JP4734822B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4734822B2
JP4734822B2 JP2003062220A JP2003062220A JP4734822B2 JP 4734822 B2 JP4734822 B2 JP 4734822B2 JP 2003062220 A JP2003062220 A JP 2003062220A JP 2003062220 A JP2003062220 A JP 2003062220A JP 4734822 B2 JP4734822 B2 JP 4734822B2
Authority
JP
Japan
Prior art keywords
measurement
flow rate
time
sound wave
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062220A
Other languages
Japanese (ja)
Other versions
JP2003232664A (en
Inventor
行夫 長岡
修 江口
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003062220A priority Critical patent/JP4734822B2/en
Publication of JP2003232664A publication Critical patent/JP2003232664A/en
Application granted granted Critical
Publication of JP4734822B2 publication Critical patent/JP4734822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスなどの流量を計測する流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置は、図6に示すように、流体管路1の一部に超音波送受信器2a、2bを備え、計測開始手段3の信号によって流量計測を開始し、超音波送受信器2aから2bまでの伝搬時間を計時手段4で計測しする。流れに周期的な変動がある場合には、計測のタイミングによって流量測定値にバラツキが生じる。例えば家庭用ガス消費量を計量をするガスメータでは、近くでガスエンジンが運転されると圧力変動が発生し、その影響で流量が変動する。図7はこのときの流量の波形を示した図で、実際にはAで示す流量が流れている。デジタル式計測では間欠的にサンプリングするので、時間t1(流量Q1)、時間t2(流量Q2)、時間t3(流量Q3)のような値が得られマイコンで平均して流量を算出していた。
【0003】
また、脈動の有無を検出して、脈動流がある場合には計測を頻繁に行い、その平均値から流量を算出していた。そして、さまざまな脈動周期に対応するためにはデータの入出力回数の増加とそれに伴う消費電力の増加アナログ式の場合時間t0からt4まで連続した信号を積分器を介して平均していた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の流量計測装置では、次のような課題があった。すなわちデジタル式では間欠的なサンプリングなので、正確な流量を求めるには測定回数を増やして測定値を平均する必要があるため長い時間が必要であった。また、入出力データの処理が煩雑になり、時間ばかりでなく消費電力も大きくなるという傾向にあり、このため、ガスメータのような異常使用時の遮断などの保安機能を兼ねた流量計測装置では、電池駆動でかつ安全性のために短時間で正確な流量の計測を行うことが課題となっていた。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の流量計測装置は、流体中に音波を送信または受信する送受信器と、送受信器間の送受信動作を複数回行う繰り返し手段と、繰り返し手段による複数回の音波伝搬時間の計測を1計測セットとして複数の計測セットを実施する計測制御手段と、それぞれの音波伝搬時間の値を積算し流量を算出する流量演算手段を備え、計測制御手段は計測セットの回数を調節して計測したもので、これによって流れが脈動している場合にも追従性がよく、また安定した定常流れの場合も平均流量を正しく計測できる。
【0006】
【発明の実施の形態】
請求項1記載の発明は、送受信器間の音波伝搬時間を計測する計時手段と、音波伝搬計測を一つの計測セットとして複数の計測セットを実施する計測制御手段と、計測セットの計測開始から終了までのいずれかに設けられた遅延時間を調節可能な位相遅延手段と、それぞれの音波伝搬時間の値を積算し流量を算出する流量演算手段を備えたので、計時手段の分解能が低くても高精度の流量分解能が得られる。
【0007】
請求項2記載の発明は、位相遅延手段は計測セットによって遅延を調節可能なので、流量分解能を向上できて低消費電力で高精度な流量計測ができる。
【0008】
請求項3記載の発明は、位相遅延手段の遅延時間は、音波伝搬時間を計測する計時手段の基準クロックの周期よりも1/2以下にしたので、流量分解能は確実に向上する。
【0009】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0010】
(実施例1)
以下、本発明の実施例1を図面に基づいて説明する。図1において、流体管路5の途中に超音波を発信する送受信器6aと受信する送受信器6bが流れ方向に配置されている。7は送受信器6aへの発信回路、8は送受信器6bで受信した信号の増幅回路で、この増幅された信号は基準信号と比較回路9で比較され、基準信号以上の信号が検出されたとき繰り返し回数設定手段10で設定された回数だけ繰り返し手段11により遅延回路12で信号を遅延させた後、トリガ回路13で超音波信号を繰り返し発信する。繰り返し回数設定手段10で設定された回数が繰り返されたときの時間を計時手段14で求め、マイクロコンピュータに内蔵されている記憶手段15に値を記憶させる。このようにして送受信器6aから送受信器6bへすなわち上流から下流(以下、上流送信という)へ超音波を送信する。
【0011】
次に切換手段16で送受信器6aと送受信器6bの発信受信を切り換えて、送受信器6bから送受信器6aへ、すなわち下流から上流(以下、下流送信という)に向かって超音波信号を発信し、この発信を前述のように繰り返し、その時間を計時する。そしてその時間差から管路の大きさや流れの状態を考慮して流量演算手段17で流量値を求める。18は計測制御手段で、繰り返し手段の繰り返し回数を設定する繰り返し回数設定手段18aと、繰り返し回数による計測を1計測セットとしてこの計測セットを何回計測するかを設定する計測回数手段18bから構成されている。
【0012】
次に計測のサンプリングの方法について述べる。図2は脈動がある場合の計測サンプリングの状態を示したもので、時間T1の間は、前述の上流送信を繰り返し回数4回で行いその伝搬時間は計時手段14でカウントされ記憶手段15でその伝搬時間t1を記憶される。この4回の計測を1計測セットとする。
【0013】
次に送受信器6a・6bを切り換えて時間T2の間、下流送信を4回行ないその伝搬時間t2が記憶される。さらに所定時間経過後、時間T3の間に上流送信、時間T4の間に下流送信が行われて、伝搬時間t3とt4がそれぞれ記憶される。
【0014】
このように間欠的に上流送信と下流送信が一対で行われ、本実施例ではT80まで合計80計測セットでの計測が行われ、その伝搬時間は記憶手段15にそれぞれ蓄えられる。そして記憶手段15のデータは流量演算手段17で演算し流量を算出する。この演算は例えば、上流送信の総和を求め、繰り返し回数の総和から1回あたりの伝搬時間の平均値を算出し、同様に下流送信の1回あたり伝搬時間の平均値を算出し、それぞれの伝搬時間の時間差、または時間の逆数の差から算出することができる。T1・T2とT3・T4とT79・T80のそれぞれの計測間隔は均一になるように計測制御手段18でタイミングを調節する。
【0015】
図2は流れが変化している場合であるが、図3は流れが流れが小さく安定している場合例えば停止している場合である。このとき微小流量を検出しなければならないので、流量検出には高い分解能が要求される。繰り返し回数を増加させることにより微小な伝搬時間差を積分して、流量分解能を高めることができる。図3では繰り返し回数を12回を1計測セットとした場合であり4回の時に比べて流量分解能は3倍になる。このようにしてT10まで10計測セットまで計測する。前述の繰り返し回数4回で80計測セットの場合は音波の伝搬の合計は320回で、繰り返し回数12回で26計測セットの場合には120回であり、消費電力は低減できる。
【0016】
(実施例2)
図4は本発明の実施例2の計時手段14を示すブロック図で、計時手段14には水晶発信器のような基準クロック14aと上流カウンタ14b・下流カウンタ14cがある。上流カウンタ14bは上流送信での伝搬時間を計測するためのものであり、切換手段16が切り換えられると基準クロック14aから上流カウンタ14bへ結線され、計測の開始でカウントが開始され、所定の繰り返しが終了するとカウントが停止する。
【0017】
次に切換手段16によって下流送信に切り換えられると、基準クロック14aは下流カウンタ14c側に切り換えられる。
【0018】
このとき上流カウンタの値は停止した値を保持している。前述と同様に下流側の送受信が所定回数行われて、下流カウンタがカウントして停止する。次に再び切換手段16によって送受信器16a・16bが上流送信に切り換えられる、基準クロック14aは上流カウンタ側へ結線され、送信の開始とともに上流カウンタが先ほどのカウンタ値から継続して累積のカウンタ値をカウントする。以降この動作を繰り返し、計測回数手段18aで設定された回数の計測セットの測定が終了するまでカウンタ値を積算する。上流と下流のカウンタの積算値はそれぞれ記憶手段15へ読み込まれ流量演算手段17で流量値に換算される。
【0019】
(実施例3)
図5は本発明の実施例3の要部を示すブロック図である。繰り返し送信が終了した後に位相遅延手段19を通過する。すなわちカウンタはこの遅延時間の分だけ遅れて停止する。この遅延時間は基準クロック14aの1周期をTcとするとTc/n(nは整数)単位で調節が可能で、遅延設定手段20で計測セット毎に変更することができる。
【0020】
次に位相遅延手段19の動作について述べる。先ず1回目の計測セットで上流送信されるときには遅延時間Td1=0に設定され、2回目の計測セットで下流送信では同様にTd2=0に設定される。次に3回目の計測セット(上流送信)では遅延時間Td3=Tc/nに設定され、4回目の計測セット(下流送信)も同様にTd4=Tc/nである。5回目と6回目の計測セットでは遅延時間Td5=Td6=2*Tc/nに設定され、以降Tc/nずつ遅延時間が増加する。そして2*N回以降になると初期値のゼロになる。
【0021】
この結果、伝搬時間がわずかな変化であってもカウンタ値の差となってあらわれることになり、基準クロックの周期以下の微小な伝搬時間の差が検出できるので、微小な流量の計測される。理論的には基準クロックの周期を1/Nにしたと同等の分解能が得られる。遅延時間のの切換は、ディレイライン素子のタップを切り換えたり、デジタル回路ゲート遅延を切り換えることで達成される。
【0022】
なお、遅延時間の位置は計測セットが開始から停止までのどの位置に入れてもよい。この遅延時間はわずかな値なので伝搬時間の絶対値への影響はきわめて小さいが、既知の値であるので必要であれば流量演算の際に補正することが可能である。
【0023】
【発明の効果】
以上のように本発明の請求項1〜2に記載の発明によれば、定常流や脈動流に関わらず平均流量を高精度に計測できる。また請求項3〜8に記載の発明によれば消費電力を増加させることなく脈動流を正確に計測することができる。
【図面の簡単な説明】
【図1】本発明の実施例1の流量計測装置のブロック図
【図2】同装置の流量波形図
【図3】同装置の他の流量波形図
【図4】本発明の実施例2の流量計測装置の要部ブロック図
【図5】本発明の実施例3の流量計測装置の要部ブロック図
【図6】従来の流量計測装置のブロック図
【図7】同装置の流量波形図
【符号の説明】
5 流体管路
6a、6b 送受信器(第1送受信器、第2送受信器)
10 繰り返し回数設定手段
11 繰り返し手段
14 計時手段
14a 基準クロック
14b 上流カウンタ
14c 下流カウンタ
15 切換手段
17 流量演算手段
18 計測制御手段
19 位相遅延手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device for measuring a flow rate of gas or the like.
[0002]
[Prior art]
As shown in FIG. 6, the conventional flow measuring device of this type includes ultrasonic transmitters / receivers 2a and 2b in a part of the fluid conduit 1, starts flow measurement by a signal from the measurement start means 3, and The time measuring means 4 measures the propagation time from the transceivers 2a to 2b. When there is a periodic fluctuation in the flow, the flow rate measurement value varies depending on the measurement timing. For example, in a gas meter for measuring household gas consumption, pressure fluctuation occurs when a gas engine is operated nearby, and the flow rate fluctuates due to the fluctuation. FIG. 7 is a diagram showing the flow rate waveform at this time, and the flow rate indicated by A actually flows. Since digital measurement is intermittently sampled, values such as time t1 (flow rate Q1), time t2 (flow rate Q2), and time t3 (flow rate Q3) are obtained and averaged by the microcomputer to calculate the flow rate.
[0003]
Further, the presence or absence of pulsation is detected, and when there is a pulsating flow, measurement is frequently performed and the flow rate is calculated from the average value. In order to cope with various pulsation cycles, an increase in the number of data inputs / outputs and an accompanying increase in power consumption. In the case of an analog type, continuous signals from time t0 to t4 are averaged through an integrator.
[0004]
[Problems to be solved by the invention]
However, the conventional flow rate measuring device has the following problems. That is, since digital sampling is intermittent sampling, it takes a long time to obtain an accurate flow rate because it is necessary to increase the number of measurements and average the measured values. In addition, the processing of input / output data becomes complicated, and there is a tendency that not only time but also power consumption increases.For this reason, in a flow measuring device that also functions as a safety function such as shut-off during abnormal use such as a gas meter, It has been an issue to accurately measure the flow rate in a short time for battery-driven and safety.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a flow rate measuring device according to the present invention includes a transmitter / receiver that transmits or receives a sound wave in a fluid, a repeating unit that performs transmission / reception operations between the transmitter / receiver a plurality of times, and a plurality of sound waves generated by the repeating unit A measurement control unit that implements a plurality of measurement sets with the propagation time measurement as one measurement set, and a flow rate calculation unit that calculates the flow rate by integrating the values of the respective sound wave propagation times, the measurement control unit determines the number of measurement sets. This is measured and adjusted, so that even if the flow is pulsating, the followability is good, and the average flow rate can be measured correctly even in the case of a stable steady flow.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a time measuring means for measuring a sound wave propagation time between a transmitter and a receiver, a measurement control means for carrying out a plurality of measurement sets by using the sound wave propagation measurement as one measurement set, and ending from the measurement start of the measurement set. Phase delay means that can adjust the delay time provided in any of the above and a flow rate calculation means that calculates the flow rate by integrating the values of the respective sound wave propagation times, so that even if the timekeeping means has low resolution, Accurate flow resolution is obtained.
[0007]
According to the second aspect of the present invention, since the phase delay means can adjust the delay by the measurement set, the flow rate resolution can be improved, and the flow rate can be measured with low power consumption and high accuracy.
[0008]
According to the third aspect of the present invention, since the delay time of the phase delay means is ½ or less than the period of the reference clock of the time measuring means for measuring the sound wave propagation time, the flow rate resolution is reliably improved.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
Example 1
Embodiment 1 of the present invention will be described below with reference to the drawings. In FIG. 1, a transmitter / receiver 6 a that transmits ultrasonic waves and a transmitter / receiver 6 b that receives ultrasonic waves are arranged in the flow direction in the middle of the fluid conduit 5. 7 is a transmission circuit for the transmitter / receiver 6a, 8 is an amplifier circuit for the signal received by the transmitter / receiver 6b, and the amplified signal is compared with the reference signal by the comparison circuit 9, and a signal equal to or higher than the reference signal is detected. After the delay circuit 12 delays the signal by the repetition means 11 by the number of times set by the repetition number setting means 10, an ultrasonic signal is repeatedly transmitted by the trigger circuit 13. The time when the number of times set by the repetition number setting means 10 is repeated is obtained by the time measuring means 14, and the value is stored in the storage means 15 incorporated in the microcomputer. In this way, ultrasonic waves are transmitted from the transceiver 6a to the transceiver 6b, that is, from upstream to downstream (hereinafter referred to as upstream transmission).
[0011]
Next, the transmission / reception of the transmitter / receiver 6a and the transmitter / receiver 6b is switched by the switching means 16, and an ultrasonic signal is transmitted from the transmitter / receiver 6b to the transmitter / receiver 6a, that is, from downstream to upstream (hereinafter referred to as downstream transmission). This transmission is repeated as described above, and the time is counted. From the time difference, the flow rate calculation means 17 determines the flow rate value in consideration of the size of the pipeline and the flow state. Reference numeral 18 denotes a measurement control means, which is composed of a repetition number setting means 18a for setting the number of repetitions of the repetition means, and a measurement number means 18b for setting how many times this measurement set is measured with the measurement based on the repetition number as one measurement set. ing.
[0012]
Next, the measurement sampling method will be described. FIG. 2 shows the state of measurement sampling when there is a pulsation. During the time T1, the upstream transmission described above is repeated four times, and the propagation time is counted by the time measuring means 14 and stored in the storage means 15. The propagation time t1 is stored. These four measurements are taken as one measurement set.
[0013]
Next, the transmitter / receivers 6a and 6b are switched, and downstream transmission is performed four times during the time T2, and the propagation time t2 is stored. Further, after a predetermined time has elapsed, upstream transmission is performed during time T3 and downstream transmission is performed during time T4, and propagation times t3 and t4 are stored.
[0014]
In this way, the upstream transmission and the downstream transmission are intermittently performed as a pair, and in this embodiment, measurement is performed in a total of 80 measurement sets up to T80, and the propagation time is stored in the storage means 15, respectively. The data in the storage unit 15 is calculated by the flow rate calculation unit 17 to calculate the flow rate. In this calculation, for example, the sum total of upstream transmissions is calculated, the average value of propagation times per one time is calculated from the sum of the number of repetitions, and the average value of propagation times per one time of downstream transmission is calculated in the same manner. It can be calculated from the time difference of time or the difference of reciprocal time. The timing is adjusted by the measurement control means 18 so that the measurement intervals of T1, T2, T3, T4, T79, and T80 are uniform.
[0015]
FIG. 2 shows a case where the flow is changing, while FIG. 3 shows a case where the flow is small and stable, for example, when the flow is stopped. At this time, since a minute flow rate must be detected, high resolution is required for flow rate detection. By increasing the number of repetitions, a minute propagation time difference can be integrated and the flow rate resolution can be increased. In FIG. 3, the number of repetitions is 12 times as one measurement set, and the flow rate resolution is tripled compared to the case of 4 times. In this way, measurement is performed up to 10 measurement sets up to T10. In the case of 80 measurement sets with 4 repetitions as described above, the total propagation of sound waves is 320 times, and in the case of 26 measurement sets with 12 repetitions, the power consumption is 120.
[0016]
(Example 2)
FIG. 4 is a block diagram showing the time measuring means 14 according to the second embodiment of the present invention. The time measuring means 14 includes a reference clock 14a such as a crystal oscillator, an upstream counter 14b, and a downstream counter 14c. The upstream counter 14b is for measuring the propagation time in upstream transmission. When the switching means 16 is switched, the reference clock 14a is connected to the upstream counter 14b, the count is started at the start of measurement, and a predetermined repetition is performed. When finished, the count stops.
[0017]
Next, when switching to downstream transmission is performed by the switching means 16, the reference clock 14a is switched to the downstream counter 14c side.
[0018]
At this time, the value of the upstream counter holds the stopped value. As described above, downstream transmission / reception is performed a predetermined number of times, and the downstream counter counts and stops. Next, the transmitter / receiver 16a and 16b are switched to upstream transmission again by the switching means 16, the reference clock 14a is connected to the upstream counter side, and the upstream counter continues to count the accumulated counter value from the previous counter value at the start of transmission. Count. Thereafter, this operation is repeated, and the counter values are accumulated until the measurement of the number of measurement sets set by the measurement number means 18a is completed. The integrated values of the upstream and downstream counters are respectively read into the storage means 15 and converted into flow rate values by the flow rate calculation means 17.
[0019]
(Example 3)
FIG. 5 is a block diagram showing a main part of the third embodiment of the present invention. After the repeated transmission is completed, the signal passes through the phase delay means 19. That is, the counter stops with a delay of this delay time. This delay time can be adjusted in units of Tc / n (n is an integer) where one period of the reference clock 14a is Tc, and can be changed by the delay setting means 20 for each measurement set.
[0020]
Next, the operation of the phase delay means 19 will be described. First, the delay time Td1 = 0 is set when upstream transmission is performed in the first measurement set, and Td2 = 0 is similarly set for downstream transmission in the second measurement set. Next, in the third measurement set (upstream transmission), the delay time Td3 = Tc / n is set, and the fourth measurement set (downstream transmission) is similarly Td4 = Tc / n. In the fifth and sixth measurement sets, the delay time Td5 = Td6 = 2 * Tc / n is set, and thereafter the delay time increases by Tc / n. And after 2 * N times, the initial value becomes zero.
[0021]
As a result, even a slight change in the propagation time appears as a difference in the counter value, and a minute propagation time difference equal to or less than the reference clock period can be detected, so that a minute flow rate is measured. Theoretically, a resolution equivalent to 1 / N of the reference clock period can be obtained. The switching of the delay time is achieved by switching the tap of the delay line element or switching the digital circuit gate delay.
[0022]
Note that the position of the delay time may be set at any position from the start to the stop of the measurement set. Since this delay time is a small value, the influence of the propagation time on the absolute value is very small. However, since it is a known value, it can be corrected in the flow rate calculation if necessary.
[0023]
【The invention's effect】
As described above, according to the first and second aspects of the present invention, the average flow rate can be measured with high accuracy regardless of the steady flow or the pulsating flow. Further, according to the third to eighth aspects of the present invention, the pulsating flow can be accurately measured without increasing the power consumption.
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow rate measuring device according to a first embodiment of the present invention. FIG. 2 is a flow waveform diagram of the same device. FIG. 3 is another flow rate waveform diagram of the same device. Fig. 5 is a block diagram of the main part of the flow measuring device according to the third embodiment of the present invention. Fig. 6 is a block diagram of the conventional flow measuring device. Fig. 7 is a flow waveform diagram of the device. Explanation of symbols]
5 Fluid pipelines 6a, 6b Transceiver (first transceiver, second transceiver)
10 repeat count setting means 11 repeat means 14 timing means 14a reference clock 14b upstream counter 14c downstream counter 15 switching means 17 flow rate calculation means 18 measurement control means 19 phase delay means

Claims (3)

流体中に音波を送信または受信する送受信器と、前記送受信器間の音波伝搬時間を計測する計時手段と、前記の音波伝搬計測を一つの計測セットとして複数の計測セットを実施する計測制御手段と、前記計測セットの計測開始から終了までのいずれかに設けられた遅延時間を調節する位相遅延手段と、それぞれの音波伝搬時間の値を積算し流量を算出する流量演算手段とを備えた流量計測装置。A transmitter / receiver that transmits or receives a sound wave in a fluid, a time measuring unit that measures a sound wave propagation time between the transmitter / receiver, and a measurement control unit that performs a plurality of measurement sets by using the sound wave propagation measurement as one measurement set; , A flow rate measurement unit provided with a phase delay unit for adjusting a delay time provided anywhere from the measurement start to the end of the measurement set, and a flow rate calculation unit for calculating the flow rate by integrating the values of the respective sound wave propagation times apparatus. 位相遅延手段は計測セットによって遅延時間を調節する請求項1記載の流量計測装置。The flow rate measuring device according to claim 1, wherein the phase delay means adjusts the delay time according to the measurement set. 位相遅延手段の遅延時間は、音波伝搬時間を計測する計時手段の基準クロックの周期よりも1/2以下の値である請求項1記載の流量計測装置。2. The flow rate measuring device according to claim 1, wherein the delay time of the phase delay means is a value that is ½ or less than the period of the reference clock of the time measuring means for measuring the sound wave propagation time.
JP2003062220A 2003-03-07 2003-03-07 Flow measuring device Expired - Fee Related JP4734822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062220A JP4734822B2 (en) 2003-03-07 2003-03-07 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062220A JP4734822B2 (en) 2003-03-07 2003-03-07 Flow measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001217762A Division JP3443657B2 (en) 2001-07-18 2001-07-18 Flow measurement device

Publications (2)

Publication Number Publication Date
JP2003232664A JP2003232664A (en) 2003-08-22
JP4734822B2 true JP4734822B2 (en) 2011-07-27

Family

ID=27785842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062220A Expired - Fee Related JP4734822B2 (en) 2003-03-07 2003-03-07 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4734822B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214793A (en) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd Device for measuring flow rate
GB0516752D0 (en) * 2005-08-13 2005-09-21 Flownetix Ltd A method for ultra low power transit time ultrasonic flow measurement
JP5467328B2 (en) * 2009-01-06 2014-04-09 パナソニック株式会社 Flow measuring device
JP5310001B2 (en) * 2009-01-07 2013-10-09 パナソニック株式会社 Ultrasonic gas meter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556253B2 (en) * 1999-06-24 2010-10-06 パナソニック株式会社 Flowmeter
JP3748353B2 (en) * 1999-12-27 2006-02-22 東京瓦斯株式会社 Flow rate measuring method, flow rate measuring apparatus, and gas meter

Also Published As

Publication number Publication date
JP2003232664A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
EP1921424B1 (en) Flow measuring instrument of fluid
WO2012053209A1 (en) Flow-rate measurement device
WO2012081195A1 (en) Flow volume measuring device
JP6957278B2 (en) Ultrasonic flowmeter
JP2001004419A (en) Flowmeter
JP4734822B2 (en) Flow measuring device
JP4760115B2 (en) Fluid flow measuring device
JP3443657B2 (en) Flow measurement device
JP3443658B2 (en) Flow measurement device
JP3456060B2 (en) Flow measurement device
JP3695031B2 (en) Flow measuring device
JP2002350202A (en) Flow measuring device
JP3838209B2 (en) Flow measuring device
JP3945530B2 (en) Flow measuring device
JP5585402B2 (en) Flow measuring device
CN111337092B (en) Method for selecting reference signal, calculating method and phase difference type ultrasonic flowmeter
JP4485641B2 (en) Ultrasonic flow meter
JP4082226B2 (en) Flow measuring device
JP6767628B2 (en) Flow measuring device
JP2009085972A (en) Ultrasonic flow meter
JP4476022B2 (en) Ultrasonic flow meter
JP3468235B2 (en) Flow measurement device
JP4117996B2 (en) Gas meter flow derivation method and gas meter
JP4163887B2 (en) Flowmeter
JP4165985B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R151 Written notification of patent or utility model registration

Ref document number: 4734822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees