3 through a transmission and reception change-over circuit 4. This ultrasonic signal output means 10 selectively outputs either one of positive and negative polarity ultrasonic signals taking the relation of mutually inverse polarity according to preset sequence or random sequence and allows said signal to propagate through the medium to be measured of a flow pipe 1 to selectively output the same to ultrasonic signal detection means 20 and the point of time, when the ultrasonic signal arrived a predetermined change point, is set as the arrival time of the ultrasonic time regardless of the polarity of the ultrasonic wave propagated through the medium to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は超音波流量計、レベル計および厚さ計などにお
ける超音波パルス信号の送受信号式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a transmission/reception signal system for ultrasonic pulse signals in ultrasonic flowmeters, level meters, thickness meters, and the like.

〔促米の技術〕[Technique of promoting rice]

第5図は従来の外壁透過型超音波流量計のブロック構成
図である。第5図において、1は流体が矢印■方向に流
れる流管、2.3は超音波信号を電気−音9変換および
音響−電気変換する超音波送受波器、4は超音波信号が
超音波送受波器2から3または超音波送受波器5から2
、すなわち超音波信号が流体の流れに沿う順方向または
流体の流れに逆う逆方向に伝搬するように切シ替える送
受信切替回路、5は送信回路、6は受信回路、7は超音
波信号およびそれに対応した電気信号が送信回路5かも
受信回路6まで伝搬する1サイクルの時間を複数回測定
し、測定した伝搬時間に基づいて流体の流速に対応する
信号を出力する信号処理回路、8は測定結果を表示する
表示器、9はこの超音波流量計の各部の動作を制御する
夕1ミングパルスを出力するタイマである。なお、送信
回路5の出力および受信回路乙の入力は電気信号であシ
、流管1内を伝搬する信号は超音波信号である。
FIG. 5 is a block diagram of a conventional external wall transmission type ultrasonic flow meter. In Fig. 5, 1 is a flow tube through which fluid flows in the direction of the arrow ■, 2.3 is an ultrasonic transducer that converts the ultrasonic signal into electricity-sound 9 and acoustic-electricity, and 4 is the ultrasonic signal that converts the ultrasonic signal into an ultrasonic wave. Transducer 2 to 3 or ultrasonic transducer 5 to 2
, that is, a transmitting/receiving switching circuit that switches the ultrasonic signal to propagate in the forward direction along the fluid flow or in the reverse direction against the fluid flow; 5 is a transmitting circuit; 6 is a receiving circuit; 7 is an ultrasonic signal and A signal processing circuit 8 measures the time of one cycle in which the corresponding electric signal propagates to the transmitting circuit 5 or the receiving circuit 6 multiple times, and outputs a signal corresponding to the fluid flow velocity based on the measured propagation time. A display 9 displays the results, and a timer 9 outputs a 1 minute pulse to control the operation of each part of this ultrasonic flowmeter. Note that the output of the transmitting circuit 5 and the input of the receiving circuit B are electrical signals, and the signals propagating within the flow tube 1 are ultrasonic signals.

かかる従来の外壁透過型超音波流量計の動作を説明する
と、まず送信回路5から送信波として出力された信号は
送受信切替回路4を介して超音波送受波器3に入力され
、流体中を逆方向に伝搬して超音波受波器2に到達し、
さらに送受信切替回路4を介して受信波として受信回路
6に入力される。この超音波信号の逆方向の伝搬が複数
回行なわれた後、送受信切替回路4が切り替えられると
、送信回路5から出力された信号は送受信切替回路4を
介して超音波送受波器2に入力され、流体中を順方向に
伝搬して超音波送受波器6に到達し、さらに送受信切替
回路4金倉して受信回路乙に入力される。超音波信号波
の頭方向の伝搬も複数回行なわれる。
To explain the operation of such a conventional external wall transmission type ultrasonic flowmeter, first, a signal output as a transmission wave from the transmission circuit 5 is input to the ultrasonic transducer 3 via the transmission/reception switching circuit 4, and is reversely transmitted through the fluid. propagates in the direction and reaches the ultrasonic receiver 2,
Further, the signal is input to the receiving circuit 6 as a received wave via the transmission/reception switching circuit 4. After this ultrasonic signal propagates in the opposite direction multiple times, when the transmission/reception switching circuit 4 is switched, the signal output from the transmission circuit 5 is input to the ultrasonic transducer 2 via the transmission/reception switching circuit 4. It propagates in the fluid in the forward direction, reaches the ultrasonic transducer 6, and is further input to the transmission/reception switching circuit 4 and the receiving circuit B. The propagation of the ultrasound signal wave in the head direction is also performed multiple times.

信号処理回路7は超音波信号波の順方向および逆方向の
伝搬時間に基づいて、シングアラウンド法、PLL法お
よび時間差法などにょ9、流体の流速および#、量など
を検出する。
The signal processing circuit 7 detects the flow rate, number, amount, etc. of the fluid using a sing-around method, a PLL method, a time difference method, etc., based on the forward and reverse propagation times of the ultrasonic signal waves.

次に、第6図は上述した送信波および受信波の波形の一
例を示す図でおる。送信回路5から出力される送信波は
あ6図(&)または第6図(b) K示すような波形で
ある。これに対して受信回路乙に入力される受信波ri
第6図(c) K示すような波形となる。
Next, FIG. 6 is a diagram showing an example of the waveforms of the above-mentioned transmitted waves and received waves. The transmission wave output from the transmission circuit 5 has a waveform as shown in FIG. 6(&) or FIG. 6(b)K. On the other hand, the received wave ri input to the receiving circuit B
The waveform becomes as shown in FIG. 6(c) K.

超音波信号が超音波送受波器2または3と管壁および管
壁と流体の各境界で反射、屈折および拡散を繰シ返し、
複雑な伝搬経路を経て超音波送受波器2または6に到達
するため、さらKは超音波信号が複雑な伝搬経路を経て
超音波送受波器2で7こけ3に到達した後、直ちに消滅
せず次に送出される送信波に重畳されるため受信回路6
に入力される受信波が送信波に対して、本来受信される
べき信号波と、上述したように複雑な伝搬経路を経るこ
とおよび次に送出される送信波に重畳されることにより
、超音波信号の伝搬時間に誤差が生じることになるが、
受信波は信号波に対し発生時刻が略一致し、かつ周波数
帯域がほぼ同一でろる波(以下、妨害波という)とを合
成した合成波になっているので、受信回路の信号処理で
は妨害波を除去できない。この妨害波の影響の度合は信
号波と妨害波のSN比および順逆方向の超音波信号の位
相差などによって異なるものである。例えば、超音仮信
号の周波数がIMHz%位相差が0.に管1の直径が5
0聾、流体の流速がim/sの場合、項逆両方同に超音
波信号を伝搬させたときの伝搬時間差は約40nSとな
る。ここで、信号波と妨害波のSN比を40dBとする
と0.8nSの誤差が生じるので、0.8/40=0.
02となり、約2%の測定誤差となる。また信号波と妨
害波O8N比を40dBにすることは芙際上かな9困に
でちシ測定誤差は2%以上になる。また、流管1の直径
が小さいときおよび流体の流速が遅いときなどは測定誤
差が拡がることになる。
The ultrasonic signal is repeatedly reflected, refracted and diffused at each boundary between the ultrasonic transducer 2 or 3 and the tube wall, and between the tube wall and the fluid.
Since the ultrasonic signal reaches the ultrasonic transducer 2 or 6 through a complicated propagation path, K also disappears immediately after the ultrasonic signal reaches the ultrasonic transducer 2 or 7 through the complicated propagation path. The receiving circuit 6 is superimposed on the transmitted wave that is sent out next.
The received wave that is input to the transmitter is superimposed on the signal wave that should originally be received through the complicated propagation path as described above, and on the transmitted wave that is sent out next. This will cause an error in the signal propagation time, but
The received wave is a composite wave that is composed of a signal wave whose generation time is almost the same as that of the signal wave, and which has almost the same frequency band as the interference wave (hereinafter referred to as the interference wave). cannot be removed. The degree of influence of this interference wave varies depending on the S/N ratio between the signal wave and the interference wave, the phase difference between the forward and reverse ultrasonic signals, and the like. For example, if the frequency of the ultrasonic temporary signal is IMHz% and the phase difference is 0. The diameter of tube 1 is 5
In the case of 0 deafness and the fluid flow velocity of im/s, the propagation time difference when ultrasonic signals are propagated in both directions is approximately 40 nS. Here, if the S/N ratio between the signal wave and the interference wave is 40 dB, an error of 0.8 nS will occur, so 0.8/40=0.
02, resulting in a measurement error of approximately 2%. Further, it is extremely difficult to set the signal wave to interference wave O8N ratio to 40 dB, and the measurement error becomes 2% or more. Furthermore, when the diameter of the flow tube 1 is small or when the flow rate of the fluid is slow, measurement errors will increase.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

かかる妨害波の影9を避けるため、従来は送信波を出力
させる間隔、すなわち1−!7°イクルの周期を十分に
長くと9、送信波を一力きせるサイクル以前のサイクル
で生じた妨害波を消滅させるようにしていた。
In order to avoid the shadow 9 of such interference waves, conventionally, the interval at which the transmitted waves are outputted, that is, 1-! By making the period of the 7° cycle sufficiently long9, the interference waves generated in the cycles before the cycle in which the transmitted wave dies out are extinguished.

しかし、1サイクルの周期を長くすることにより、単位
時間当シの伝搬時間測定回数が減り、流体の流速を測定
するのに時間がかかつてし1つという間組がめった。
However, by lengthening the period of one cycle, the number of times the propagation time is measured per unit time is reduced, and it becomes time-consuming to measure the flow velocity of the fluid.

本発明は上記問題点を解決する目的でなされたもので、
1サイクルの周期を長くせずに、妨害波の影響を除去で
きる超音波パルスの送受信方式を提供するものである。
The present invention was made for the purpose of solving the above problems.
The present invention provides an ultrasonic pulse transmission/reception method that can eliminate the influence of interference waves without increasing the period of one cycle.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、互いに逆極性の関係にある正枢性の
超音波信号と負極性の超音波信号のいずれか一方を、予
め設定されたシーケンスあるいはランダムなシーケンス
に従って選択出力し、被計測媒体中に伝搬させる超音波
信号出力手段と、超音波信号出力手段から選択出力され
、被計測媒体中を伝搬した超音波信号の極性にかかわら
ず、該超音波信号が所定の変化点く到達したこと分検出
する超音波信号検出手段を設ける。
Therefore, in the present invention, one of the positive polarity ultrasonic signal and the negative polarity ultrasonic signal, which have opposite polarity to each other, is selectively outputted according to a preset sequence or a random sequence. Regardless of the polarity of the ultrasonic signal selectively outputted from the ultrasonic signal output means and the ultrasonic signal output means and propagated in the medium to be measured, it is determined that the ultrasonic signal has reached a predetermined change point. Ultrasonic signal detection means is provided to detect the ultrasonic signal.

〔洋 用〕[For Western]

上記構成の超音波パルスの送受信方式は、超音波信号出
力手段が互いに逆極性の関係にある正極性の超音波信号
と負極性の超音波信号のいずれか一方を、予め設定され
たシーケンスまたはランダムなシーケンスに従って選択
出力し、被計測媒体午に伝搬させ、超音波信号検出手段
が選択出力され、被計測媒体中を伝搬した超音波信号の
極性にかかわらず、超音波信号が所定の変化点に到達し
たときを該超音波信号の到達時刻とする。
In the ultrasonic pulse transmission and reception method of the above configuration, the ultrasonic signal output means transmits either a positive polarity ultrasonic signal or a negative polarity ultrasonic signal having opposite polarities to each other in a preset sequence or randomly. The ultrasonic signal is selectively outputted according to the sequence, propagated into the medium to be measured, and the ultrasonic signal detection means is selectively outputted, and the ultrasonic signal reaches a predetermined change point regardless of the polarity of the ultrasonic signal propagated in the medium to be measured. The time when the ultrasonic signal reaches the ultrasonic signal is defined as the arrival time of the ultrasonic signal.

〔実施例〕〔Example〕

以下、本発明の一笑施例を添付図面を参照して詳細に説
明するう 第1図は本発明に係る超音波パルス信号の送受信方式を
適用した超音波流量計の主要部分のブロック回路図であ
る。第1図において、10は互いに逆極性の関係におる
正極性の信号管たは負極性の信号のいずれか一方を、予
め設定されたシーケンスまたはランダムなシーケンスに
従って選択して、送信波として出力する送信信号出力手
段であって、パルス発生回路11、ドライブ回路12、
トランジスタ13Aと15Bからなる送信増幅回路15
および第5図に示した送受信切替回路4を介して超音波
送受波器2.3に接続される送信端子14から構成され
ている。20は送信信号出力手段10から出力され、第
5図に示した流管1の流体(被計測媒体)中を伝搬し、
受信波として入力される信号の到達時刻を検出する受信
信号検出手段でろって、受信端子21、入力された受信
波に対し、同極性および逆極性(逆位相)の信号を出力
する端子0UT1および0UT2を有する受信増幅回路
22、アナログスイッチ23Aと23Bからなう、増幅
回路22から出力される互いに逆極性の受信波のいずれ
か一方を選択して出力する受信波極性切替回路26、入
力端子INIとIN2を有する増幅回路24および比較
基準レベルがOVK設定され、受信波の零クロス点を検
出する比較回路25から構成されている。60はドライ
ブ回路12および受信波極性切替回路26を制御し、所
定のシーケンスに従い超音波信号出力手段10から互い
に逆極性の送信波を選択させるとともに、該送信波の極
性に応じて受信波の極性を切)替えさせるコントローラ
である。40は信号処理回路であって、送信信出力手段
10から出力される送信波の立上り時刻t−送信信号の
送出時刻、受信信号検出手段20に入力される受信波の
零りロス点通過時刻を受信信号の到達時刻、到達時刻と
送出時刻の差を伝搬時間とし、超音波信号を逆方向およ
び順方向にそれぞれ複数回ずつ伝搬させたときの伝搬時
!Bltuおよびtdの時間差Δt(Δt=tu−td
)に基づいて、シングアラウンド法、PLL法あるいは
時間差法などによって流体の流速に対応した信号を出力
するものである。9は各部の動作タイミングを制御する
タイマである。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the accompanying drawings. Fig. 1 is a block circuit diagram of the main parts of an ultrasonic flowmeter to which the ultrasonic pulse signal transmission/reception method according to the present invention is applied. be. In FIG. 1, 10 selects either a positive polarity signal tube or a negative polarity signal, which have opposite polarities to each other, according to a preset sequence or a random sequence, and outputs it as a transmission wave. Transmission signal output means includes a pulse generation circuit 11, a drive circuit 12,
Transmission amplifier circuit 15 consisting of transistors 13A and 15B
and a transmission terminal 14 connected to the ultrasonic transducer 2.3 via the transmission/reception switching circuit 4 shown in FIG. 20 is output from the transmission signal output means 10 and propagates in the fluid (measured medium) of the flow tube 1 shown in FIG.
The reception signal detecting means detects the arrival time of a signal input as a reception wave, and the reception terminal 21 and the terminals 0UT1 and 0UT1 output signals of the same polarity and opposite polarity (opposite phase) with respect to the input reception wave. 0UT2, a received wave polarity switching circuit 26 consisting of analog switches 23A and 23B, which selects and outputs one of the received waves of opposite polarity output from the amplifier circuit 22, and an input terminal INI. and IN2, and a comparison circuit 25 whose comparison reference level is set to OVK and which detects the zero-crossing point of the received wave. Reference numeral 60 controls the drive circuit 12 and the received wave polarity switching circuit 26 to select transmitted waves of opposite polarity from the ultrasonic signal output means 10 according to a predetermined sequence, and changes the polarity of the received wave according to the polarity of the transmitted waves. This is a controller that switches the 40 is a signal processing circuit which calculates the rise time t of the transmission wave output from the transmission signal output means 10 - the sending time of the transmission signal, and the zero loss point passing time of the reception wave input to the reception signal detection means 20. The propagation time is the arrival time of the received signal, and the difference between the arrival time and the sending time, and the propagation time is when the ultrasonic signal is propagated multiple times in the backward and forward directions! Time difference Δt between Bltu and td (Δt=tu−td
), a signal corresponding to the fluid flow velocity is output using the sing-around method, PLL method, or time difference method. 9 is a timer that controls the operation timing of each part.

なお、送信信号出力手段10はトランジスタ13Aをオ
ン、トランジスタ13Bをオフにして正極性の送信信号
を出力し、トランジスタ13Aをオフ、トランジスタ1
3Bをオフにして負極性の送信信号を出力する。また受
信信号検出手段20はアナログスイッチ26Aを端子0
UTi側、アナログスイッチ23Bを端子0UT2側に
切り替えて、受信した超音波信号を増幅回路24に加え
、アナログスイッチ23Aを端子OUT Z側、アナロ
グスイッチ23Bti子0UTI(11,11に切シ替
えて、受信した信号を反転して増幅回路24に加える。
The transmission signal output means 10 turns on the transistor 13A and turns off the transistor 13B to output a positive transmission signal, turns off the transistor 13A, and turns off the transistor 1.
3B is turned off and a negative polarity transmission signal is output. Further, the received signal detection means 20 connects the analog switch 26A to terminal 0.
On the UTi side, switch the analog switch 23B to the terminal 0UT2 side, apply the received ultrasonic signal to the amplifier circuit 24, and switch the analog switch 23A to the terminal OUT Z side, switch the analog switch 23Bti to the terminal 0UTI (11, 11). The received signal is inverted and applied to the amplifier circuit 24.

ところで、前述した如く受信信号検出手段20に入力さ
れる受信波は送信波を順逆どちらの方向に伝搬させた場
合であっても、第2図に示すように送信波Tに対し本来
受信すべき信号波Sと妨害波Nを重畳した合成波Rとな
る。妨害波Nの影響は、例えば送信波を逆方向に伝搬さ
せた場合は妨害波Nの影響がないときの伝搬時間tuに
対し、伝搬時間を時間αだけ遅くする(第2図(λ)参
照)。
By the way, as described above, regardless of whether the transmitted wave is propagated in the forward or reverse direction, the received wave inputted to the received signal detection means 20 is different from the transmitted wave T as shown in FIG. A composite wave R is obtained by superimposing the signal wave S and the interference wave N. The effect of the interference wave N is, for example, when the transmitted wave propagates in the opposite direction, the propagation time is delayed by a time α compared to the propagation time tu when there is no influence of the interference wave N (see Fig. 2 (λ)). ).

また、送信波を順方向に伝搬させ&場合は妨害波Nの影
響がないときの伝搬時間tdK対し、伝搬時間をαだけ
速くする(第2図(b)参照)。したがって、超音波を
逆方向に伝搬させたときの伝搬時間tuと超音波を順方
向に伝搬させたときの伝搬時間tdとの差である伝搬時
間差Δtは(tu−td+2α)となシ、時間2αだけ
の誤差を生じてし1つ。
Also, if the transmitted wave is propagated in the forward direction &, the propagation time is made faster by α compared to the propagation time tdK when there is no influence of the interference wave N (see FIG. 2(b)). Therefore, the propagation time difference Δt, which is the difference between the propagation time tu when the ultrasound is propagated in the reverse direction and the propagation time td when the ultrasound is propagated in the forward direction, is (tu - td + 2α). This causes an error of only 2α.

このため、本発明においては送信信号出力手段10は互
いに逆極性の関係にらる正極性の送信信号と負極性の送
信信号のいずれか一方を予め設定したシーケンスまたは
ランダムなシーケンスに従って選択して送信波として出
力する。受信信号検出手段20は送信波の極性に応じて
受信波極性切替回路23を切り替え、受信波の特定のポ
イント、例えば受信波が正から負に変化するときの零ク
ロス点を検出する。さらに、信号処理回路40は上述し
たようKして送受信される超音波信号を逆方向および順
方向に伝搬させることによって得られる伝搬時間差の測
定を複数回行なわせ、その平均をとることによって、妨
害波の影響を除去した伝搬時間差を得る。
Therefore, in the present invention, the transmission signal output means 10 selects and transmits either a positive polarity transmission signal or a negative polarity transmission signal, which have opposite polarities to each other, according to a preset sequence or a random sequence. Output as a wave. The received signal detection means 20 switches the received wave polarity switching circuit 23 according to the polarity of the transmitted wave, and detects a specific point of the received wave, for example, a zero crossing point when the received wave changes from positive to negative. Further, the signal processing circuit 40 measures the propagation time difference obtained by propagating the ultrasonic signals transmitted and received in the reverse direction and the forward direction multiple times as described above, and averages the measurements. Obtain the propagation time difference with wave effects removed.

夛μ妨沓彼を前回のサイクルにおける送信波の残影によ
るものとし、互いに逆極性の関係にある正極性の関係に
ある正極性の超音波信号と負極性の@音波信号のいずれ
か一方を、種々の7−ケ/スに従って選択出力した場合
における伝搬時間差および伝搬時間差の平均を示すもの
でおる。
Assume that the disturbance is due to the residual image of the transmitted wave from the previous cycle, and either a positive ultrasonic signal or a negative ultrasonic signal, which have a positive polarity relationship that is opposite to each other. , shows the propagation time difference and the average of the propagation time difference when selectively outputting according to various 7-cases.

拳従来のシーケンス 第1表において、第1のシーケンスは従来のものでら9
、伝搬時間差がΔt+2α、その平均がΔt+2αとな
シ、誤差時間2αか除去されない。また、第2のシーケ
ンスは順方向および逆方向について、それぞれ正極性、
負極性、正極性・・・というように交互に送信波の極性
を変化させたもので、伝搬時間差がΔt−2α、その平
均がΔt−2αとなり、誤差時間−2αが除去されずに
残る。さらに、第3のシーケンスは順方向および逆方向
について、それぞれ正極性、正極性、負極性、負極性、
正極性、正極性・・・というように2回毎に送信波の極
性を変化させたもので、伝搬時間差がΔt±2a、その
平均がΔtとなり、誤差時間が除去されることになる。
Fist Conventional Sequence In Table 1, the first sequence is the conventional one.9
, the propagation time difference is Δt+2α, and the average thereof is Δt+2α, so the error time 2α is not removed. In addition, the second sequence has positive polarity and
The polarity of the transmitted wave is alternately changed such as negative polarity, positive polarity, etc., the propagation time difference is Δt-2α, the average thereof is Δt-2α, and the error time -2α remains without being removed. Furthermore, the third sequence is positive polarity, positive polarity, negative polarity, negative polarity,
The polarity of the transmitted wave is changed every two times, such as positive polarity, positive polarity, etc., and the propagation time difference is Δt±2a, the average thereof is Δt, and the error time is removed.

上記第3のシーケンスのヌロく送信波の極性を適宜に選
択する。ことにより、前回の送信のみならずさらに前の
送信によって生じた妨害波の影響を除去することができ
る。ま几、送信波の極性をランダムに選択することによ
り、種々の原因によって生じる妨害波の影響を、平均化
効果によって除去できる。
The polarity of the transmitted wave in the third sequence is appropriately selected. By doing so, it is possible to eliminate the influence of interference waves caused not only by the previous transmission but also by the previous transmission. However, by randomly selecting the polarity of the transmitted waves, the influence of interference waves caused by various causes can be removed by an averaging effect.

次に、第3図は不発明に係る超音波パルス信号の送受信
方式を適用した超音波流量計の他の実施例を示すブロッ
ク回路図であって、主要部分のみを示したものでろる。
Next, FIG. 3 is a block circuit diagram showing another embodiment of an ultrasonic flowmeter to which the ultrasonic pulse signal transmission/reception method according to the invention is applied, and only the main parts are shown.

なお、第3図において第1図および第5図と同様の機能
を果たす部分については同一の符号を付し、その説明は
省略する。15はコントローラ50の信号に応じて送信
波の極性を切り替える切替回路、26は受信波の@注を
切り替える切替回路であり、切替回路; 15,26と
もにDPDT型半導体スイッチなどが使用されている。
In FIG. 3, parts that perform the same functions as those in FIGS. 1 and 5 are designated by the same reference numerals, and their explanations will be omitted. 15 is a switching circuit that switches the polarity of the transmitted wave according to a signal from the controller 50, and 26 is a switching circuit that switches the @note of the received wave. Both of the switching circuits 15 and 26 use DPDT type semiconductor switches.

本実施例は、DPDT型の半導体スイッチを使用した極
性切替回路15.26によって送信波および受信部の極
性を切シ替えるようくしたものであり、従来の超音波流
量計と同じ送信回路5および受信回路6を使用できると
いう利点がろる。
In this embodiment, polarity switching circuits 15 and 26 using DPDT-type semiconductor switches switch the polarity of the transmitted wave and the receiving section, and the transmitting circuit 5 and There is an advantage that the receiving circuit 6 can be used.

また、第4図は不発明く係る超音波パルス信号の送受信
方式を適用した超音波流量計の他の実施例を示すブロッ
ク回路図でおって、受信部分のみを示したものでちる。
Further, FIG. 4 is a block circuit diagram showing another embodiment of an ultrasonic flowmeter to which the ultrasonic pulse signal transmission/reception method according to the invention is applied, and only the receiving portion is shown.

なお、第4図において第1図と同様の機能を果たす部分
については南−の符号を付し、その説明は省略する。
Note that in FIG. 4, parts that perform the same functions as those in FIG.

本実施例は受信波の極性を反転させずに、正極註の受1
彼が正から角に^化するときの搏りコス点を検出する比
較」路27および負極性の受信波が負から正に変化する
ときの苓クロス点を検出する比較回路28とを用いてい
る。比較回路27゜28Uそnぞれコ/ト;−ラ30か
らストローブ端子5TBi 、 5TB2 ;でストa
−プ信号が加えられているときのみに電圧比較動作を行
ない、オアゲート29は各比較回路27.28の比較出
力のオア論理をとり、その出力を信号処理回路40に加
える。
In this embodiment, the polarity of the received wave is not reversed, and the polarity of the received wave is not reversed.
A comparison circuit 27 is used to detect the cross point when the received wave of negative polarity changes from negative to positive, and a comparison circuit 28 is used to detect the cross point when the received wave of negative polarity changes from negative to positive. There is. Strobe terminals 5TBi and 5TB2 are connected to comparator circuits 27 and 28U, respectively.
The voltage comparison operation is performed only when the -p signal is applied.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、互いに逆極性の関
係、にある正極性または負極性の送信信号のいずれか一
方を、予め設定したシーケンスまたはランダムなシーケ
ンスに従って選択出力し、選択出力した送信信号の1注
にかかわらず、受信信号が所定の変化点に到達したとき
を超音波信号の到達時刻とするととくよって得らnる伝
搬時間差の平均効果により妨害波の影響を凍去すること
ができる。
As explained above, according to the present invention, either one of the transmission signals of positive polarity or negative polarity having opposite polarity to each other is selectively outputted according to a preset sequence or a random sequence, and the selectively outputted transmission signal is transmitted. Regardless of the signal note, if the arrival time of the ultrasonic signal is the time when the received signal reaches a predetermined change point, it is possible to eliminate the influence of interference waves by the average effect of the n propagation time differences. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明に係る超音波パルス信号の送受信方式を
適用した超音波流量計の主要部分のブロック回路図、第
2図は送信波および受信波の波形の一例を示す波形図、
第6図および第4図(1ヰ、発明に係る超音波パルス信
号の送受信方式を適用した超音波流−象計の他の笑施例
を示すブロック回路図、嘱5図は従来の外壁透過型超音
吸流量計のブロック構成図、第6図は送信波および受信
波の波形の一例を示す波形図である。 10・・・送信信号出力手段、 11・・・パルス発生
回路、12・・・ドライブ回路、13送信増幅回路、1
4・・・送信端子、20・・・受信信号横比手段、 2
1・・・受信端子、22・・・受信増電回路、23.2
6・・・極性切替回路、24・・・増幅回路、25,2
7.28・−・比較す路、29・・−オアゲート、60
・・・コントコーラ、40・・・信号処理回路。 代理人弁理士  木 村 三 朗 第3図 第4図 第5図 ! 第 6図 1、事f牛の表示 特願昭59−225668号 2、発明の名称 超音波パルスの送受信方式 ・1 弥 (338)株式会社 東京計器(氏 名i 4.1(埋入 7、補正の内容 (1)明細書の「特許請求の範囲」を別紙の通り補正す
る。 (2)明細書第12頁下から4行目の「第1畏」を。 「畏」に訂正する。 (3)図面第1図及び第4図を、別紙図面の通り補正す
る。 特許請求の範囲 互いに逆極性の関係にある正極性の超音波信号と負極性
の超音波信号を、予め設定され几シーケ/スまたげラン
ダムなシーケンスに従って選択出力し、被計測媒体中に
伝搬させる超音波信号出力手段と、該選択出力され、被
計測媒体中を伝搬した超音波信号の極性にかかわらず、
該超音波信号カ所定の変化点に到達したときを到達時刻
とする超音波信号検出手段とを具えたことを特徴とする
超音波パルスの送受信方式。
FIG. 1 is a block circuit diagram of the main parts of an ultrasonic flowmeter to which the ultrasonic pulse signal transmission/reception method according to the invention is applied, and FIG. 2 is a waveform diagram showing an example of the waveforms of transmitted waves and received waves.
Figures 6 and 4 (1) are block circuit diagrams showing other embodiments of the ultrasonic flow meter to which the ultrasonic pulse signal transmission/reception method according to the invention is applied; 6 is a waveform diagram showing an example of the waveforms of the transmitted wave and the received wave. 10... Transmission signal output means, 11... Pulse generation circuit, 12. ...Drive circuit, 13 Transmission amplifier circuit, 1
4... Transmission terminal, 20... Received signal aspect ratio means, 2
1... Receiving terminal, 22... Receiving power increase circuit, 23.2
6...Polarity switching circuit, 24...Amplification circuit, 25,2
7.28--Comparison road, 29...-Or gate, 60
...Controller, 40...Signal processing circuit. Representative Patent Attorney Sanro Kimura Figure 3, Figure 4, Figure 5! Figure 6 1, Indication of cattle Patent Application No. 1982-225668 2, Name of the invention Ultrasonic pulse transmission/reception method・1 Ya (338) Tokyo Keiki Co., Ltd. (Name i 4.1 (Embedded 7, Contents of the amendment (1) The "Claims" of the specification will be amended as shown in the attached sheet. (2) "1st" in the fourth line from the bottom of page 12 of the specification will be corrected to "". (3) Figures 1 and 4 of the drawings are corrected according to the attached drawings.Claims: Ultrasonic signals of positive polarity and ultrasonic signals of negative polarity, which have opposite polarity to each other, are arranged in a preset manner. An ultrasonic signal output means for selectively outputting and propagating in a measured medium according to a sequence/sequence random sequence, regardless of the polarity of the ultrasonic signal selectively output and propagated in the measured medium,
An ultrasonic pulse transmitting/receiving method comprising ultrasonic signal detection means that determines the arrival time when the ultrasonic signal reaches a predetermined change point.

Claims (1)

【特許請求の範囲】[Claims] 互いに逆極性の関係にある正極性の超音波信号と負極性
の超音波信号のいずれか一方を、予め設定されたシーケ
ンスまたはランダムなシーケンスに従つて選択出力し、
被計測媒体中に伝搬させる超音波信号出力手段と、該選
択出力され、被計測媒体中を伝搬した超音波信号の極性
にかかわらず、該超音波信号が所定の変化点に到達した
ときを到達時刻とする超音波信号検出手段とを具えたこ
とを特徴とする超音波パルスの送受信方式。
selectively outputting either a positive polarity ultrasonic signal or a negative polarity ultrasonic signal having opposite polarities according to a preset sequence or a random sequence;
an ultrasonic signal output means for propagating into a medium to be measured; and a point at which the ultrasonic signal reaches a predetermined change point, regardless of the polarity of the ultrasonic signal selectively output and propagated in the medium to be measured. 1. An ultrasonic pulse transmission/reception method characterized by comprising: ultrasonic signal detection means for detecting time.
JP59225668A 1984-10-29 1984-10-29 System for transmitting and receiving ultrasonic pulse Granted JPS61104276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225668A JPS61104276A (en) 1984-10-29 1984-10-29 System for transmitting and receiving ultrasonic pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225668A JPS61104276A (en) 1984-10-29 1984-10-29 System for transmitting and receiving ultrasonic pulse

Publications (2)

Publication Number Publication Date
JPS61104276A true JPS61104276A (en) 1986-05-22
JPH0148994B2 JPH0148994B2 (en) 1989-10-23

Family

ID=16832907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225668A Granted JPS61104276A (en) 1984-10-29 1984-10-29 System for transmitting and receiving ultrasonic pulse

Country Status (1)

Country Link
JP (1) JPS61104276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429687A1 (en) * 1988-03-03 1991-06-05 Scan Group Limited Improvements relating to installations for measuring liquid depth
US5493916A (en) * 1991-06-25 1996-02-27 Commonwealth Scientific and Industrial Research Organisation--AGL Consultancy Pty Ltd. Mode suppression in fluid flow measurement
JP2014507643A (en) * 2011-01-06 2014-03-27 ザ ルブリゾル コーポレイション Ultrasonic measurement
JP2018115881A (en) * 2017-01-16 2018-07-26 株式会社デンソー Liquid level detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650574B2 (en) * 2009-01-28 2011-03-16 パナソニック株式会社 Ultrasonic flow meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429687A1 (en) * 1988-03-03 1991-06-05 Scan Group Limited Improvements relating to installations for measuring liquid depth
US5493916A (en) * 1991-06-25 1996-02-27 Commonwealth Scientific and Industrial Research Organisation--AGL Consultancy Pty Ltd. Mode suppression in fluid flow measurement
AU668872B2 (en) * 1991-06-25 1996-05-23 AGL Consultancy Pty. Limited Mode suppression in fluid flow measurement
JP2014507643A (en) * 2011-01-06 2014-03-27 ザ ルブリゾル コーポレイション Ultrasonic measurement
JP2018115881A (en) * 2017-01-16 2018-07-26 株式会社デンソー Liquid level detector

Also Published As

Publication number Publication date
JPH0148994B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JP3023569B2 (en) Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium
JP4886120B2 (en) Ultrasonic current meter
JPS5824730B2 (en) Ultrasonic pulse echo thickness measurement method and device
JPS61104276A (en) System for transmitting and receiving ultrasonic pulse
JP2006208360A (en) Device for measuring transfer time
JP2608961B2 (en) Sound wave propagation time measurement method
JP4960554B2 (en) Ultrasonic flow meter
JP2002340641A (en) Instrument for measuring flow rate
JPH1090029A (en) Ultrasonic wave flowmeter
JP2001289681A (en) Ultrasonic flowmeter
JP4825367B2 (en) Ultrasonic flow meter
JPS63173920A (en) Ultrasonic gas current meter
JPH0810151B2 (en) Ultrasonic velocity measuring device
JP4133237B2 (en) Ultrasonic flow meter
RU2006002C1 (en) Tester of pulse-frequency flowmeters
JP4671481B2 (en) Ultrasonic flow meter
JPH0117090B2 (en)
JP3186569B2 (en) Vortex flow meter
JP3883093B2 (en) Ultrasonic flow meter
JP2010151583A (en) Ultrasonic flow measuring device
JPH02147920A (en) Measurement of sound velocity in paper
JPH11326561A (en) Method for time measurement and for ultrasonic flow velocity measurement
JPH10307049A (en) Ultrasonic flow-velocity measuring method
JP3973920B2 (en) Clamp-on type ultrasonic flowmeter
JP2002340640A (en) Instrument for measuring flow rate