JP4650574B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4650574B2
JP4650574B2 JP2009016202A JP2009016202A JP4650574B2 JP 4650574 B2 JP4650574 B2 JP 4650574B2 JP 2009016202 A JP2009016202 A JP 2009016202A JP 2009016202 A JP2009016202 A JP 2009016202A JP 4650574 B2 JP4650574 B2 JP 4650574B2
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic
transmitter
drive
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009016202A
Other languages
Japanese (ja)
Other versions
JP2009085972A (en
Inventor
裕治 中林
秀二 安倍
明久 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009016202A priority Critical patent/JP4650574B2/en
Publication of JP2009085972A publication Critical patent/JP2009085972A/en
Application granted granted Critical
Publication of JP4650574B2 publication Critical patent/JP4650574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter.

従来この種の超音波流量計は図11に示されているように、流体の中に配置し超音波を送信する送信器1と、受信する受信器2と、送信器1を駆動する送信回路3と、被測定流体を伝搬した超音波を受信する受信機2の出力信号から受信判定し送信回路1に出力する受信検知回路4と、測定開始信号を送信回路3に出力する制御部5と、超音波の送信から受信、そして帰還までの繰り返しの回数を計測するカウンタ6と、1回目の超音波の送信開始から繰り返しの回数が所定回数に達するまでの時間を計測するタイマ7と、タイマ7の値から流量を求める演算部8とを備えていた。   Conventionally, as shown in FIG. 11, this type of ultrasonic flowmeter is arranged in a fluid to transmit a transmitter 1 that transmits ultrasonic waves, a receiver 2 that receives ultrasonic waves, and a transmission circuit that drives the transmitter 1. 3, a reception detection circuit 4 that determines reception from the output signal of the receiver 2 that receives the ultrasonic wave propagated through the fluid to be measured, and outputs it to the transmission circuit 1, and a control unit 5 that outputs a measurement start signal to the transmission circuit 3 A counter 6 for measuring the number of repetitions from transmission of ultrasonic waves to reception and return, a timer 7 for measuring the time from the start of transmission of the first ultrasonic wave until the number of repetitions reaches a predetermined number, and a timer And a calculation unit 8 for obtaining a flow rate from the value of 7.

つぎに動作を説明する。まず制御部5が測定開始信号を送信回路3に出力する。測定開始信号を受けた送信回路3は送信器1を駆動し、送信器1は超音波を送信する。受信器2は被測定流体を伝搬してきた超音波を受信し受信信号を受信検知回路4に出力する。受信検知回路4は受信判定を行い超音波の受信を確認し送信回路3に出力を行う。受信検知回路4の出力を受けた送信回路3は再度超音波振動子1を駆動する。カウンタ6はこの超音波の送信から受信の回数を数え、この回数がカウンタ6の設定値(N回)に達した場合タイマ7を停止させる。タイマ7は測定開始からの時間を計測しており、この時のタイマ7の値t1は超音波の伝搬時間のN倍となる。この値をもとに演算部8は次の計算によって流量を求める。   Next, the operation will be described. First, the control unit 5 outputs a measurement start signal to the transmission circuit 3. Upon receiving the measurement start signal, the transmission circuit 3 drives the transmitter 1, and the transmitter 1 transmits ultrasonic waves. The receiver 2 receives the ultrasonic wave propagating through the fluid to be measured and outputs a reception signal to the reception detection circuit 4. The reception detection circuit 4 performs reception determination, confirms reception of the ultrasonic wave, and outputs to the transmission circuit 3. The transmission circuit 3 receiving the output of the reception detection circuit 4 drives the ultrasonic transducer 1 again. The counter 6 counts the number of times of ultrasonic wave transmission to reception, and stops the timer 7 when this number reaches the set value (N times) of the counter 6. The timer 7 measures the time from the start of measurement, and the value t1 of the timer 7 at this time is N times the ultrasonic wave propagation time. Based on this value, the calculation unit 8 obtains the flow rate by the following calculation.

超音波の伝搬距離をL、被測定流体の流れる断面積をS、被測定流体の静止時の音速をC、被測定流体の流速をV、上流から下流方向への伝搬時間をt1、カウンタ7の設定値とした場合の流量Qを求める計算式を(式1)に示す。   The ultrasonic propagation distance is L, the cross-sectional area through which the fluid to be measured flows is S, the sound velocity of the fluid to be measured at rest is C, the flow velocity of the fluid to be measured is V, the propagation time from upstream to downstream is t1, and the counter 7 (Formula 1) shows a calculation formula for obtaining the flow rate Q when the set value is.

Q=S[{L/(t/N)}−C] (式1)   Q = S [{L / (t / N)}-C] (Formula 1)

しかしながら上記従来の超音波流量計では、超音波の送信を一定周期毎におこなっており、受信器2は超音波の伝搬経路で反射した超音波や、以前の周期に送信した超音波の残響と重なり合ったものを受信するため、測定誤差が生じていた。   However, in the above-described conventional ultrasonic flowmeter, ultrasonic waves are transmitted at regular intervals, and the receiver 2 receives the ultrasonic waves reflected by the ultrasonic wave propagation path and the reverberation of ultrasonic waves transmitted in the previous period. A measurement error has occurred because the overlapping data is received.

またこの現象は伝搬時間によって程度が変化し伝搬時間は温度、ガス成分によって変動するため補正を行うことは不可能であり、この測定誤差を低減するという課題があった。   In addition, the degree of this phenomenon varies depending on the propagation time, and the propagation time varies depending on the temperature and gas components. Therefore, correction cannot be performed, and there is a problem of reducing this measurement error.

また送信までの時間を遅延させる遅延回路を付加し、遅延量を時間的に変更することによって測定誤差を低減するという方法も考えられていたが、演算のために必要な遅延時間を正確に求めることができないため、測定精度を大幅に向上させることはできなかった。   In addition, a method of reducing the measurement error by adding a delay circuit that delays the time until transmission and changing the delay amount with time was also considered, but the delay time required for the calculation is accurately obtained. Therefore, the measurement accuracy could not be improved greatly.

本発明は上記課題を解決するために、駆動周波数変更部が駆動回路の駆動周波数を時間的に変更するものである。   In order to solve the above-described problems, the present invention is such that the drive frequency changing unit changes the drive frequency of the drive circuit in terms of time.

上記発明によれば駆動周波数変更部が時間的に超音波振動子の駆動周波数を変更するため、残響、反射波が受信信号に与える影響が一定でなく、分散平均化するため測定誤差を
偏らせることがなく測定精度が向上する。
According to the above invention, since the drive frequency changing unit temporally changes the drive frequency of the ultrasonic transducer, the influence of the reverberation and reflected waves on the received signal is not constant, and the measurement error is biased because dispersion averaging is performed. Measurement accuracy is improved.

本発明の超音波流量計によれば、超音波流量計は駆動周波数変更部が送信器の駆動周波数を時間的に変更し送信を行うため、残響、反射波が受信信号に与える影響が分散平均化するため測定誤差の偏りがなくなり、高精度の超音波流量計が実現できる。   According to the ultrasonic flow meter of the present invention, since the ultrasonic flow meter performs transmission by changing the drive frequency of the transmitter in time, the influence of reverberation and reflected waves on the received signal is distributed average Therefore, there is no bias in measurement error, and a highly accurate ultrasonic flowmeter can be realized.

本発明に係る超音波流量計は、超音波信号を送信する送信器と、前記送信器を駆動する駆動回路と、前記送信器から送信され流体を伝搬した超音波信号を受信する受信器と、前記受信器の出力を受け超音波信号を検知する受信検知回路と、前記超音波信号の伝搬時間を測定するタイマと、前記タイマの出力より流量を演算によって求める演算部と、前記駆動回路の駆動周波数を変更する駆動周波数変更部とを有する。   An ultrasonic flowmeter according to the present invention includes a transmitter that transmits an ultrasonic signal, a drive circuit that drives the transmitter, a receiver that receives an ultrasonic signal transmitted from the transmitter and propagated through a fluid, A reception detection circuit that receives an output of the receiver and detects an ultrasonic signal, a timer that measures a propagation time of the ultrasonic signal, a calculation unit that calculates a flow rate from the output of the timer, and driving of the drive circuit A drive frequency changing unit for changing the frequency.

そして、駆動周波数変更部が送信器の駆動周波数を時間的に変更し送信を行うため、残響、反射波が受信信号に与える影響が分散平均化するため測定誤差の偏りをなくすことができる。   Since the drive frequency changing unit performs transmission by changing the drive frequency of the transmitter in time, the influence of reverberation and reflected waves on the received signal is distributed and averaged, so that it is possible to eliminate measurement error bias.

また、本発明に係る超音波流量計は駆動回路が送信器を駆動中に駆動周波数変更部が駆動周波数を変更するため、単一の周波数で送信器を駆動した場合と比較し送受信の感度に大きな変化がなく、周波数の変更によって補正を行う必要がなくなり、回路構成が簡単となると同時に、補正によって生じる誤差が発生しない。   In addition, the ultrasonic flowmeter according to the present invention has a transmission / reception sensitivity compared to the case where the transmitter is driven at a single frequency because the drive frequency changing unit changes the drive frequency while the drive circuit is driving the transmitter. There is no significant change, and it is not necessary to perform correction by changing the frequency, the circuit configuration is simplified, and errors caused by the correction do not occur.

また、本発明に係る超音波流量計は駆動周波数変更部の変更する周波数が、送・受信器間の超音波送受信感度がほぼ同じ周波数に変更するので、周波数の変更時に送受信の感度を送信出力あるいは受信感度によって補正する必要がなく、回路構成が簡単となると同時に、補正によって生じる誤差が発生しない。   In addition, the ultrasonic flowmeter according to the present invention changes the frequency changed by the drive frequency changing unit to the same frequency as the ultrasonic transmission / reception sensitivity between the transmitter and the receiver. Alternatively, it is not necessary to make corrections according to reception sensitivity, the circuit configuration is simplified, and errors caused by correction do not occur.

また、本発明に係る超音波流量計は周波数を不規則に変更するため、送信信号の規則性を完全になくすことができる。   Moreover, since the ultrasonic flowmeter according to the present invention changes the frequency irregularly, the regularity of the transmission signal can be completely eliminated.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1の超音波流量計を示すブロック図、図2は同超音波流量計の送信器の駆動周波数の変化を表す図である。
(Embodiment 1)
FIG. 1 is a block diagram showing an ultrasonic flow meter according to Embodiment 1 of the present invention, and FIG. 2 is a diagram showing a change in drive frequency of a transmitter of the ultrasonic flow meter.

図1において1は超音波信号を送信する送信器、2は送信器1から送信され流体を伝搬した超音波信号を受信する受信器、9は送信器1を駆動する駆動回路、10は受信器2の出力を受け超音波信号を検知する受信検知回路、11は超音波信号の伝搬時間を測定するタイマ、12はタイマ11の出力より流量を演算によって求める演算部、13は駆動回路9の駆動周波数を変更する駆動周波数変更部、14は駆動周波数変更部と駆動回路9とタイマに信号を出力する制御部である。   In FIG. 1, 1 is a transmitter for transmitting an ultrasonic signal, 2 is a receiver for receiving an ultrasonic signal transmitted from the transmitter 1 and propagated through a fluid, 9 is a drive circuit for driving the transmitter 1, and 10 is a receiver. 2 is a reception detection circuit that detects an ultrasonic signal in response to the output of 2, 11 is a timer that measures the propagation time of the ultrasonic signal, 12 is a calculation unit that calculates a flow rate from the output of the timer 11, and 13 is a drive circuit 9. A drive frequency changing unit 14 for changing the frequency, and a control unit 14 for outputting signals to the drive frequency changing unit, the drive circuit 9, and the timer.

次に動作、作用について説明すると、まず制御部14が駆動周波数を決定する信号を駆動周波数変更部13に出力し送信器1を駆動する周波数を決定する。次に制御部14が駆動回路9に送信開始信号を出力すると同時にタイマ11の時間計測をスタートさせる。駆動回路9は送信開始信号を受けると駆動周波数変更部によって決まる駆動周波数によって送信器1を駆動し超音波を送信させる。送信された超音波は流体中を伝搬し受信器2で受信され電気信号に変換され受信検知回路10に出力される。受信検知回路10では受信信
号の受信タイミングを決定しタイマ11を停止させる。
Next, the operation and action will be described. First, the control unit 14 outputs a signal for determining the driving frequency to the driving frequency changing unit 13 to determine the frequency for driving the transmitter 1. Next, the control unit 14 outputs a transmission start signal to the drive circuit 9 and starts the time measurement of the timer 11 at the same time. When the drive circuit 9 receives the transmission start signal, the drive circuit 9 drives the transmitter 1 with the drive frequency determined by the drive frequency changing unit to transmit ultrasonic waves. The transmitted ultrasonic wave propagates through the fluid, is received by the receiver 2, is converted into an electrical signal, and is output to the reception detection circuit 10. The reception detection circuit 10 determines the reception timing of the reception signal and stops the timer 11.

そして演算部12ではタイマ11で計測した伝搬時間より流量を演算によって求める。くり返し同じ動作を行うが、その都度制御部14は駆動周波数変更部13へ出力する信号を変化させ駆動回路9の駆動周波数を変更する。図2に駆動周波数の変動のよう子を示し、横軸は測定回数、縦軸に駆動周波数を示す。このように駆動周波数変更部13が送信器1の駆動周波数を時間的に変更し送信を行うため、残響、反射波が受信信号に与える影響が分散平均化するため測定誤差の偏りをなくすことができる。   The calculation unit 12 calculates the flow rate from the propagation time measured by the timer 11 by calculation. Although the same operation is repeated, the control unit 14 changes the signal output to the drive frequency changing unit 13 to change the drive frequency of the drive circuit 9 each time. FIG. 2 shows the variation of the drive frequency, the horizontal axis indicates the number of measurements, and the vertical axis indicates the drive frequency. As described above, since the drive frequency changing unit 13 performs transmission by changing the drive frequency of the transmitter 1 in time, the influence of reverberation and reflected waves on the received signal is distributed and averaged. it can.

なお、この例では駆動周波数を不規則に変更しているが、一定のパターンで変更してもよい。また、一方向のみ超音波を送信して流量を求めているが、両方向へ超音波を送信してその逆数差より流量を求める方法においても同ように駆動周波数を変更する手法は有効である。   In this example, the drive frequency is irregularly changed, but may be changed in a certain pattern. Further, although the flow rate is obtained by transmitting ultrasonic waves only in one direction, the method of changing the drive frequency is also effective in the method of obtaining the flow rate from the reciprocal difference by transmitting ultrasonic waves in both directions.

(参考例)
図3は本発明に関連する参考例としての超音波流量計を示すブロック図、図4は同超音波流量計の送受信のタイミングと送信周波数を示す図である。
(Reference example)
FIG. 3 is a block diagram showing an ultrasonic flowmeter as a reference example related to the present invention, and FIG. 4 is a view showing transmission / reception timing and transmission frequency of the ultrasonic flowmeter.

本参考例において、実施の形態1と異なる点は受信検知回路の出力を帰還信号として駆動回路15に帰還しその帰還回数をカウンタ16で計測している点と、カウンタ16の出力によって駆動周波数変更部13が駆動回路15の駆動周波数を変更している点である。   In this reference example, the difference from the first embodiment is that the output of the reception detection circuit is fed back to the drive circuit 15 as a feedback signal and the number of times of feedback is measured by the counter 16, and the drive frequency is changed by the output of the counter 16. The point is that the unit 13 changes the drive frequency of the drive circuit 15.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

動作、作用について説明すると、まず制御部14が駆動回路15に送信開始信号を出力すると同時にタイマ11の時間計測をスタートさせる。駆動回路15は送信開始信号を受けると駆動周波数変更部の初期値によって決まる駆動周波数によって送信器1を駆動し超音波を送信させる。送信された超音波は流体中を伝搬し受信器2で受信され電気信号に変換され受信検知回路10に出力される。受信検知回路10では受信信号の受信タイミングを決定し受信検知信号を駆動回路15に出力する。駆動周波数変更部13はカウンタ16の出力を受け駆動周波数を変更するよう駆動回路へ信号を出力する。駆動回路15は受信検知信号を受けると再度駆動周波数変更部13で決まる駆動周波数で送信器1を駆動する。図2にカウンタの値と駆動周波数の変化を示す。カウンタ16にはあらかじめ終了帰還回数が設定してあり、その回数に達し駆動回路15への帰還信号出力を停止すると同時にタイマ11を停止させ時間計測を終了させる。演算部12ではタイマ11で測定した時間より終了帰還回数を考慮し演算によって流量を求める。このように駆動周波数変更部13が送信器1の駆動周波数を帰還回数に応じて変更し送信を行うため、超音波の伝搬経路の残響、反射波が受信信号に与える影響が分散平均化するため測定誤差の偏りをなくすことができる。   The operation and action will be described. First, the control unit 14 outputs a transmission start signal to the drive circuit 15 and simultaneously starts time measurement of the timer 11. When receiving the transmission start signal, the driving circuit 15 drives the transmitter 1 with a driving frequency determined by the initial value of the driving frequency changing unit to transmit ultrasonic waves. The transmitted ultrasonic wave propagates through the fluid, is received by the receiver 2, is converted into an electrical signal, and is output to the reception detection circuit 10. The reception detection circuit 10 determines the reception timing of the reception signal and outputs the reception detection signal to the drive circuit 15. The driving frequency changing unit 13 receives the output of the counter 16 and outputs a signal to the driving circuit so as to change the driving frequency. When receiving the reception detection signal, the driving circuit 15 drives the transmitter 1 again at a driving frequency determined by the driving frequency changing unit 13. FIG. 2 shows changes in the counter value and the driving frequency. The counter 16 has an end feedback count set in advance. When the counter 16 is reached, the output of the feedback signal to the drive circuit 15 is stopped, and at the same time, the timer 11 is stopped and the time measurement is ended. The calculation unit 12 calculates the flow rate by calculation in consideration of the number of end feedbacks from the time measured by the timer 11. As described above, since the drive frequency changing unit 13 changes the drive frequency of the transmitter 1 according to the number of feedbacks and performs transmission, the influence of the reverberation of the ultrasonic propagation path and the reflected wave on the received signal is distributed and averaged. Measurement bias can be eliminated.

また、終了帰還回数を周波数の変更パターン数(たとえば変更する駆動周波数を90KHz、100KHz、110KHzとするとパターン数は3となる)の整数倍とすることによって、それぞれの周波数で生じる誤差を均一に演算に用いるため誤差が平均、分散化するので測定誤差が偏ることない。   Also, by making the number of end feedbacks an integer multiple of the number of frequency change patterns (for example, if the drive frequency to be changed is 90 KHz, 100 KHz, or 110 KHz, the number of patterns will be 3), the error occurring at each frequency is calculated uniformly. Since the error is averaged and dispersed for use in measurement, the measurement error is not biased.

(実施の形態2)
図5は本発明の実施の形態2の超音波流量計を示すブロック図、図6は同超音波流量計の駆動波形を示す図、図7は同超音波流量計の送受信器間の信号感度を示す図である。本実施の形態2において、実施の形態1と異なる点は測定毎に駆動回路9の駆動周波数を変更するのではなく、駆動回路出力を駆動周波数変更部13に入力し駆動中に周波数を変更
している点である。
(Embodiment 2)
FIG. 5 is a block diagram showing the ultrasonic flowmeter according to the second embodiment of the present invention, FIG. 6 is a diagram showing a driving waveform of the ultrasonic flowmeter, and FIG. 7 is a signal sensitivity between the transceivers of the ultrasonic flowmeter. FIG. The second embodiment is different from the first embodiment in that the drive frequency of the drive circuit 9 is not changed for each measurement, but the drive circuit output is input to the drive frequency changing unit 13 to change the frequency during driving. It is a point.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

動作、作用について説明すると、駆動回路9が送信器1を駆動する信号を駆動周波数変更部13にも入力し、送信器1を駆動する駆動周波数をその都度変更する。   The operation and action will be described. The drive circuit 9 inputs a signal for driving the transmitter 1 to the drive frequency changing unit 13 and changes the drive frequency for driving the transmitter 1 each time.

図6に駆動周波数の変化の様子を示す。図6のように駆動周波数は駆動周期毎に変化する。また図7に駆動周波数の変更範囲と送受器間の感度を示す。図7で示すf1からf2の間を均一に駆動周波数を変更するように設定しているので、単独周波数faとfbで駆動した場合の差と比較して測定毎の差が小さくなるので、送受信の感度に大きな変化がなく、周波数の変更によって感度補正を行う必要がなくなり、回路構成が簡単となると同時に、補正によって生じる誤差が発生しない。   FIG. 6 shows how the drive frequency changes. As shown in FIG. 6, the driving frequency changes for each driving cycle. FIG. 7 shows the change range of the drive frequency and the sensitivity between the handset and the handset. Since the drive frequency is set to be uniformly changed between f1 and f2 shown in FIG. 7, the difference in each measurement is smaller than the difference in the case of driving with the single frequencies fa and fb. There is no significant change in sensitivity, and it is not necessary to perform sensitivity correction by changing the frequency, the circuit configuration is simplified, and at the same time, errors caused by the correction do not occur.

(実施の形態3)
図8は本発明の実施の形態3の超音波流量計のブロック図、図9は同超音波流量計の駆動周波数と送受信器間の感度を示す図である。
(Embodiment 3)
FIG. 8 is a block diagram of the ultrasonic flowmeter according to the third embodiment of the present invention, and FIG. 9 is a diagram showing the drive frequency of the ultrasonic flowmeter and the sensitivity between the transmitter and the receiver.

本実施の形態3において、実施の形態1と異なる点は駆動周波数変更部13が周波数設定部A17、周波数設定部B18、周波数設定部C19、周波数設定部D20、と周波数設定部A17−D20の出力を選択し駆動回路9に出力する周波数選定回路21によって構成されており、周波数設定部A17−D20が設定している駆動周波数のすべてが送受信器間の感度がほぼ等しい周波数であることである。   The third embodiment is different from the first embodiment in that the drive frequency changing unit 13 outputs the frequency setting unit A17, the frequency setting unit B18, the frequency setting unit C19, the frequency setting unit D20, and the frequency setting unit A17-D20. Is selected and output to the drive circuit 9, and all of the drive frequencies set by the frequency setting units A17-D20 are frequencies with substantially the same sensitivity between the transmitter and the receiver.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

図9に送受信器間の感度と駆動周波数の関係を示す。このように周波数設定部A17−D20の設定している周波数がそれぞれf1−f4にあたり、駆動周波数を変更しても送受信器間の感度が変わらないので、周波数を変更した時に送受信の感度を送信出力あるいは受信感度によって補正する必要がなく、回路構成が簡単となると同時に、補正によって生じる誤差が発生しない。   FIG. 9 shows the relationship between the sensitivity between the transceiver and the drive frequency. In this way, the frequencies set by the frequency setting units A17-D20 correspond to f1-f4, respectively, and even if the drive frequency is changed, the sensitivity between the transmitters and receivers does not change. Alternatively, it is not necessary to make corrections according to reception sensitivity, the circuit configuration is simplified, and errors caused by correction do not occur.

ここでは送受信器間の感度を既知のものとして周波数設定部の周波数をあらかじめ設定していたが、駆動周波数を変更し送受信を行い送受信器間の感度を調べ、送受信器間の感度がほぼ同じ駆動周波数を選択することもできる。この場合、周波数設定部はメモリーなどの書き換え可能なものを使用すればその都度最適な周波数を書き込むことができるので、簡単に本発明の構成を実現することができる。   Here, the frequency of the frequency setting unit has been set in advance assuming that the sensitivity between the transmitter and receiver is known. However, the sensitivity between the transmitter and receiver is checked by changing the drive frequency to check the sensitivity between the transmitter and receiver. A frequency can also be selected. In this case, if the frequency setting unit uses a rewritable device such as a memory, the optimum frequency can be written each time, so that the configuration of the present invention can be easily realized.

(実施の形態4)
図10は本発明の実施の形態4の超音波流量計を示すブロック図である。
(Embodiment 4)
FIG. 10 is a block diagram showing an ultrasonic flowmeter according to the fourth embodiment of the present invention.

本実施の形態4において、実施の形態1と異なる点は周波数変更部の入力が乱数テーブル21となっている点である。   The fourth embodiment is different from the first embodiment in that the input of the frequency changing unit is a random number table 21.

なお、実施の形態1と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、乱数テーブル21は制御部14の出力を受け、不規則な周波数信号を周波数変更部へ出力する。このように周波数を完全に不規則に変更するため、送信信号の規則性を完全になくすことができる。このため誤差が平均、分散化するので測定誤差が偏ることない。   Next, the operation and action will be described. The random number table 21 receives the output of the control unit 14 and outputs an irregular frequency signal to the frequency changing unit. Since the frequency is changed irregularly in this way, the regularity of the transmission signal can be completely eliminated. For this reason, the error is averaged and dispersed, so that the measurement error is not biased.

本発明の実施の形態1における超音波流量計のブロック図Block diagram of ultrasonic flowmeter in embodiment 1 of the present invention 同超音波流量計の送信器における駆動周波数の変化を表す図The figure showing the change of the drive frequency in the transmitter of the same ultrasonic flowmeter 本発明に関連する参考例としての超音波流量計のブロック図Block diagram of an ultrasonic flowmeter as a reference example related to the present invention 同超音波流量計の送受信のタイミングと送信周波数を示す図Diagram showing transmission / reception timing and transmission frequency of the ultrasonic flowmeter 本発明の実施の形態2における超音波流量計のブロック図Block diagram of ultrasonic flowmeter in embodiment 2 of the present invention 同超音波流量計の駆動波形を示す図Diagram showing the drive waveform of the ultrasonic flowmeter 同超音波流量計の送受信器間の信号感度特性図Signal sensitivity characteristic diagram between transmitter and receiver of the ultrasonic flowmeter 本発明の実施の形態3における超音波流量計のブロック図Block diagram of ultrasonic flowmeter in embodiment 3 of the present invention 同超音波流量計の駆動周波数と送受信器間の感度特性図Sensitivity characteristics between the frequency of the ultrasonic flowmeter and the transmitter / receiver 本発明の実施の形態4における超音波流量計のブロック図Block diagram of ultrasonic flowmeter in embodiment 4 of the present invention 従来の超音波流量計のブロック図Block diagram of conventional ultrasonic flowmeter

1 送信器
2 受信器
9 駆動回路
10 受信検知回路
11 タイマ
12 演算部
13 駆動周波数変更部
14 制御部
15 駆動回路
16 カウンタ
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Receiver 9 Drive circuit 10 Reception detection circuit 11 Timer 12 Calculation part 13 Drive frequency change part 14 Control part 15 Drive circuit 16 Counter

Claims (4)

超音波信号を送信する送信器と、
前記送信器を駆動する駆動回路と、
前記送信器から送信され流体を伝搬した超音波信号を受信する受信器と、
前記受信器の出力を受け超音波信号を検知する受信検知回路と、
前記超音波信号の伝搬時間を測定するタイマと、
前記タイマの出力より流量を演算によって求める演算部と、
前記駆動回路の駆動周波数を時間的に変更する駆動周波数変更部と、
前記駆動回路と前記タイマと前記駆動周波数変更部を制御する制御部とを備え、
前記制御部は時間計測を開始する都度、前記駆動周波数変更部に信号を出し駆動周波数を時間的に変更してから前記駆動回路に送信開始信号を出す超音波流量計。
A transmitter for transmitting ultrasonic signals;
A drive circuit for driving the transmitter;
A receiver for receiving an ultrasonic signal transmitted from the transmitter and propagated through the fluid;
A reception detection circuit that receives an output of the receiver and detects an ultrasonic signal;
A timer for measuring the propagation time of the ultrasonic signal;
A calculation unit for calculating the flow rate from the output of the timer;
A drive frequency changing unit for temporally changing the drive frequency of the drive circuit;
And a control unit for controlling the timer and the driving frequency changing unit and the drive circuit,
The ultrasonic flowmeter that outputs a transmission start signal to the drive circuit after the control unit outputs a signal to the drive frequency changing unit and changes the drive frequency with time each time time measurement is started.
前記駆動周波数を一定のパターンで変更する請求項1記載の超音波流量計。The ultrasonic flowmeter according to claim 1, wherein the driving frequency is changed in a constant pattern. 駆動周波数変更部の変更する周波数が、送信器と受信器間の超音波送受信感度がほぼ同じ周波数に変更する請求項1記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein the frequency changed by the drive frequency changing unit is changed to a frequency at which the ultrasonic transmission / reception sensitivity between the transmitter and the receiver is substantially the same. 前記駆動周波数を不規則に変更する請求項1記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein the driving frequency is irregularly changed.
JP2009016202A 2009-01-28 2009-01-28 Ultrasonic flow meter Expired - Lifetime JP4650574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016202A JP4650574B2 (en) 2009-01-28 2009-01-28 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016202A JP4650574B2 (en) 2009-01-28 2009-01-28 Ultrasonic flow meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05408299A Division JP4284738B2 (en) 1999-03-02 1999-03-02 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2009085972A JP2009085972A (en) 2009-04-23
JP4650574B2 true JP4650574B2 (en) 2011-03-16

Family

ID=40659539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016202A Expired - Lifetime JP4650574B2 (en) 2009-01-28 2009-01-28 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4650574B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2686643A4 (en) 2011-03-18 2014-09-10 Soneter Llc Methods and apparatus for fluid flow measurement
JP6973423B2 (en) 2019-02-05 2021-11-24 オムロン株式会社 Flow measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0148994B2 (en) * 1984-10-29 1989-10-23 Tokyo Keiki Kk
JPH09304138A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Ultrasonic current meter
JPH109915A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Ultrasonic current meter
JPH1114649A (en) * 1997-06-23 1999-01-22 Matsushita Electric Ind Co Ltd Flow-rate measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0148994B2 (en) * 1984-10-29 1989-10-23 Tokyo Keiki Kk
JPH09304138A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Ultrasonic current meter
JPH109915A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Ultrasonic current meter
JPH1114649A (en) * 1997-06-23 1999-01-22 Matsushita Electric Ind Co Ltd Flow-rate measuring device

Also Published As

Publication number Publication date
JP2009085972A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP2012127663A (en) Flow rate measuring device
WO2011055532A1 (en) Ultrasonic flowmeter
JP4650574B2 (en) Ultrasonic flow meter
JP4561088B2 (en) Ultrasonic flow meter
JP5141613B2 (en) Ultrasonic flow meter
JP3427762B2 (en) Ultrasonic flow meter
JP4284738B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP3624743B2 (en) Ultrasonic flow meter
US11709083B2 (en) Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects
JP3422100B2 (en) Flow measurement device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP5990770B2 (en) Ultrasonic measuring device
JP2012107874A (en) Ultrasonic flowmeter
WO2012157261A1 (en) Ultrasonic flow meter
JP6767628B2 (en) Flow measuring device
JP3443657B2 (en) Flow measurement device
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP7203352B2 (en) ultrasonic flow meter
JP5585402B2 (en) Flow measuring device
JP4082226B2 (en) Flow measuring device
JP4362890B2 (en) Flow measuring device
JP2007064988A5 (en)
JP3468235B2 (en) Flow measurement device
JP5092414B2 (en) Flow velocity or flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

EXPY Cancellation because of completion of term