JP3443657B2 - Flow measurement device - Google Patents

Flow measurement device

Info

Publication number
JP3443657B2
JP3443657B2 JP2001217762A JP2001217762A JP3443657B2 JP 3443657 B2 JP3443657 B2 JP 3443657B2 JP 2001217762 A JP2001217762 A JP 2001217762A JP 2001217762 A JP2001217762 A JP 2001217762A JP 3443657 B2 JP3443657 B2 JP 3443657B2
Authority
JP
Japan
Prior art keywords
flow rate
time
measurement
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001217762A
Other languages
Japanese (ja)
Other versions
JP2003028685A (en
Inventor
行夫 長岡
修 江口
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001217762A priority Critical patent/JP3443657B2/en
Publication of JP2003028685A publication Critical patent/JP2003028685A/en
Application granted granted Critical
Publication of JP3443657B2 publication Critical patent/JP3443657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスなどの流量を
計測する流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of gas or the like.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置は、図6に
示すように、流体管路1の一部に超音波送受信器2a、
2bを備え、計測開始手段3の信号によって流量計測を
開始し、超音波送受信器2aから2bまでの伝搬時間を
計時手段4で計測しする。流れに周期的な変動がある場
合には、計測のタイミングによって流量測定値にバラツ
キが生じる。例えば家庭用ガス消費量を計量をするガス
メータでは、近くでガスエンジンが運転されると圧力変
動が発生し、その影響で流量が変動する。図7はこのと
きの流量の波形を示した図で、実際にはAで示す流量が
流れている。デジタル式計測では間欠的にサンプリング
するので、時間t1(流量Q1)、時間t2(流量Q
2)、時間t3(流量Q3)のような値が得られマイコ
ンで平均して流量を算出していた。
2. Description of the Related Art As shown in FIG. 6, a conventional flow rate measuring device of this type has an ultrasonic transmitter / receiver 2a in a part of a fluid conduit 1.
2b is provided, the flow rate measurement is started by the signal of the measurement starting means 3, and the propagation time from the ultrasonic transceivers 2a to 2b is measured by the time measuring means 4. When the flow has a periodic fluctuation, the flow rate measurement value varies depending on the measurement timing. For example, in a gas meter that measures the amount of gas consumed by a household, pressure fluctuations occur when a gas engine is operated nearby, and the flow rate fluctuates due to the pressure fluctuations. FIG. 7 is a diagram showing the waveform of the flow rate at this time, and the flow rate indicated by A actually flows. Since sampling is performed intermittently in digital measurement, time t1 (flow rate Q1), time t2 (flow rate Q
2), a value such as time t3 (flow rate Q3) was obtained, and averaged by the microcomputer to calculate the flow rate.

【0003】また、脈動の有無を検出して、脈動流があ
る場合には計測を頻繁に行い、その平均値から流量を算
出していた。そしてさまざまな脈動周期に対応するため
にはデータの入出力回数を増加させたり、アナログ式の
場合時間t0からt4まで連続した信号を積分器を介し
て平均していた。
Further, the presence or absence of pulsation is detected, and if there is a pulsating flow, measurement is frequently performed and the flow rate is calculated from the average value. In order to deal with various pulsation cycles, the number of data inputs and outputs is increased, and in the case of the analog type, continuous signals from time t0 to t4 are averaged through an integrator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
流量計測装置では、次のような課題があった。すなわち
デジタル式では間欠的なサンプリングなので、正確な流
量を求めるには測定回数を増やして測定値を平均する必
要があるため長い時間が必要であった。また、入出力デ
ータの処理が煩雑になり、時間ばかりでなく消費電力も
大きくなるという傾向にあり、このため、ガスメータの
ような異常使用時の遮断などの保安機能を兼ねた流量計
測装置では、電池駆動でかつ安全性のために短時間で正
確な流量の計測を行うことが課題となっていた。
However, the conventional flow rate measuring device has the following problems. That is, since the digital method is intermittent sampling, a long time is required because it is necessary to increase the number of times of measurement and average the measured values in order to obtain an accurate flow rate. In addition, the processing of input / output data becomes complicated, and not only time but also power consumption tends to increase. Therefore, in a flow rate measuring device that also has a security function such as interruption during abnormal use like a gas meter, It has been an issue to accurately measure the flow rate in a short time for battery-powered and safety reasons.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の流量計測装置は、流体中に音波を送信また
は受信する送受信器と、送受信器間の送受信動作を複数
回行う繰り返し手段と、繰り返し手段による複数回の音
波伝搬時間の計測を1計測セットとして複数の計測セッ
トを実施する計測制御手段と、それぞれの音波伝搬時間
の値を積算し流量を算出する流量演算手段を備え、計測
制御手段は計測セットの回数を調節して計測したもの
で、これによって流れが脈動している場合にも追従性が
よく、また安定した定常流れの場合も平均流量を正しく
計測できる。
In order to solve the above-mentioned problems, a flow rate measuring device of the present invention comprises a transmitter / receiver for transmitting or receiving a sound wave in a fluid, and a repeating means for performing a transmitting / receiving operation between the transmitter / receiver a plurality of times. And measurement control means for implementing a plurality of measurement sets with one measurement set of measurement of the sound wave propagation time by the repeating means, and flow rate calculation means for integrating the values of the respective sound wave propagation times to calculate the flow rate, The measurement control means measures by adjusting the number of times of the measurement set. With this, the followability is good even when the flow is pulsating, and the average flow rate can be correctly measured even in the case of a stable steady flow.

【0006】[0006]

【発明の実施の形態】請求項1記載の発明は、流体中に
音波を送信または受信する送受信器と、前記送受信器間
の送受信を複数回行う繰り返し手段と、前記繰り返し手
段による複数回の音波伝搬時間の計測を1計測セットと
して複数の計測セットを実施する計測制御手段と、それ
ぞれの音波伝搬時間の値を積算し流量を算出する流量演
算手段を備え、前記計測制御手段は、所定時間内での計
測セット回数に応じて、所定時間内に複数の計測セット
をほぼ均等に割り付けて計測することにより、時間的に
まんべんなく流量計測を行い、脈動流の有無に関わらず
平均流量を高精度に計測できる。
A first aspect of the present invention is a transmitter / receiver for transmitting or receiving a sound wave in a fluid, a repeating means for transmitting / receiving a plurality of times between the transmitter / receiver, and a plurality of sound waves by the repeating means. includes a measurement control means for performing a plurality of measurement sets the measurement of the propagation time as a measurement set, the flow rate calculation means for calculating an integrated flow rate value of the each sound wave propagation time, the measurement control means, within a predetermined time In total
Depending on the number of measurement sets, multiple measurement sets within a predetermined time
By evenly allocating and measuring, the flow rate can be measured evenly in time, and the average flow rate can be measured with high accuracy regardless of the presence or absence of pulsating flow.

【0007】請求項2記載の発明は、流量演算手段の値
によって繰り返し回数を変更し、必要な流量分解能に応
じて繰り返し回数を変更でき、流量精度を低下させるこ
となく消費電力を低減できる。
According to a second aspect of the invention, the value of the flow rate calculation means
Change the number of repetitions to adjust to the required flow resolution.
The number of repetitions can be changed to reduce the flow rate accuracy.
It can reduce power consumption.

【0008】請求項3記載の発明は、上流から下流への
伝搬時間と下流から上流への伝搬時間とをそれぞれ別々
に直接積算する計時手段を備えているので、記憶手段を
介さず積算を行うことができ、流量演算が簡単な処理で
行え、低消費電力にできる。
According to the third aspect of the invention, from the upstream to the downstream
Separate propagation time and propagation time from downstream to upstream
Since it is equipped with a clocking means that directly adds to the
It is possible to perform integration without intervention, and the flow rate calculation is a simple process.
It can be done and low power consumption can be achieved.

【0009】請求項4記載の発明は、計時手段は、上流
から下流への伝搬時間を積算する上流カウンタと、下流
から上流への伝搬時間を積算する下流カウンタから構成
され、切換手段の信号と同期して切り換えられるので、
積算が自動的に行えて処理が簡単になって消費電力を低
減できる。
According to a fourth aspect of the invention, the timing means is upstream.
Upstream counter that integrates the propagation time from the
Consists of a downstream counter that integrates the propagation time from the upstream to the upstream
And is switched in synchronization with the signal of the switching means,
Low power consumption due to automatic integration and easy processing
Can be reduced.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】(実施例1) 以下、本発明の実施例1を図面に基づいて説明する。図
1において、流体管路5の途中に超音波を発信する送受
信器6aと受信する送受信器6bが流れ方向に配置され
ている。7は送受信器6aへの発信回路、8は送受信器
6bで受信した信号の増幅回路で、この増幅された信号
は基準信号と比較回路9で比較され、基準信号以上の信
号が検出されたとき繰り返し回数設定手段18aで設定
された回数だけ繰り返し手段11により遅延回路12で
信号を遅延させた後、トリガ回路13で超音波信号を繰
り返し発信する。繰り返し回数設定手段10で設定され
た回数が繰り返されたときの時間を計時手段14で求
め、マイクロコンピュータに内蔵されている記憶手段1
5に値を記憶させる。このようにして送受信器6aから
送受信器6bへすなわち上流から下流(以下、上流送信
という)へ超音波を送信する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a transmitter / receiver 6 a for transmitting ultrasonic waves and a transmitter / receiver 6 b for receiving ultrasonic waves are arranged in the flow direction in the middle of the fluid conduit 5. Reference numeral 7 is a transmitter circuit to the transmitter / receiver 6a, 8 is an amplifier circuit for a signal received by the transmitter / receiver 6b, and the amplified signal is compared with a reference signal by a comparison circuit 9, and when a signal higher than the reference signal is detected. After the signal is delayed by the delay circuit 12 by the repeater 11 by the number of times set by the repeat count setting means 18a , the trigger circuit 13 repeatedly transmits the ultrasonic signal. The time when the number of times set by the number-of-repetitions setting means 10 is repeated is obtained by the time-measuring means 14, and the storage means 1 built in the microcomputer.
The value is stored in 5. In this way, ultrasonic waves are transmitted from the transceiver 6a to the transceiver 6b, that is, from upstream to downstream (hereinafter referred to as upstream transmission).

【0012】次に切換手段16で送受信器6aと送受信
器6bの発信受信を切り換えて、送受信器6bから送受
信器6aへ、すなわち下流から上流(以下、下流送信と
いう)に向かって超音波信号を発信し、この発信を前述
のように繰り返し、その時間を計時する。そしてその時
間差から管路の大きさや流れの状態を考慮して流量演算
手段17で流量値を求める。18は計測制御手段で、繰
り返し手段の繰り返し回数を設定する繰り返し回数設定
手段18aと、繰り返し回数による計測を1計測セット
としてこの計測セットを何回計測するかを設定する計測
回数手段18bから構成されている。
Next, the switching means 16 switches the transmission / reception of the transmitter / receiver 6a and the transmitter / receiver 6b to transmit an ultrasonic signal from the transmitter / receiver 6b to the transmitter / receiver 6a, that is, from downstream to upstream (hereinafter referred to as downstream transmission). Make a call, repeat this call as described above, and measure the time. Then, the flow rate calculation means 17 determines the flow rate value from the time difference in consideration of the size of the pipeline and the flow state. Reference numeral 18 denotes a measurement control means, which is composed of a repeat count setting means 18a for setting the repeat count of the repeat means and a measurement count means 18b for setting how many times this measurement set is measured with one measurement set for measurement by the repeat count. ing.

【0013】次に計測のサンプリングの方法について述
べる。図2は脈動がある場合の計測サンプリングの状態
を示したもので、時間T1の間は、前述の上流送信を繰
り返し回数4回で行いその伝搬時間は計時手段14でカ
ウントされ記憶手段15でその伝搬時間t1を記憶され
る。この4回の計測を1計測セットとする。
Next, a sampling method for measurement will be described. FIG. 2 shows a state of measurement sampling when there is a pulsation. During the time T1, the above-mentioned upstream transmission is repeated 4 times, and its propagation time is counted by the clock means 14 and stored in the storage means 15. The propagation time t1 is stored. These four measurements are taken as one measurement set.

【0014】次に送受信器6a・6bを切り換えて時間
T2の間、下流送信を4回行ないその伝搬時間t2が記
憶される。さらに所定時間経過後、時間T3の間に上流
送信、時間T4の間に下流送信が行われて、伝搬時間t
3とt4がそれぞれ記憶される。
Next, the transmitters / receivers 6a and 6b are switched to perform the downstream transmission four times during the time T2, and the propagation time t2 thereof is stored. Further, after a predetermined time has elapsed, upstream transmission is performed during time T3, and downstream transmission is performed during time T4.
3 and t4 are stored respectively.

【0015】このように間欠的に上流送信と下流送信が
一対で行われ、本実施例ではT80まで合計80計測セ
ットでの計測が行われ、その伝搬時間は記憶手段15に
それぞれ蓄えられる。そして記憶手段15のデータは流
量演算手段17で演算し流量を算出する。この演算は例
えば、上流送信の総和を求め、繰り返し回数の総和から
1回あたりの伝搬時間の平均値を算出し、同様に下流送
信の1回あたり伝搬時間の平均値を算出し、それぞれの
伝搬時間の時間差、または時間の逆数の差から算出する
ことができる。T1・T2とT3・T4とT79・T8
0のそれぞれの計測間隔は均一になるように計測制御手
段18でタイミングを調節する。
As described above, the upstream transmission and the downstream transmission are intermittently performed in a pair, and in the present embodiment, measurement is performed by a total of 80 measurement sets up to T80, and the propagation time thereof is stored in the storage means 15, respectively. Then, the data in the storage means 15 is calculated by the flow rate calculation means 17 to calculate the flow rate. In this calculation, for example, the total sum of upstream transmissions is calculated, the average value of the propagation time per transmission is calculated from the total number of repetitions, and the average value of the propagation time per downstream transmission is calculated in the same manner, and each propagation is calculated. It can be calculated from the time difference of time or the difference of reciprocal of time. T1 / T2 and T3 / T4 and T79 / T8
The timing is adjusted by the measurement control means 18 so that the respective measurement intervals of 0 are uniform.

【0016】図2は流れが変化している場合であるが、
図3は流れが小さく安定している場合例えば停止してい
る場合である。このとき微小流量を検出しなければなら
ないので、流量検出には高い分解能が要求される。繰り
返し回数を増加させることにより微小な伝搬時間差を積
分して、流量分解能を高めることができる。図3では繰
り返し回数を12回を1計測セットとした場合であり4
回の時に比べて流量分解能は3倍になる。このようにし
てT10まで10計測セットまで計測する。前述の繰り
返し回数4回で80計測セットの場合は音波の伝搬の合
計は320回で、繰り返し回数12回で26計測セット
の場合には120回であり、消費電力は低減できる。
FIG. 2 shows the case where the flow is changing,
FIG. 3 shows a case where the flow is small and stable, for example, when the flow is stopped. At this time, a minute flow rate must be detected, so that high resolution is required for flow rate detection. By increasing the number of repetitions, a minute propagation time difference can be integrated and the flow rate resolution can be improved. In FIG. 3, the number of repetitions is 12 and one measurement set is used.
The flow rate resolution is three times higher than that of the first time. In this way, up to T10, 10 measurement sets are measured. The total number of sound wave propagations is 320 times in the case of 80 measurement sets with the number of repetitions of 4 times, and 120 times in the case of 26 measurement sets with the number of repetitions of 12 times, and the power consumption can be reduced.

【0017】(実施例2) 図4は本発明の実施例2の計時手段14を示すブロック
図で、計時手段14には水晶発信器のような基準クロッ
ク14aと上流カウンタ14b・下流カウンタ14cが
ある。上流カウンタ14bは上流送信での伝搬時間を計
測するためのものであり、切換手段16が切り換えられ
ると基準クロック14aから上流カウンタ14bへ結線
され、計測の開始でカウントが開始され、所定の繰り返
しが終了するとカウントが停止する。
(Embodiment 2) FIG. 4 is a block diagram showing a clock means 14 according to a second embodiment of the present invention. The clock means 14 includes a reference clock 14a such as a crystal oscillator, an upstream counter 14b and a downstream counter 14c. is there. The upstream counter 14b is for measuring the propagation time in upstream transmission, and when the switching means 16 is switched, the reference clock 14a is connected to the upstream counter 14b, counting is started at the start of measurement, and a predetermined repetition is performed. When it finishes, counting stops.

【0018】次に切換手段16によって下流送信に切り
換えられると、基準クロック14aは下流カウンタ14
c側に切り換えられる。
Next, when the switching means 16 switches to the downstream transmission, the reference clock 14a becomes the downstream counter 14a.
It is switched to the c side.

【0019】このとき上流カウンタの値は停止した値を
保持している。前述と同様に下流側の送受信が所定回数
行われて、下流カウンタがカウントして停止する。次に
再び切換手段16によって送受信器16a・16bが上
流送信に切り換えられる、基準クロック14aは上流カ
ウンタ側へ結線され、送信の開始とともに上流カウンタ
が先ほどのカウンタ値から継続して累積のカウンタ値を
カウントする。以降この動作を繰り返し、計測回数手段
18aで設定された回数の計測セットの測定が終了する
までカウンタ値を積算する。上流と下流のカウンタの積
算値はそれぞれ記憶手段15へ読み込まれ流量演算手段
17で流量値に換算される。
At this time, the value of the upstream counter holds the stopped value. Similar to the above, the transmission / reception on the downstream side is performed a predetermined number of times, and the downstream counter counts and stops. Next, the transmitter / receivers 16a and 16b are switched to the upstream transmission again by the switching means 16, the reference clock 14a is connected to the upstream counter side, and when the transmission is started, the upstream counter continues the accumulated counter value from the previous counter value. To count. Thereafter, this operation is repeated, and the counter values are integrated until the measurement of the number of measurement sets set by the measurement number means 18a is completed. The integrated values of the upstream and downstream counters are read into the storage means 15 and converted into flow rate values by the flow rate calculation means 17.

【0020】(実施例3) 図5は本発明の実施例3の要部を示すブロック図であ
る。繰り返し送信が終了した後に位相遅延手段19を通
過する。すなわちカウンタはこの遅延時間の分だけ遅れ
て停止する。この遅延時間は基準クロック14aの1周
期をTcとするとTc/n(nは整数)単位で調節が可
能で、遅延設定手段20で計測セット毎に変更すること
ができる。
(Embodiment 3) FIG. 5 is a block diagram showing the essential parts of Embodiment 3 of the present invention. After the repeated transmission is completed, it passes through the phase delay means 19. That is, the counter stops after a delay of this delay time. This delay time can be adjusted in units of Tc / n (n is an integer) when one cycle of the reference clock 14a is Tc, and can be changed by the delay setting means 20 for each measurement set.

【0021】次に位相遅延手段19の動作について述べ
る。先ず1回目の計測セットで上流送信されるときには
遅延時間Td1=0に設定され、2回目の計測セットで
下流送信では同様にTd2=0に設定される。次に3回
目の計測セット(上流送信)では遅延時間Td3=Tc
/nに設定され、4回目の計測セット(下流送信)も同
様にTd4=Tc/nである。5回目と6回目の計測セ
ットでは遅延時間Td5=Td6=2*Tc/nに設定
され、以降Tc/nずつ遅延時間が増加する。そして2
*N回以降になると初期値のゼロになる。
Next, the operation of the phase delay means 19 will be described. First, when the upstream transmission is performed in the first measurement set, the delay time Td1 = 0 is set, and in the downstream transmission in the second measurement set, Td2 = 0 is similarly set. Next, in the third measurement set (upstream transmission), the delay time Td3 = Tc
/ N, and Td4 = Tc / n in the fourth measurement set (downstream transmission) as well. In the fifth and sixth measurement sets, the delay time Td5 = Td6 = 2 * Tc / n is set, and thereafter the delay time increases by Tc / n. And 2
* After N times, the initial value becomes zero.

【0022】この結果、伝搬時間がわずかな変化であっ
てもカウンタ値の差となってあらわれることになり、基
準クロックの周期以下の微小な伝搬時間の差が検出でき
るので、微小な流量の計測される。理論的には基準クロ
ックの周期を1/Nにしたと同等の分解能が得られる。
遅延時間のの切換は、ディレイライン素子のタップを切
り換えたり、デジタル回路ゲート遅延を切り換えること
で達成される。
As a result, even a slight change in the propagation time will appear as a difference in the counter value, and a minute difference in the propagation time less than the cycle of the reference clock can be detected. To be done. Theoretically, a resolution equivalent to that when the cycle of the reference clock is set to 1 / N can be obtained.
The switching of the delay time is achieved by switching the tap of the delay line element or switching the digital circuit gate delay.

【0023】なお、遅延時間の位置は計測セット開始
から停止までのどの位置に入れてもよい。この遅延時間
はわずかな値なので伝搬時間の絶対値への影響はきわめ
て小さいが、既知の値であるので必要であれば流量演算
の際に補正することが可能である。
The position of the delay time may be placed at any position from the start to the stop of the measurement set. Since this delay time is a small value, the influence of the propagation time on the absolute value is extremely small, but since it is a known value, it can be corrected when calculating the flow rate if necessary.

【0024】[0024]

【発明の効果】以上のように本発明によれば、定常流や
脈動流に関わらず平均流量を高精度に計測できる。ま
た、消費電力を増加させることなく脈動流を正確に計測
することができる。
As described above, according to the present invention, the average flow rate can be measured with high accuracy regardless of the steady flow or the pulsating flow. Moreover, the pulsating flow can be accurately measured without increasing the power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の流量計測装置のブロック図FIG. 1 is a block diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置の流量波形図[Fig. 2] Flow rate waveform diagram of the device

【図3】同装置の他の流量波形図FIG. 3 is another flow rate waveform diagram of the same device.

【図4】本発明の実施例2の流量計測装置の要部ブロッ
ク図
FIG. 4 is a block diagram of a main part of a flow rate measuring device according to a second embodiment of the present invention.

【図5】本発明の実施例3の流量計測装置の要部ブロッ
ク図
FIG. 5 is a block diagram of a main part of a flow rate measuring device according to a third embodiment of the present invention.

【図6】従来の流量計測装置のブロック図FIG. 6 is a block diagram of a conventional flow rate measuring device.

【図7】同装置の流量波形図FIG. 7 is a flow rate waveform diagram of the device.

【符号の説明】[Explanation of symbols]

5 流体管路 6a、6b 送受信器(第1送受信器、第2送受信器) 11 繰り返し手段 14 計時手段 14a 基準クロック 14b 上流カウンタ 14c 下流カウンタ 15 切換手段 17 流量演算手段 18 計測制御手段18a 繰り返し回数設定手段 19 位相遅延手段5 Fluid Pipelines 6a, 6b Transceiver (First Transceiver, Second Transceiver) 11 Repeating Means 14 Clocking Means 14a Reference Clock 14b Upstream Counter 14c Downstream Counter 15 Switching Means 17 Flow Rate Calculating Means 18 Measurement Control Means 18a Repeat Count Setting Means 19 Phase delay means

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体中に音波を送信または受信する送受
信器と、前記送受信器間の送受信を複数回行う繰り返し
手段と、前記繰り返し手段による複数回の音波伝搬時間
の計測を1計測セットとして複数の計測セットを実施す
る計測制御手段と、それぞれの音波伝搬時間の値を積算
し流量を算出する流量演算手段を備え、前記計測制御手
段は、所定時間内での計測セット回数に応じて、所定時
間内に複数の計測セットをほぼ均等に割り付けて計測す
流量計測装置。
1. A transmitter / receiver for transmitting or receiving a sound wave in a fluid, a repeating unit for transmitting / receiving between the transmitters / receivers a plurality of times, and a plurality of times for measuring the sound wave propagation time by the repeating unit as one measurement set. Measurement control means for implementing the measurement set, and flow rate calculation means for calculating the flow rate by integrating the values of the respective sound wave propagation times, and the measurement control means determines the predetermined number of times within a predetermined time period. Time
Almost evenly allocate multiple measurement sets in the space
That the flow rate measuring device.
【請求項2】 流量演算手段の値によって繰り返し回数
を変更する請求項1記載の流量計測装置。
2. The number of repetitions depending on the value of the flow rate calculation means
The flow rate measuring device according to claim 1, wherein
【請求項3】 上流から下流への伝搬時間と下流から上
流への伝搬時間とをそれぞれ別々に直接積算する計時手
段と、前記計時手段の値から流量を算出する流量演算手
段とを備えた請求項1記載の流量計測装置。
3. Propagation time from upstream to downstream and from downstream to above
A timer that directly integrates the propagation time to the flow separately
And a flow rate calculator that calculates the flow rate from the value of the timing means.
The flow rate measuring device according to claim 1, further comprising a step .
【請求項4】 計時手段は、上流から下流への伝搬時間
を積算する上流カウンタと、下流から上流への伝搬時間
を積算する下流カウンタから構成され、切換手段の信号
と同期して切り換えられる請求項3記載の流量計測装
置。
4. The time measuring means is a propagation time from upstream to downstream.
Upstream counter that accumulates and the propagation time from downstream to upstream
Is composed of a downstream counter that integrates
The flow rate measuring device according to claim 3, which is switched in synchronization with the flow rate measuring device.
JP2001217762A 2001-07-18 2001-07-18 Flow measurement device Expired - Lifetime JP3443657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217762A JP3443657B2 (en) 2001-07-18 2001-07-18 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217762A JP3443657B2 (en) 2001-07-18 2001-07-18 Flow measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003062220A Division JP4734822B2 (en) 2003-03-07 2003-03-07 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2003028685A JP2003028685A (en) 2003-01-29
JP3443657B2 true JP3443657B2 (en) 2003-09-08

Family

ID=19052030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217762A Expired - Lifetime JP3443657B2 (en) 2001-07-18 2001-07-18 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3443657B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788235B2 (en) 2005-08-16 2011-10-05 パナソニック株式会社 Fluid flow measuring device
JP5310001B2 (en) * 2009-01-07 2013-10-09 パナソニック株式会社 Ultrasonic gas meter
JP5753970B2 (en) * 2010-10-22 2015-07-22 パナソニックIpマネジメント株式会社 Flow measuring device

Also Published As

Publication number Publication date
JP2003028685A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CN100585346C (en) Low power ultrasonic flow measurement
WO2012053209A1 (en) Flow-rate measurement device
WO2012081195A1 (en) Flow volume measuring device
JP2013148523A (en) Flow rate measuring instrument
JP2001004419A (en) Flowmeter
JP3443657B2 (en) Flow measurement device
JP4734822B2 (en) Flow measuring device
JP3443658B2 (en) Flow measurement device
JP3427762B2 (en) Ultrasonic flow meter
JP3695031B2 (en) Flow measuring device
JP3689973B2 (en) Flow measuring device
JP3456060B2 (en) Flow measurement device
JP2002350202A (en) Flow measuring device
JP3838209B2 (en) Flow measuring device
JP4650574B2 (en) Ultrasonic flow meter
JP3422100B2 (en) Flow measurement device
JP2006214793A (en) Device for measuring flow rate
JP3945530B2 (en) Flow measuring device
JP4485641B2 (en) Ultrasonic flow meter
JP5585402B2 (en) Flow measuring device
JP4082226B2 (en) Flow measuring device
JP4476022B2 (en) Ultrasonic flow meter
JP6767628B2 (en) Flow measuring device
JP4117996B2 (en) Gas meter flow derivation method and gas meter
JP2004069522A (en) Apparatus for controlling measurement on flow quantity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3443657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 11

EXPY Cancellation because of completion of term