JPS6110278A - Mos type semiconductor device and manufacture thereof - Google Patents

Mos type semiconductor device and manufacture thereof

Info

Publication number
JPS6110278A
JPS6110278A JP13147584A JP13147584A JPS6110278A JP S6110278 A JPS6110278 A JP S6110278A JP 13147584 A JP13147584 A JP 13147584A JP 13147584 A JP13147584 A JP 13147584A JP S6110278 A JPS6110278 A JP S6110278A
Authority
JP
Japan
Prior art keywords
gate electrode
photoresist
insulating film
source
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13147584A
Other languages
Japanese (ja)
Inventor
Kuniyuki Hamano
浜野 邦幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13147584A priority Critical patent/JPS6110278A/en
Publication of JPS6110278A publication Critical patent/JPS6110278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To speed up by reducing the substrate capacitance, and to stabilize the action by a method wherein miniaturization is attained by unnecessitating mask margins by self-alignment. CONSTITUTION:Polycrystalline Si wirings 115 and 116 make contacts with each of source region made of a shallow junction 107 and a deep N<+> diffused layer 111 and the drain region made of a shallow N<+> diffused layer 108 and a deep junction 112 in self-alignment with a gate electrode 104. This unnecessitates margins for positioning and then enables the improvement in integration by markedly reducing the areas of the source and drain regions. Further, the flow of current becomes uniform because of uniform connection of the polycrystalline Si wirings 115 and 116 to the deep N<+> diffused layers 111 and 112 in the width direction of the gate electrode 104, and the variability in stability and characteristics of the element is small. Moreover, the capacitance between the source and drain regions and the Si substrate 101 reduces, and the operating speed of the element markedly improves.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はMOS型半導体装置及びその製造方法に関し、
特にソース・ドレインへの配線の接続がゲート領域に対
して自己整合的に形成されているMOS型半導体装置及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a MOS type semiconductor device and a method for manufacturing the same.
In particular, the present invention relates to a MOS type semiconductor device in which wiring connections to a source and drain are formed in a self-aligned manner with respect to a gate region, and a method for manufacturing the same.

(従来の技術) 集積回路装置、特にMOS型集積回路装置は、高集積化
の要請が年々強くなり、従って素子の微細化が必須の条
件となって来ている。
(Prior Art) The demand for higher integration of integrated circuit devices, especially MOS type integrated circuit devices, is increasing year by year, and miniaturization of elements has therefore become an essential condition.

ゲート領域、ソース拳ドレイン領域からなるMOS型素
子は、ゲート長さ1幅、及びソース・ドレイン領域の面
積を縮少することKよって、素子全体の面積の縮少を図
っている。しかしながら基板への拡散層から成るソース
・ドレイン領域は、電気信号を外部に伝達する為に、金
属配線を接続する為のコンタクト孔を設ける必要がある
。この際平面的にみて拡散層内にコンタクト孔が完全に
含まれないと、金属配線と基板が電気的に短絡してしま
い、該金属配線の電位が基板と同じになり、信号が伝達
しなくなってしまう。この問題を避ける為に、コンタク
ト孔と、ソース拳ドレイン領域端の間、特にゲート領域
とコンタクト孔の間には、ある程度の間隔をとる必要が
あシ、この為にソース・ドレイン領域の面積が、コンタ
クト孔の大きさによって制限されてしまい、ある値以下
には小さくできず、集積度の向上が阻けられるという大
きな問題があった。
A MOS type device consisting of a gate region, source and drain regions is designed to reduce the overall area of the device by reducing the length and width of the gate and the area of the source and drain regions. However, in order to transmit electric signals to the outside, it is necessary to provide contact holes for connecting metal wiring in the source/drain regions, which are made up of diffusion layers to the substrate. At this time, if the contact hole is not completely included in the diffusion layer when viewed from above, the metal wiring and the substrate will be electrically short-circuited, the potential of the metal wiring will be the same as that of the substrate, and no signal will be transmitted. I end up. In order to avoid this problem, it is necessary to provide a certain amount of space between the contact hole and the edge of the source/drain region, especially between the gate region and the contact hole. However, the size of the contact hole is limited by the size of the contact hole, and the size cannot be reduced below a certain value, which poses a major problem in that the degree of integration cannot be improved.

(発明の目的) 本発明の目的は、上記欠点を除去し、自己整合でマスク
マージンを不要とすることにより小型化を達成し、基板
間容量を小さくし高速化され、しかも動作の安定化され
たMOS型半導体装置及びその製造方法を提供すること
にある。
(Objective of the Invention) The object of the present invention is to eliminate the above drawbacks, achieve miniaturization by eliminating the need for a mask margin through self-alignment, reduce capacitance between substrates, increase speed, and stabilize operation. An object of the present invention is to provide a MOS type semiconductor device and a method for manufacturing the same.

(発明の構成) 本発明の第1の発明のMOS型半導体装置は、少なくと
もゲート絶縁膜とゲート電極からなるゲート領域に接し
て浅い接合の第1のソース・ドレイン領域を有し、該浅
い接合の第1のソース・ド面が、ゲート領域に対し自己
整合的に形成された配線で被覆されていることによシ構
成される。
(Structure of the Invention) A MOS type semiconductor device according to a first aspect of the present invention has a shallow junction first source/drain region in contact with a gate region consisting of at least a gate insulating film and a gate electrode, and the shallow junction The first source/do faces of the gate region are covered with wiring formed in a self-aligned manner with respect to the gate region.

また、本発明の第2の発明のMOS型半導体装置の製造
方法は、ゲート電極及びゲート絶縁膜を7オトレジスト
をマスクとしてエツチングしてパターンを形成する工程
と、該フォトレジストとゲート電極とゲート絶縁膜をマ
スクとして基板と逆導電型の不純物を導入してlcxの
浅い接合を形成する工程と、前記フォトレジストを残し
たままゲート電極側面にのみ絶縁膜を形成する工程と、
前記フォトレジスト、ゲート電極、ゲート絶縁膜及びゲ
ート電極側面の絶縁膜をマスクとして基板と逆導電型の
不純物を導入して第1の接合に接し該接合よF)Rい接
合を形成する工程と、前記フォトレジストを含む全上表
面にソースやドレインへの配線となる導体膜を形成する
工程と、前記フォトレジストを除去することによりゲー
ト電極上の前記導体膜を同時に除去する工程とを含むこ
とによシ構成される。
The method for manufacturing a MOS type semiconductor device according to the second aspect of the present invention further includes a step of etching a gate electrode and a gate insulating film using a photoresist as a mask to form a pattern, and a step of forming a pattern between the photoresist, the gate electrode, and the gate insulating film. A step of introducing an impurity of a conductivity type opposite to that of the substrate using the film as a mask to form a shallow junction of LCX, and a step of forming an insulating film only on the side surface of the gate electrode while leaving the photoresist.
using the photoresist, the gate electrode, the gate insulating film, and the insulating film on the side surface of the gate electrode as a mask to introduce an impurity having a conductivity type opposite to that of the substrate to contact the first junction and form an R junction; , a step of forming a conductive film serving as wiring to the source and drain on the entire upper surface including the photoresist, and a step of simultaneously removing the conductive film on the gate electrode by removing the photoresist. It is composed of various parts.

また、本発明の第3の発明のMOS型半導体装置の製造
方法は、一導電型の半導体基板にゲート電極及びゲート
絶縁膜パターンをフォトレジストをマスクとしてエツチ
ングして形成する工程と、前記フォトレジストとゲート
電極とゲート絶縁膜をマスクとして基板と逆導電型の不
純物を導入して第1の浅い接合を形成する工程と、前記
フォトレジストを残したままゲート電極側面にのみ絶縁
膜を形成する工程と、前記フォトレジストを含む全上表
面にソース・ドレインへの配線となる導体膜を形成する
工程と、ゲート電極側面の絶縁膜上の薄い導体膜を除去
する工程と、前記フォトレジストを除去することにより
ゲート電極上の前記導体膜を同時に除去する工程と、全
面に基板と逆導電型の不純物を配線を構成する導体膜を
通して基板にイオン注入し深い接合を形成する工程とを
含んで構成される。
Further, a method for manufacturing a MOS type semiconductor device according to a third aspect of the present invention includes a step of etching a gate electrode and a gate insulating film pattern on a semiconductor substrate of one conductivity type using a photoresist as a mask; A step of introducing an impurity of a conductivity type opposite to that of the substrate using the gate electrode and gate insulating film as a mask to form a first shallow junction, and a step of forming an insulating film only on the side surface of the gate electrode while leaving the photoresist. a step of forming a conductive film serving as wiring to the source/drain on the entire upper surface including the photoresist; a step of removing a thin conductive film on the insulating film on the side surface of the gate electrode; and a step of removing the photoresist. Accordingly, the method includes a step of simultaneously removing the conductive film on the gate electrode, and a step of implanting ions of impurities of a conductivity type opposite to that of the substrate into the substrate through the conductive film constituting the wiring to form a deep junction. Ru.

(作用) 本発明のMOS型半導体装置は、深い接合部公金てがコ
ンタクト孔の役割を同時に果し、かつ配線がゲート領域
に対して自己整合的に形成されるため、コンタクト孔と
ソース及びドレイン領域端のマージンが不要となり、M
OS素子面積が著しく減少するという大きな効果が得ら
れる。この為集積化した場合、特にデザインルールが1
μm1−J。
(Function) In the MOS semiconductor device of the present invention, the deep junction layer simultaneously plays the role of a contact hole, and the wiring is formed in self-alignment with the gate region. Margins at the edges of the area are no longer required, and M
A significant effect is obtained in that the area of the OS element is significantly reduced. For this reason, when integrated, the design rule is
μm1-J.

下の超LSIKなった場合、集積度が飛躍的に増大する
という非常な利点を有するようになる。更に又、コンタ
クト部分がゲート端に沿って一様に形成されていること
Kなるから、ゲート幅に沿っての電流のバラツキがなく
なり、安定性の高いMOS型素子が得られるという利点
を有する様になる。又、ソース・ドレイン領域が小さく
でき、ソース・ドレインと基板間の容量が小さくなシ、
高速化に有利となるという利点を併せ持つことにガる。
If it becomes VLSIK, it will have the great advantage of dramatically increasing the degree of integration. Furthermore, since the contact portion is formed uniformly along the gate edge, there is no variation in current along the gate width, which has the advantage of providing a highly stable MOS type device. become. In addition, the source/drain region can be made smaller, and the capacitance between the source/drain and the substrate can be reduced.
It is advantageous to have the advantage of increasing speed.

(実施例) 以下、本発明の実施例について、図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(al〜(flは本発明の第1の実施例及びその
製造方法を説明するために工程順に示した断面図である
FIG. 1 (al to (fl) are sectional views shown in the order of steps to explain the first embodiment of the present invention and its manufacturing method.

先ず、第1図(a) K示すように、P型シリコン基板
101に選択的にフィールド部分の厚い酸化膜102a
、102bを形成した後、フィールド領域以外の領域、
即ち能動領域にゲート用のシリコン酸化膜、ゲート電極
となる不純物のドープされた多結晶シリコン膜、ゲート
電極の上部の絶縁を保つだめのシリコン酸化膜を順に形
成し、フォトレジストをマスクとして該ゲート電極上部
のシリコン酸化膜、ゲート電極となる多結晶シリコン膜
First, as shown in FIG. 1(a), a thick oxide film 102a is selectively formed in the field portion of the P-type silicon substrate 101.
, 102b, a region other than the field region,
That is, a silicon oxide film for the gate, a polycrystalline silicon film doped with impurities to serve as the gate electrode, and a silicon oxide film for maintaining insulation on the upper part of the gate electrode are sequentially formed in the active region, and the gate is removed using a photoresist as a mask. Silicon oxide film on top of the electrode, polycrystalline silicon film that will become the gate electrode.

ゲート用のシリコン酸化膜を順次エツチングしてバター
ニングされたゲート酸化膜103.ゲート電極104.
  シリコン酸化膜105 、  フォトレジス)10
6からなる多層構造を形成し、この多層構造をマスクと
して例えばヒ素のイオン注入を行い浅いQ、1μm前後
のN+拡散層107,108を形成する。
A gate oxide film 103 that is patterned by sequentially etching the silicon oxide film for the gate. Gate electrode 104.
silicon oxide film 105, photoresist) 10
Using this multilayer structure as a mask, ions of, for example, arsenic are implanted to form N+ diffusion layers 107 and 108 with a shallow Q and a thickness of about 1 μm.

次に%第1図fb)に示すように、光CVDもしくはプ
ラズマCVD等の低温で、かつ段差被覆性のよい膜成長
法により、シリコン酸化膜109を全面に成長させる。
Next, as shown in FIG. 1 (fb), a silicon oxide film 109 is grown over the entire surface by a film growth method such as photo-CVD or plasma CVD at a low temperature and with good step coverage.

次に、第1図telに示すように、リアクティブイオン
エツチングを用いて前記シリコン酸化膜109を全面エ
ツチングすることにより、ゲート電極104の端部分に
のみサイドウオールシリコン酸化膜110a、1lob
を形成する。次いでこのサイドウオールシリコン酸化膜
110a、110b及び多層構造をマスクとしてヒ素を
イオン注入して深いN 拡散層111,112を形成す
る。
Next, as shown in FIG. 1, by etching the entire surface of the silicon oxide film 109 using reactive ion etching, a sidewall silicon oxide film 110a, 1 lob is formed only on the end portion of the gate electrode 104.
form. Next, using the sidewall silicon oxide films 110a, 110b and the multilayer structure as a mask, arsenic ions are implanted to form deep N 2 diffusion layers 111, 112.

次に、第1図1d)に示すように、スパッタ法もしくは
イオンビームデボジンション等の段差被覆性のよくない
膜の形成法によって、全面に不純物のドープされた多結
晶シリコン膜113を成長させる。
Next, as shown in FIG. 1 d), a polycrystalline silicon film 113 doped with impurities is grown over the entire surface by a method of forming a film with poor step coverage, such as sputtering or ion beam deposition. .

次に、第1図telに示すように、前記多結晶ンリコン
112を全面わずかにエツチングして、サイドウオール
シリコン酸化膜tioa、110b上に成長している薄
い多結晶シリコン114a、114bを除去する。
Next, as shown in FIG. 1, the entire surface of the polycrystalline silicon 112 is slightly etched to remove the thin polycrystalline silicon 114a, 114b grown on the sidewall silicon oxide films tioa, 110b.

次に、第1図ff)に示すように、フォトレジスト10
6を除去し、リフトオフによってフォトレジスト上の多
結晶シリコン膜113は除き、残った多結晶シリコン膜
113を必要とするパターンにエツチングして多結晶シ
リコン配線115,116とする。
Next, as shown in FIG. 1ff), a photoresist 10
6 is removed, the polycrystalline silicon film 113 on the photoresist is removed by lift-off, and the remaining polycrystalline silicon film 113 is etched into a required pattern to form polycrystalline silicon wirings 115 and 116.

以上によシ本発明の第1の実施例のMOS型半導体装置
iooが得られる。
As described above, a MOS type semiconductor device ioo according to the first embodiment of the present invention is obtained.

拡散層111からなるソース領域と、浅いN+拡散層1
08と深い接合112からなるドレイン領域の各々に、
ゲート電極104に対して自己整合的にコンタクトが取
られておシ、コンタクトの為の孔とゲート電極104の
間に目合せの為のマージンを取る必要がなく、ソース領
域、ドレイン領域の面積を大幅に小さくすることが可能
となり、集積度を向上させることが可能となる。更に1
ゲート電極104の幅方向に一様に多結晶シリコン配線
115,116が深いN+拡散層111,112に接続
されているから電流の流れが一様とな夛、素子の安定性
、特性のバラツキが少いという利点も有する。更に又、
ソース領域、ドレイン領域の面積が小さくなる事によシ
、該ソース領域とドレイン領域とシリコン基板101の
間の容量が小さくなシ、素子の動作速度も大幅に向上す
るという利点も併せ持つている。
A source region consisting of a diffusion layer 111 and a shallow N+ diffusion layer 1
08 and deep junction 112, each of the drain regions consists of
Since contact is made with the gate electrode 104 in a self-aligned manner, there is no need to provide a margin for alignment between the contact hole and the gate electrode 104, and the area of the source region and drain region can be reduced. It becomes possible to significantly reduce the size and improve the degree of integration. 1 more
Since the polycrystalline silicon interconnections 115 and 116 are connected to the deep N+ diffusion layers 111 and 112 uniformly in the width direction of the gate electrode 104, the current flow is uniform, and the stability of the device and variations in characteristics are reduced. It also has the advantage of being small. Furthermore,
Since the area of the source region and the drain region is reduced, the capacitance between the source region, the drain region, and the silicon substrate 101 is reduced, and the operating speed of the device is also greatly improved.

第2図tag、 fb)は本発明の第2の実施例を説明
するために工程順に示した断面図である。第2の実施例
においては、第1の実施例と深いN+拡散層を形成する
のを除いては同じ方法で製作し、第2図ta+に示すよ
うに、P型シリコン基板201.フィールドシリコン酸
化膜202a、202b、ゲートシリコン酸化膜203
、ゲート電極204、絶縁のだめのシリコン酸化膜20
5、サイドウオールシリコン酸化膜210a、210b
、浅い接合207.208、配線213を形成する。
FIG. 2 (tag, fb) are cross-sectional views shown in the order of steps for explaining the second embodiment of the present invention. The second embodiment is manufactured using the same method as the first embodiment except for forming a deep N+ diffusion layer, and as shown in FIG. 2, a P-type silicon substrate 201. Field silicon oxide films 202a, 202b, gate silicon oxide film 203
, gate electrode 204, insulating silicon oxide film 20
5. Sidewall silicon oxide film 210a, 210b
, shallow junctions 207 and 208, and wiring 213 are formed.

次に、第2図(blに示すように、全面にヒ素のイオン
注入を行い、配線213を通してP型シリコン基板20
1にヒ素をイオン注入し、深い接合211.212を形
成する。
Next, as shown in FIG.
Arsenic is ion-implanted into 1 to form deep junctions 211 and 212.

この第2の実施例200においては、イオン注入された
ヒ素を活性化する時K、配線と浅いN+拡散層207,
208に注入されたヒ素がP型シリコン基板201内に
拡散するために、P型シリコン基板201 と配線21
3が直接に接することがなく、配線213の下には必ず
N+層が形成されるからP型シリコン基板201 と配
線213間のリークが減少するという利点ももつ、更に
又、配線213が高融点金属の場合にはイオン注入時の
ミキシング効果によって、深い接合211,212と配
線2130間のオーミックコンタクトがとシ易いという
大きな利点も併せ持つことになる。
In this second embodiment 200, when ion-implanted arsenic is activated, K, wiring and shallow N+ diffusion layer 207,
In order for the arsenic implanted into the P-type silicon substrate 201 to diffuse into the P-type silicon substrate 201, the P-type silicon substrate 201 and the wiring 21
There is no direct contact between P-type silicon substrate 201 and the wiring 213, and an N+ layer is always formed under the wiring 213, which has the advantage of reducing leakage between the P-type silicon substrate 201 and the wiring 213.Furthermore, the wiring 213 has a high melting point. In the case of metal, it also has the great advantage that ohmic contact between the deep junctions 211, 212 and the wiring 2130 can be easily made due to the mixing effect during ion implantation.

なお、本発明の詳細な説明においては、フォトレジスト
を用いたり7トオフ法によって、ソース・ドレイン配線
をゲート領域に対して自己整合的に形成したが、フォト
レジストの替わシに配線材料が多結晶シリコンの場合に
はAgの如く配線材料を侵さないエツチング液やガスで
エツチングできる材料をリフトオフの材料として用いれ
ば、サイドウオールシリコン酸化膜はよシ高温の成長が
可能となることは云うまでもない。
In the detailed explanation of the present invention, the source/drain wiring was formed in a self-aligned manner with respect to the gate region by using a photoresist or by the 7-off method. In the case of silicon, it goes without saying that if a material such as Ag that can be etched with an etching solution or gas that does not attack the wiring material is used as the lift-off material, the sidewall silicon oxide film can be grown at a much higher temperature. .

(発明の効果) 以上説明したとおシ、本発明によれば、ゲート電極に対
しソース・ドレインコンタクトが自己整合的にとられて
いるのでマスクマージンが不要となシ、これKより小型
化が達成でき、その結果基板間容量が小さくなシ高速化
されまた動作も安定したMOS型半導体装置を得ること
ができる。
(Effects of the Invention) As explained above, according to the present invention, the source/drain contacts are made in a self-aligned manner with respect to the gate electrode, so no mask margin is required, and the size is smaller than K. As a result, a MOS type semiconductor device with a small capacitance between substrates, high speed, and stable operation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図tal〜fflは本発明の第1の実施例を説明す
るために工程順に示した断面図、第2図tag、 (b
lは本発明の第2の実施例を説明するために工程順に示
した断面図である。 101、201−・・・=P型シリコン基板、102 
a。 102b、202a、202b−74−にド酸化膜、1
03、203 ・・=・・ゲート酸化膜、104,20
4・・・・・・ゲート電極、105,205・・・・・
・シリコン酸化膜、106−−7s) L/シスト、1
07,108,207゜208・・・・・・浅いN+拡
散層、109・・・・・・シリコン酸化膜、110a、
110b、210a、210b −・・・丈イドウオー
ルシリコン酸化膜、111,112゜211.212・
・・・・・深いN 拡散層、l l 3.213・・・
・・・多結晶シリコン膜、114a、114b・・°・
・°サイドウオール上に形成された薄い多結晶シリコン
L  Li2,116・・・・・・多結晶シリコン配線
、100゜200・・・・・・本発明の実施例のMOS
型半導体装置。 猶1図 ¥1頂 2#b   2ef 不2田
Fig. 1 tal to ffl are sectional views shown in the order of steps to explain the first embodiment of the present invention, Fig. 2 tag, (b
FIG. 1 is a cross-sectional view shown in order of steps for explaining a second embodiment of the present invention. 101, 201-...=P-type silicon substrate, 102
a. 102b, 202a, 202b-74-, oxidized film, 1
03, 203 ... = ... gate oxide film, 104, 20
4...Gate electrode, 105, 205...
・Silicon oxide film, 106--7s) L/cyst, 1
07,108,207°208...Shallow N+ diffusion layer, 109...Silicon oxide film, 110a,
110b, 210a, 210b - Length side wall silicon oxide film, 111, 112° 211.212.
...Deep N diffusion layer, l l 3.213...
・・・Polycrystalline silicon film, 114a, 114b...°・
・Thin polycrystalline silicon L Li2,116 formed on the sidewall...Polycrystalline silicon wiring, 100°200...MOS of the embodiment of the present invention
type semiconductor device. 1 figure ¥1 top 2#b 2ef Fujita

Claims (5)

【特許請求の範囲】[Claims] (1)少なくともゲート絶縁膜とゲート電極からなるゲ
ート領域に接して浅い接合の第1のソース・ドレイン領
域を有し、該浅い接合の第1のソース・ドレイン領域に
接して深い接合の第2のソース・ドレイン領域を備え、
該第2のソース・ドレイン領域全面が、ゲート領域に対
して自己整合的に形成された配線で被覆されていること
を特徴とするMOS型半導体装置。
(1) A first source/drain region with a shallow junction is in contact with a gate region consisting of at least a gate insulating film and a gate electrode, and a second source/drain region with a deep junction is in contact with the first source/drain region of the shallow junction. It has source and drain regions of
A MOS type semiconductor device characterized in that the entire surface of the second source/drain region is covered with wiring formed in self-alignment with the gate region.
(2)一導電型の半導体基板にゲート電極及びゲート絶
縁膜パターンをフォトレジストをマスクとしてエッチン
グして形成する工程と、前記フォトレジストとゲート電
極とゲート絶縁膜をマスクとして基板と逆導電型の不純
物を導入して第1の浅い接合を形成する工程と、前記フ
ォトレジストを残したままゲート電極側面にのみ絶縁膜
を形成する工程と、前記フォトレジスト・ゲート電極、
ゲート絶縁膜及びゲート電極側面の絶縁膜をマスクとし
て基板と逆導電型の不純物を導入して第1の接合に接し
該接合よりより深い接合を形成する工程と、前記フォト
レジストを含む全上表面にソース、ドレインへの配線と
なる導体膜を形成する工程と、前記フォトレジストを除
去することによりゲート電極上の前記導体膜を同時に除
去する工程とを含むことを特徴とするMOS型半導体装
置の製造方法。
(2) forming a gate electrode and a gate insulating film pattern on a semiconductor substrate of one conductivity type by etching using a photoresist as a mask; a step of introducing an impurity to form a first shallow junction; a step of forming an insulating film only on the side surface of the gate electrode while leaving the photoresist; and the photoresist/gate electrode;
A step of introducing an impurity of a conductivity type opposite to that of the substrate using the gate insulating film and the insulating film on the side surface of the gate electrode as a mask to form a junction deeper than the first junction by contacting the first junction, and the entire upper surface including the photoresist. A MOS type semiconductor device comprising the steps of: forming a conductive film to serve as wiring to the source and drain; and simultaneously removing the conductive film on the gate electrode by removing the photoresist. Production method.
(3)一導電型の半導体基板にゲート電極及びゲート絶
縁膜パターンをフォトレジストをマスクとしてエッチン
グして形成する工程と、前記フォトレジストとゲート電
極とゲート絶縁膜をマスクとして基板と逆導電型の不純
物を導入して第1の浅い接合を形成する工程と、前記フ
ォトレジストを残したままゲート電極側面にのみ絶縁膜
を形成する工程と、前記フォトレジストを含む全上表面
にソース・ドレインへの配線となる導体膜を形成する工
程と、ゲート電極側面の絶縁膜上の薄い導体膜を除去す
る工程と、前記フォトレジストを除去することによりゲ
ート電極上の前記導体膜を同時に除去する工程と、全面
に基板と逆導電型の不純物を配線を構成する導体膜を通
して基板にイオン注入し深い接合を形成する工程とを含
むことを特徴とするMOS型半導体装置の製造方法。
(3) forming a gate electrode and a gate insulating film pattern on a semiconductor substrate of one conductivity type by etching using a photoresist as a mask; A step of introducing impurities to form a first shallow junction, a step of forming an insulating film only on the side surface of the gate electrode while leaving the photoresist, and a step of forming an insulating film on the entire upper surface including the photoresist to the source and drain. a step of forming a conductor film to serve as a wiring; a step of removing a thin conductor film on an insulating film on a side surface of the gate electrode; and a step of simultaneously removing the conductor film on the gate electrode by removing the photoresist. 1. A method for manufacturing a MOS semiconductor device, comprising the step of ion-implanting impurities of a conductivity type opposite to that of the substrate into the substrate through a conductive film constituting wiring to form a deep junction.
(4)フォトレジストとゲート電極の間に絶縁膜を介在
させたことを特徴とする特許請求の範囲第(1)項又は
第(2)項記載のMOS型半導体装置の製造方法。
(4) A method for manufacturing a MOS semiconductor device according to claim (1) or (2), characterized in that an insulating film is interposed between the photoresist and the gate electrode.
(5)ゲート電極の側面の絶縁膜として、光CVD法で
成長したシリコン酸化膜もしくはシリコン窒化膜を用い
ることを特徴とする特許請求の範囲第(2)項又は第(
3)項記載のMOS型半導体装置の製造方法。
(5) As the insulating film on the side surface of the gate electrode, a silicon oxide film or a silicon nitride film grown by a photo-CVD method is used.
3) A method for manufacturing a MOS type semiconductor device as described in section 3).
JP13147584A 1984-06-26 1984-06-26 Mos type semiconductor device and manufacture thereof Pending JPS6110278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13147584A JPS6110278A (en) 1984-06-26 1984-06-26 Mos type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13147584A JPS6110278A (en) 1984-06-26 1984-06-26 Mos type semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6110278A true JPS6110278A (en) 1986-01-17

Family

ID=15058839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13147584A Pending JPS6110278A (en) 1984-06-26 1984-06-26 Mos type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6110278A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235983A (en) * 1975-09-17 1977-03-18 Hitachi Ltd Manufacturing method of field effective transistor
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS5524419A (en) * 1978-08-10 1980-02-21 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulated gate type field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235983A (en) * 1975-09-17 1977-03-18 Hitachi Ltd Manufacturing method of field effective transistor
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS5524419A (en) * 1978-08-10 1980-02-21 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulated gate type field effect transistor

Similar Documents

Publication Publication Date Title
US4102733A (en) Two and three mask process for IGFET fabrication
JP2842871B2 (en) Power MOS transistor structure
JPH06252359A (en) Manufacture of semiconductor device
JPH05206451A (en) Mosfet and its manufacture
KR0175442B1 (en) Semiconductor device and manufacturing method
GB2040564A (en) Method of fabricating MOSFETs
US5574306A (en) Lateral bipolar transistor and FET
JPH02143456A (en) Manufacture of lamination type memory cell
JPH10335660A (en) Semiconductor device and manufacture thereof
JPS6110278A (en) Mos type semiconductor device and manufacture thereof
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
US5852327A (en) Semiconductor device
JPH07130898A (en) Semiconductor device and manufacture thereof
JP2663371B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH0227737A (en) Manufacture of semiconductor device
JPS6237960A (en) Manufacture of read only semiconductor memory device
KR100390891B1 (en) Method for manufacturing ic semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPS5827340A (en) Manufacture of semiconductor integrated circuit device
JPH03191574A (en) Semiconductor device
KR100252767B1 (en) A semiconductor device and method for fabricating the same
KR0128023B1 (en) Fabrication method of lateral bipolar transistor device complete element isolation structure
JPS625657A (en) Semiconductor integrated circuit device
JPS61125087A (en) Insulated gate type field effect semiconductor device and manufacture thereof
JPS6143476A (en) Mos semiconductor device and manufacture thereof