JPS6092422A - Production of ni-containing low temperature steel having excellent crack opening displacement - Google Patents

Production of ni-containing low temperature steel having excellent crack opening displacement

Info

Publication number
JPS6092422A
JPS6092422A JP19823383A JP19823383A JPS6092422A JP S6092422 A JPS6092422 A JP S6092422A JP 19823383 A JP19823383 A JP 19823383A JP 19823383 A JP19823383 A JP 19823383A JP S6092422 A JPS6092422 A JP S6092422A
Authority
JP
Japan
Prior art keywords
temperature
steel
rolling
austenite
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19823383A
Other languages
Japanese (ja)
Other versions
JPS642170B2 (en
Inventor
Kazuyuki Matsui
和幸 松井
Hisatoshi Tagawa
田川 寿俊
Makoto Yamada
真 山田
Norihiro Iwasaki
岩崎 宣博
Tadaaki Taira
平 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19823383A priority Critical patent/JPS6092422A/en
Publication of JPS6092422A publication Critical patent/JPS6092422A/en
Publication of JPS642170B2 publication Critical patent/JPS642170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a low temp. steel which exhibits an outstanding crack opening displacement and has high strength and toughness by subjecting a steel contg. a prescribed ratio of Ni and P as basic components to rolling and heat treatment under prescribed conditions. CONSTITUTION:A steel contg. 7.5-10wt% Ni and <=0.01wt% P as basic components is produced. The billet or casting billet of such steel is rolled after heating to <=1,200 deg.C. The rolled steel is then subjected to >=30% cumulative draft at <=950 deg.C and is finished at >=800 deg.C to form >=ASTM No.7 austenite grains. The steel is air cooled down to the temp. lower by >=50 deg.C than the above-described finishing temp. after the primary rolling and is rolled at 700-750 deg.C and 5-25% cumulative draft. The steel is cooled down to <=350 deg.C at >=2 deg.C/sec cooling rate right after the secondary rolling. The cooled steel is reheated to <=AC1 temp. and is tempered.

Description

【発明の詳細な説明】 本発明は亀裂開口変位の優れた含Ni低温用鋼の製造方
法に係り、高強度高靭性を有する含Ni低温用鋼板とし
て従来得られていない優れた亀裂開口変位量を有するも
のを安定して製造せしめ、液化天然ガス温度又はそれ以
下のような温度条件下において利用されるに適した製品
を得しめようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a Ni-containing low-temperature steel sheet with excellent crack opening displacement, which has an excellent crack opening displacement that has not been previously obtained as a Ni-containing low-temperature steel sheet with high strength and toughness. The aim is to stably produce a product having the following properties and to obtain a product suitable for use under temperature conditions such as liquefied natural gas temperature or lower.

石油危機に端を発したエネルギー源の多様化にともない
液化ガスの需要は年々増加する傾向にあり、特に液化天
然ガス(LNG)に対する需要の伸ひは顕著であって、
それにともないLNG貯蔵および運搬容器用鋼材として
9%Nl @をはじめとする含NI鋼に対する需要も急
激に増加してきている。このような鋼材使用量の増大な
らびに容器の大型化にともない、含Ni低温用鋼の構造
物としての安定性に対する要求も増々厳しくなる傾向に
ある。然して従来このLNG温度(−162℃)以下の
液化ガス貯蔵容器用鋼材として、使用されている含Ni
@温用m (7,5〜10%Nl鋼) t、t A8T
M−A353およびA353に規格化されており、その
熱処理方法として前者は2回焼ならし一焼Mt、(NN
T)処理、後者は焼入れ一焼もどしくQT’)処理が採
用さ第1でいる。ところでこれら低温用輌にとって最も
重要な性能である低温靭性tま、−195℃あるいは、
−170℃での2+a+Vノツチシヤルピ一衝撃試験片
の横膨出量あるいは吸収エネルギー値(ただし、吸収エ
ネルギー値はSupplQ−mentary R,eg
ulrement )で規定されている。一般に7ヤル
ビー試験の吸収エネルギー値と横膨出量の間には良い相
関が認めらjlておシ、この両者の関係により、これ゛
までは低温靭性の改善策として7ヤルビー試験の吸収エ
ネルギーを向上させることのみに着眼し、種々の創意工
夫がなされてきた。しかし、近年構造物の安定性という
観点より、破壊靭性概念が広く普及し、破壊応力もしく
は許容欠陥寸法を直接計算でき、構造物の設計上大きな
意味を持つKIO、亀裂開口変位量(Crack Op
eningDisplacement :以下CODと
いう)などの破壊靭性値が注目をあびている。特にこi
tら破壊靭性値の中でも、低温構造物での脆性破壊発生
の危険性を極力抑えようとする考えから、近年COD値
が鋼材性能仕様の中に含まれるケースが増加しており、
最近の9%N1914の例では、B55762に準拠し
たノツチ付COD試験片による一170℃での限界CO
D値を0、2 WIJ1以上と規定したものが多い。と
ころで、このCOD値とシャルピー試験での横膨出量せ
たは吸収エネルギー値との相関についてはこれまで明瞭
な関係がめられておらず、従って従来のように吸収エネ
ルギーを向上させる工夫全行ってもCOD値の向上に必
ずしも結びつかない。この原因としてはCOD値が純粋
に脆性破壊の発生特性を顕わしているのに対して7ヤル
ビー試験の吸収エネルギーは脆性破壊の発生と同時に伝
播停止特性をも含んでいるためと考えられる。ところで
これまではシャルピー試験において高い吸収エネルギー
を得るという観点から熱処理は前記したASTM規定の
方法で行って来たが、このような方法では上記COD値
を安定して確保することが必ずしも容易でない。他方C
OD値の優れた含Nl低温用鋼の製造方法としては余り
例をみないが本発明者等が既に提案した特開昭56−1
56715号などを挙げることができ、この方法は熱間
圧延完了後引続いて加速冷却した後AC,〜AC,の2
相部度域に加熱後、焼入れし、最終的にAC3点以下の
温度で焼戻すものであって、焼戻し前に2相部度域に加
熱する必要があるため製造工程が複雑化すると共に製造
コストもアップするという問題点がある。又9%Ni鋼
の如く含Nl低温用鋼では2相域温度範囲が狭いため温
度の僅かな変動によって材質が著しく劣化する不利があ
る。
With the diversification of energy sources triggered by the oil crisis, the demand for liquefied gas has been increasing year by year, and the growth in demand for liquefied natural gas (LNG) has been particularly remarkable.
Along with this, the demand for NI steel including 9%Nl @ as steel material for LNG storage and transportation containers is rapidly increasing. As the amount of steel used increases and the size of containers increases, the demands on the stability of Ni-containing low-temperature steel structures tend to become increasingly strict. However, the Ni-containing steel material conventionally used as a steel material for liquefied gas storage containers at temperatures below this LNG temperature (-162°C)
@ Warm temperature m (7.5~10%Nl steel) t, t A8T
It is standardized to M-A353 and A353, and its heat treatment method is twice normalized, once fired Mt, (NN
T) treatment, and the latter is quenching and tempering QT') treatment is the first to be adopted. By the way, low-temperature toughness, which is the most important performance for these low-temperature vehicles, is -195℃ or
The amount of lateral bulge or absorbed energy value of the 2+a+V notch mechanical impact test piece at -170°C (however, the absorbed energy value is Supplementary Q-mentary R,eg
ulrement). In general, there is a good correlation between the absorbed energy value of the 7 Jarby test and the amount of lateral bulge, and due to the relationship between the two, until now, the absorbed energy of the 7 Jarby test has not been used as a measure to improve low-temperature toughness. A variety of creative efforts have been made with a focus solely on improving the performance. However, in recent years, from the perspective of structural stability, the concept of fracture toughness has become widespread, and fracture stress or allowable defect size can be directly calculated, and KIO and Crack Opening Displacement (Crack Opening Displacement) have great significance in the design of structures.
Fracture toughness values such as increasing displacement (hereinafter referred to as COD) are attracting attention. Especially this
Among fracture toughness values, COD values have been increasingly included in steel material performance specifications in recent years due to the idea of minimizing the risk of brittle fracture occurrence in low-temperature structures.
In a recent example of 9% N1914, the limit CO
Many of them specify the D value as 0, 2 WIJ1 or more. By the way, no clear relationship has been found so far between this COD value and the amount of lateral bulge or absorbed energy value in the Charpy test. However, this does not necessarily lead to an improvement in the COD value. The reason for this is thought to be that while the COD value purely represents the occurrence characteristics of brittle fracture, the absorbed energy in the 7 Jarby test includes the propagation stopping characteristics as well as the occurrence of brittle fracture. By the way, from the viewpoint of obtaining high absorbed energy in the Charpy test, heat treatment has been carried out according to the method specified by ASTM described above, but it is not always easy to stably secure the above-mentioned COD value with such a method. On the other hand C
Although there are few examples of a method for producing Nl-containing low-temperature steel with an excellent OD value, the present inventors have already proposed JP-A-56-1.
No. 56715, etc., and this method is followed by accelerated cooling after completion of hot rolling, followed by two steps of AC, ~AC,
After being heated to a phase temperature range, it is quenched and finally tempered at a temperature below AC3, and it is necessary to heat it to a two-phase temperature range before tempering, which complicates the manufacturing process and makes it difficult to manufacture. There is a problem that the cost also increases. In addition, low-temperature steel containing Nl, such as 9% Ni steel, has a narrow two-phase region temperature range, so there is a disadvantage that the material quality deteriorates significantly due to slight fluctuations in temperature.

更に特開昭55−76(121)号では直接焼入−焼戻
しによる強度、靭性の安定した鋼板の製造法とし−C熱
間圧延後、1〜15分の等温保持又は200℃以下の温
度に急冷し、次いで焼戻しする技術が開示されているが
、これはその発明の名称から明かなように鋼板位置によ
る強度、靭性のバラツキを軽減すること全目的としてお
り、亀裂開口変位の改善については何も示きれていない
Furthermore, JP-A No. 55-76 (121) describes a method for producing steel sheets with stable strength and toughness by direct quenching and tempering. A technique of rapid cooling and then tempering has been disclosed, but as is clear from the name of the invention, the entire purpose of this is to reduce variations in strength and toughness depending on the position of the steel plate, and what is said about improving crack opening displacement? has not been fully shown.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものであって、上述したような問題点を解決し、L
NG温度(−162℃)又はそれ以下の温度においても
優れた亀裂間[コ変位量を有し、且つ異方性が小さくて
均一な材質特性を有する含Ni低温用鋼ケ得しめるもの
であって、 wt% (以−「単に俤という)でN1ニ
ア、5〜10%、P:0.010%以下ケ基本成分とし
て含有する含Ni低温用鋼片又は鋳片を1200℃以下
の温度に加熱してから圧延し、その圧延行程において9
50℃以下で少くとも30%の累積圧下を加え仕上り温
度を800℃以上としてオースブナイト粒をASTM随
7以上の細粒とする1次圧延を行った後、当該仕上温度
より少くとも50℃低い温度まで空冷し、引続き700
〜750℃の温度で再び累積川下率5〜25%の2次圧
延を行い、該2次圧p、+TE直後2.0℃/露以上の
冷却速度で350℃以丁の温度まで冷却し、次いでAC
,以下の温度に再加熱して焼戻すことを捉案するもので
ある。
The present invention was created after repeated studies in view of the above-mentioned circumstances, and it solves the above-mentioned problems and provides L
It is possible to obtain Ni-containing low-temperature steel that has excellent inter-crack displacement even at NG temperature (-162°C) or lower, and has uniform material properties with small anisotropy. Then, a Ni-containing low-temperature steel slab or cast slab containing Ni as a basic component in wt% (hereinafter simply referred to as 俤) N1 near, 5 to 10%, P: 0.010% or less is heated to a temperature of 1200°C or less. It is heated and then rolled, and in the rolling process 9
After performing primary rolling at a temperature of 50°C or lower with a cumulative reduction of at least 30% and a finishing temperature of 800°C or higher to make ausbunite grains as fine as ASTM Class 7 or higher, a temperature that is at least 50°C lower than the finishing temperature. air cooled to 700
Perform secondary rolling again at a temperature of ~750°C with a cumulative downstream rate of 5 to 25%, and immediately after the secondary rolling p, +TE, cool to a temperature of 350°C or more at a cooling rate of 2.0°C/dew or more, Then AC
, the idea is to reheat and temper the material to a temperature below.

即ちこのような本発明について、その内容を更に説明す
ると、先ずLNG用鋼として一170℃で充分なCOD
値を母材、溶接継手部で得るためには最低7.5%のN
iが必要であり、他方このN i fHll)%全超え
て含有させてもその効果に飽和状態となりコストアップ
に見合うメリットがないのでその」二限は10チとする
That is, to further explain the contents of the present invention, first, as a steel for LNG, sufficient COD at -170°C is obtained.
At least 7.5% N is required to obtain the value in the base metal and welded joint.
On the other hand, even if it is contained in excess of N i fHll)%, the effect will be saturated and there will be no merit worth the cost increase, so the second limit is set to 10.

PI″i、高温焼戻し脆化を助長する元素であって、特
に9%Nu鋼の如く焼入性の高い鋼においては、焼戻し
後111オーステナイト粒界に偏析するPによりシャル
ピー試験の吸収エネルギーのみならず、COD値も劣化
する。
PI''i is an element that promotes embrittlement during high-temperature tempering, and in particular in steels with high hardenability such as 9% Nu steel, the absorbed energy in the Charpy test due to P segregated at the 111 austenite grain boundaries after tempering is First, the COD value also deteriorates.

従ってPによるv8戻し脆化を抑制し低温域においても
優れたCOD値を得るため、Pの上限を0.010%と
した。
Therefore, in order to suppress v8 return embrittlement caused by P and obtain an excellent COD value even in a low temperature range, the upper limit of P was set to 0.010%.

本発明における鋼の成分組成上必閥とする要件は上記の
通りであり、その池の合金元素については特に規定しな
い。しかし本発明の効果が好ましく発揮できる範囲とし
ては、C:0.01〜0.15%、SL : 0.01
〜0.5 %、 Mn:()、1〜1,0%であり、そ
の他必要に応じてCr’、(上 511+ 以 −ド、
Mo : 0.5 %1. F 、 B :0.005
%以下”の第1群元素を1種またtま2種以上、Ca 
: 0.007%以−F、 RgM : 0.1 %以
ト、A4g: 0.007%以−ト、7シ:01%以下
の第2群元素ケ1種′又は2種以上の何れか一方又は双
方を含有することができる。
The essential requirements for the composition of the steel in the present invention are as described above, and the alloying elements of the steel are not particularly specified. However, the range in which the effects of the present invention can be preferably exhibited is as follows: C: 0.01 to 0.15%, SL: 0.01
~0.5%, Mn:(), 1~1.0%, and Cr', (above 511+ -de,
Mo: 0.5%1. F, B: 0.005
% or less of Group 1 elements, Ca
: 0.007% or more F, RgM: 0.1% or more, A4g: 0.007% or more, 7C: 01% or less of the second group element (1 type' or 2 or more types) It can contain one or both.

即ちここで、Cは強度及び焼入性全向上させるのに有効
な元素であり、少くとも0.01%は前記ASTM規格
で規定する強度レベルを得るために必要であるが、0.
15%を超えると溶接性の劣化を招くため、上限全0.
15%とする。
That is, here, C is an effective element for improving the overall strength and hardenability, and at least 0.01% is necessary to obtain the strength level specified by the ASTM standard, but 0.01% is necessary.
If it exceeds 15%, weldability deteriorates, so the upper limit is 0.
It shall be 15%.

SLは、製鋼過程における脱酸元素として必要不可欠な
元素であり、鋼中に少くとも0.01チ程度は含有され
るが、0.5 eIbを超えると靭性、特にCOD特性
が劣化するi向が認められるため上限ヲ0.5%とする
SL is an essential element as a deoxidizing element in the steelmaking process, and is contained in steel in an amount of at least 0.01 eIb, but if it exceeds 0.5 eIb, toughness, especially COD properties, deteriorates. Since this is recognized, the upper limit is set at 0.5%.

unは、鋼の焼入性を向−ヒさせるため強度およびCO
D特性改善に有効な元素であるが、0.1%未満ではこ
れらの効果が殆んど認められず、又1,0チを超えると
高温焼戻し脆性を助長し、逆にCOD特性を劣化きせる
ため1.0%を上限とした。
un increases the strength and CO to improve the hardenability of steel.
Although it is an effective element for improving D characteristics, if it is less than 0.1%, these effects are hardly recognized, and if it exceeds 1.0%, it promotes high temperature tempering brittleness and conversely deteriorates COD characteristics. Therefore, the upper limit was set at 1.0%.

必要に応じて含有させる元素であるCrも焼入性を向−
卜させる元素であるが、0.5%を超えると溶接部のC
01)特性を劣化させるため上限を()、5チとした。
Cr, which is an element added as necessary, also improves hardenability.
However, if it exceeds 0.5%, carbon in the weld zone will increase.
01) In order to deteriorate the characteristics, the upper limit was set to (), 5chi.

Moも、同様に曽1人性を向上させ、更に高温焼戻し脆
性全軽減する元素であるが、0.5%を超えて含有せし
めてもその効果は飽和状態となるため0.5%を上限と
した。
Mo is also an element that similarly improves Soichiroshin properties and also completely reduces high temperature tempering brittleness, but even if it is contained in an amount exceeding 0.5%, the effect will be saturated, so 0.5% is the upper limit. did.

nb−を蚊ス妊か面16オ入子姿で龜h 楠の元素と同
様に強度、COD特性の改善に有効であるが、0.00
5%を超えて含有させても焼入性改善効果は飽和状態と
なり、他方析出物の形成によりCOD特性を劣化させる
ため上限を0.005係とする。
nb- is effective for improving strength and COD properties like the camphor element, but 0.00
Even if the content exceeds 5%, the effect of improving hardenability is saturated, and on the other hand, the formation of precipitates deteriorates the COD properties, so the upper limit is set at 0.005.

なお板厚方向特性の均質化を図る目的において上記のよ
うな元素に加え、更VC0,007%以下のCa、0.
1%以下のREM、0.07%以下の吟、0.1%以下
のn−を添加しても本発明の効果を損うものではない。
In addition to the above-mentioned elements, for the purpose of homogenizing the characteristics in the thickness direction, Ca with a VC of 0.007% or less, and 0.007% or less of VC are added.
Even if 1% or less of REM, 0.07% or less of gin, and 0.1% or less of n- are added, the effects of the present invention will not be impaired.

次に本発明における鋼板製造東件についての限定理由を
説明すると、第1図1つ2次圧延直前のASTMオース
テナイト粒度漱と本発明範囲内でその後の処理を行った
鋼板の一170Cにおける限界COD値(以下δc−1
70℃という)の関係を示すが焼戻し後において優れた
COD特性を得るには2次圧延直前におけるオーステナ
イト粒を微細とする必要があり、焼戻し後において安定
L7てδe−170℃≧0.2+sを確保するにVi2
次圧延直前のオーステナイト粒径をASTM mで7以
上とする″ことが必要である。然してこの2次圧延直前
のオーステナイト粒径に影響を及はす因子としては、ス
ラブ加熱温度、その後の圧延条件が挙げられ、実際の鋼
板製造に当つ1は鋼片または鋳片の加熱温度を1200
℃以丁として初期オーステナイト粒の粗大化を防止し、
且つ圧延による結晶粒微卸1化を目的として950℃以
下で少くとも30係の川下を加える必要がある。なお加
熱温度のF限(・1、上記した1次圧延における950
℃以下の累イ^圧Fがとれた上で以下に述べる1次圧処
仕上温度を確保できる温度があればよく、特に限定する
必要はない。
Next, to explain the reason for the limitation regarding the steel plate manufacturing conditions in the present invention, Fig. 1 shows the ASTM austenite grain size immediately before secondary rolling and the limit COD at 170C of a steel plate that has undergone subsequent processing within the scope of the present invention. value (hereinafter δc-1
However, in order to obtain excellent COD properties after tempering, it is necessary to make the austenite grains fine immediately before the secondary rolling, and after tempering, the stable L7 and δe-170℃≧0.2+s are required. Vi2 to secure
It is necessary to set the austenite grain size immediately before the next rolling to 7 or more in ASTM m.However, factors that affect the austenite grain size just before the second rolling include the slab heating temperature and the subsequent rolling conditions. In actual steel plate manufacturing, the heating temperature of the steel billet or cast slab is 1200℃.
Prevents coarsening of initial austenite grains as a temperature control,
In addition, it is necessary to add at least 30 degrees of downstream rolling at 950° C. or lower for the purpose of reducing the grain size to 1 by rolling. Note that the heating temperature F limit (・1, 950 in the above-mentioned primary rolling
There is no need to specifically limit the temperature as long as the temperature is such that the primary pressure treatment finishing temperature described below can be maintained while maintaining the cumulative pressure F of .degree. C. or less.

1次圧延仕」二温度k 800℃以上としたのは、第2
図において明かなように、当該温度が800℃より低い
温度になると圧下を加えられたオーステナイトが再結晶
することなく、そのまま圧延方向に伸展した結晶粒を呈
し、その結果強度の異方性が顕著となり、更にスラブ加
熱時に未だ固溶しない状態で存在した〃Nや圧延時に伸
展したMn S自体が脆性破壊発生起点になると共に伸
展したオーステナイト粒界の脆化を助長し、特に圧延直
角方向(以下C方向という)のC0DI特性を著しく劣
化させるためである。なお第2図は1次圧延終了後60
〜80℃低い温度まで空冷し、2次圧延を行わずに直ち
に水冷し、その後焼戻しを行った結果であシ、このまま
では(即ち2次圧延を行わないときは1次圧延の仕上り
を如何様に詞整しても)当初の目標であるδC−170
≧0.2!を安定して確保するのは困難であることがわ
かる。
The reason for setting the temperature k of 800°C or higher for the 2nd rolling process is that
As is clear from the figure, when the temperature is lower than 800°C, the austenite that has been rolled does not recrystallize and forms crystal grains that extend in the rolling direction, resulting in significant anisotropy in strength. Furthermore, N, which was not yet in solid solution during heating of the slab, and MnS itself, which was extended during rolling, became the starting point for brittle fracture occurrence and promoted the embrittlement of the extended austenite grain boundaries, especially in the direction perpendicular to rolling (hereinafter referred to as This is because the C0DI characteristic (referred to as C direction) is significantly deteriorated. In addition, Figure 2 shows the temperature at 60 yen after the completion of primary rolling.
This is the result of air cooling to a temperature lower than ~80℃, immediate water cooling without secondary rolling, and then tempering. Even if the original goal is δC-170
≧0.2! It can be seen that it is difficult to stably secure the

、83図には1次圧延終了後、715℃まで空冷し、そ
の後再び2次圧延分行い、圧延後直ちに水冷し焼戻しを
行った鋼板の引張強IWおよびCOD試験結果を示すが
、1次圧嫉仕上温度’r 820℃としたとき(図中0
口で示す)は2次圧延の圧ド率増加とともに強度および
δe−170℃が著しく改善されていることが明かであ
、す、他方1次圧延仕上温度を770℃としたとき(図
中・―で示す)には2次圧延を行ってもJe−1700
は改善されず、逆に劣化し、又異方性も大きくなる傾向
が認められる。
, Figure 83 shows the tensile strength IW and COD test results of a steel plate that was air-cooled to 715°C after the primary rolling, then subjected to secondary rolling again, and water-cooled and tempered immediately after rolling. When the finishing temperature is 820℃ (0 in the figure)
It is clear that the strength and δe-170°C of the case (shown in the figure) are significantly improved as the rolling reduction in the secondary rolling increases.On the other hand, when the finishing temperature of the primary rolling is set to 770°C ( ) shows Je-1700 even if secondary rolling is performed.
There is a tendency for the properties to be not improved, but to be deteriorated, and the anisotropy to be increased.

即ちこれら両者の相違は2次圧延直前のオーステナイト
組織の差に起因するものであって、第5図の顕微鏡写真
に示す如く、前者は2次圧延直前のオーステナイト粒は
再結晶が完了レボリゾナルな状態にあり、その結果本発
明の範囲内争件による2次圧延【てよって異方性が少く
、整粒でかつ微細なオーステナイトが得られδc−17
0℃の劣化が顕著となる。上記のような現象の把握(,
11本発明の構成上重要なボトントであり、すなわち2
次圧延直前のオーヌテナイト粒コントロールおよび最適
2次圧延東件の選定が重要となる。
In other words, the difference between the two is due to the difference in the austenite structure immediately before the secondary rolling, and as shown in the micrograph in Figure 5, the former shows that the austenite grains immediately before the secondary rolling are in a revo-zonal state where recrystallization has been completed. As a result, secondary rolling within the scope of the present invention results in less anisotropy, well-sized, and fine austenite.
Deterioration becomes noticeable at 0°C. Understanding the above phenomena (,
11 Important points in the structure of the present invention, namely 2
It is important to control the onutenite grains immediately before the next rolling and to select the optimal secondary rolling conditions.

又、本発明がここで圧延仕上温度よりも少なくとも50
℃低い温度まで空冷するとした理由は、1次圧延後のオ
ーステナイト粒を充分再結晶させるためであり、さらに
圧延終了時の鋼板表裏面の温度差および板肉温度ムラを
極力抑え、水冷後の鋼板歪および材質のバラツキを小さ
くするにも有効である。2次圧延温度範囲を700〜7
50 ℃としたのは、750℃よりも高い温度では加工
によりオーステナイトが部分再結晶し混粒となってδe
−170 ℃の劣化を招き、700℃より低温では加工
によりオーステナイトが圧延方向に著しく伸展し、まf
t−、MfIS等介在物の悪影響とも相まってC方向の
δe−170℃を劣化させるためである。、2次圧延時
の累積圧下率を5〜25チとしたのは、25%より大き
いと上記した圧延温度700℃未満の場合と同様の理由
で特にC方向のδe−170℃を劣化させ、5%、Il
、C小さい範囲ではh結晶オーステナイトが細粒化せず
、′またオースフオーム効果による強度上昇も#1とん
ど期待できないためである。
The present invention also provides that the rolling finish temperature is at least 50
The reason for air cooling to a low temperature is to sufficiently recrystallize the austenite grains after the primary rolling, and also to minimize the temperature difference between the front and back surfaces of the steel sheet at the end of rolling and the temperature unevenness of the sheet wall, and to reduce the temperature of the steel sheet after water cooling. It is also effective in reducing distortion and material variations. Secondary rolling temperature range 700~7
The reason for setting the temperature to 50°C is that at temperatures higher than 750°C, austenite partially recrystallizes due to processing and becomes mixed grains, resulting in δe
At temperatures lower than 700°C, austenite is significantly elongated in the rolling direction, resulting in deterioration of -170°C.
This is because, together with the adverse effects of inclusions such as t- and MfIS, the δe-170° C. in the C direction is degraded. The reason why the cumulative reduction ratio during the secondary rolling was set to 5 to 25 inches is that if it is larger than 25%, it will deteriorate δe-170°C in the C direction for the same reason as the above-mentioned rolling temperature of less than 700°C. 5%, Il
, C is in a small range, h-crystalline austenite does not become fine grained, and an increase in strength due to the ausform effect is hardly expected in #1.

次に2次圧延後直ちに2..01:、 / see以上
の冷却速度で水冷する理由について述べると、このよう
に2次圧延後直ちに水冷するのは、上記したような製造
法によって得られたオーステナイトをそのままの状態で
焼入れることによシ、再加熱焼入れ材では得られない整
粒、微細であり、かつ転位密度の高いマルテンサイト組
織を得るためであり、さらに圧延後の直接焼入れはPな
どの不純物元素の粒界偏析を防止し、焼戻し後の低温靭
性改善にも有効となるからである。牛た、第4図によっ
てわかる如く、冷却速度が2.0℃/就よシも遅い所で
は一部ペイナイト変卯が起り、その結果強度δl!−1
7(1℃が劣化するため、冷却速1f、Vi2.0℃/
就以上とした。捷た、350℃以下まで上記冷却速度で
冷却するのは、マルテンサイトへのf、態に完全にする
ためである。なお、炭化物の倣(111分散、ザブスト
ラフチャーの回復による強度の低下および旧オーステナ
イト粒界、ラス境界への微細な安定オーステナイトの析
出等による低温靭性の改善全目的に、AcI以下の温度
で焼戻し処理を行なう。
Next, immediately after the secondary rolling, 2. .. 01:, The reason for water cooling at a cooling rate higher than /see is that the reason for water cooling immediately after secondary rolling is to quench the austenite obtained by the above-mentioned manufacturing method in its original state. This is to obtain a martensitic structure that is grain-sized, fine, and has a high dislocation density, which cannot be obtained with reheated and quenched materials.Furthermore, direct quenching after rolling prevents grain boundary segregation of impurity elements such as P. This is because it is also effective in improving low-temperature toughness after tempering. As can be seen from Figure 4, some payinite deformation occurs where the cooling rate is 2.0℃/especially slow, and as a result, the strength δl! -1
7 (1°C degrades, cooling rate 1f, Vi2.0°C/
It was assumed that the position was higher than that. The reason for cooling to 350° C. or lower at the above cooling rate is to completely transform into martensite. In addition, for the purpose of improving low-temperature toughness due to carbide imitation (111 dispersion, reduction in strength due to recovery of substracture, precipitation of fine stable austenite at prior austenite grain boundaries, lath boundaries, etc.), Perform tempering treatment.

本発明によるものの具体的な実施例について説明すると
以下の如くである。
Specific embodiments of the present invention will be described below.

即ち本発明者等が用いた供試鋼の化学成分は次の第1表
に示す通シであって、鉋CiJ P:0.012%、鋼
FはP : 0.018%であり、何れも本発明の範囲
外のものである。
That is, the chemical composition of the test steel used by the present inventors is as shown in Table 1 below. are also outside the scope of the present invention.

父上記したような6鋼に対する製造条件を要約して示し
ているのが次の第2表であり、このjfE2表において
第1次圧処終了稜に得られたオーステナイト粒度tiN
l19がASTMオーステナイト粒度番号で5.5番で
あり、その他は何れも該粒度番号が8〜9番であった。
The following Table 2 summarizes the manufacturing conditions for the 6 steels as described above, and in this jfE2 table, the austenite grain size tiN
119 had an ASTM austenite grain size number of 5.5, and all the others had grain size numbers of 8 to 9.

又この第2表における冷却条件中の冷却速度は水冷開始
温度〜300Uまでの平均冷却速度(水冷4200℃以
下まで行っている)で示している。焼戻しについては総
べての供試材について575℃で行った。
Further, the cooling rate under the cooling conditions in Table 2 is shown as the average cooling rate from the water cooling start temperature to 300 U (water cooling was performed up to 4200°C or less). All sample materials were tempered at 575°C.

然して上記のようにして得られた各鋼板について、C方
向にそって採取した試験片による機械的性質を試験測定
した結果を要約して示したのが次の@3表であって、本
発明方法によって製造された+4[L3,5,8,12
゜18.19.23および26の各鋼板は何れモ高い強
度と共に一170℃においてδC≧()62鰭の優れた
限界COD値が得られている。こtLに対しNαi t
:を加熱温度が、又醜9,10は1次圧延条件が、更に
Nl12,11.13〜17および251ま2次圧延条
件が然して職4゜20t」水冷時の冷却速度が何れも本
発明範囲を逸脱しており、さらに@21と22は従来の
焼入れ焼戻し処理拐であって、こnらのものは何れも/
1c−170℃が低い値となっている。
However, the following @3 table summarizes the results of testing and measuring the mechanical properties of each of the steel plates obtained as described above using test pieces taken along the C direction. +4[L3,5,8,12 produced by the method
Steel plates No. 18, 19, 23 and 26 all have high strength and an excellent limit COD value of δC≧()62 at -170°C. Nαi t for this tL
: The heating temperature, the primary rolling conditions for 9 and 10, and the secondary rolling conditions for 12, 11, 13 to 17 and 251, and the cooling rate at water cooling of 4° 20 t'' are all according to the present invention. It deviates from the range, and furthermore, @21 and 22 are conventional quenching and tempering treatments, and none of these /
The lowest value is 1c-170°C.

な&a (i 、7 、 24は既述のように本発明に
おける鋼成分範囲を逸脱する鋼であり、鋼板製造粂1/
4−全本発明範囲1ノコとしても(tJI16゜24)
δc−17Onは(1,2+mm VC満たない低レベ
ルの値しか得られていない、。
(As mentioned above, I, 7, and 24 are steels that deviate from the steel composition range in the present invention, and the
4-The entire scope of the present invention as one piece (tJI16゜24)
For δc-17On, only a low level value less than (1,2+mm VC) was obtained.

以上説明したような本発明によるときは高強度、高靭性
ケイ1する含N l低温用鋼板として卓越した串、翼間
I」変位敞を示す−[を安定して製造することができ、
液化ガス温度又はそハ、以下のような温度粂件下におい
で利用されるに適した製品を適切に提供し得るものであ
るから1柴的にその効果の大きい発明である。
According to the present invention as explained above, it is possible to stably produce a high-strength, high-toughness N-containing low-temperature steel plate that exhibits excellent skewer and blade displacement.
This is a highly effective invention because it can appropriately provide a product suitable for use under the following temperature conditions, such as liquefied gas temperature or so.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示−tものであって、第1
図t」2次圧g直前のASTMオーステナイト粒雁N[
Lとac−170℃の関係を・示した図表、第2図は1
次圧帆仕上献度とT8.dc−170℃の関係を示した
図表、第3図は2次圧処の用’F率とTlS、δe −
170℃の関係ケ示した図表1.84図+Z12次圧延
後の冷却速度と1゛S。 δc−170℃の関係ケ示した図表、第5図は2次圧[
i[前(715℃)のオーステナイトヲ示す倍N7A4
00倍の$微蝉写^であって、1次圧延仕上温度は(1
k)が820 ’0、(b)が770℃の場合である。 特許出願人 日本鋼管株式会社 発 明 者 松 井 和 字 間 1) 川 寿 稜 間 山 1) 真 向 岩 崎 宣 博 同 平 忠 明 ゛[つ / 閑 2次刀メε龜前のMTr’lオースデクィH欧凌〉を弗
 2 l l攻ア員)1上jし友 ヒ 牢 J 圓 2次圧延五千辛(πr−710リイ 小 41 22矢;メEだヒイ々の)勺Nとv逢走OcンCえ。。 特許庁長官:Ij O和 失敗 1.事件の表示 昭和52年qy vr−願第1ヲ22ミ3号2、発 明
の名 称 亀鉦閉口を位の46TC舎N−へ唱2国鍼々か玉3、補
正をする者 事(1とのNJ係特 許、1B願人 名称(氏名)日本wi管株式会社 4、代理人 昭和 年 月 1」 是J4 6、補正の対象 ”II、1Jl19 7、補正の内容 別紙の通り 補正の内容 1、本願明細答中第3頁10行目から111行目かけて
「Supplementary Reguiremen
t J とあるのをj Supplementary 
Requirement Jと訂正する。 2、同13頁10行目から111行目こかけて[整粒で
かつ・・・・・・・・・・・・・・・顕著となる。」と
あるのを「整粒でかつ微細なオーステナイトが得られδ
c −170℃は改善される。他方後者は、2次圧延直
前のオーステナイトは圧延方向に長く伸展した未再結晶
状態にあシ、2次圧延によシ史に伸展し、そのため特に
C方向のδc−170℃の劣化が顕著となる。」と訂正
する。 3、同18頁4行目から6行目にかけて「オーステナイ
ト粒度は・・・・・・・・・・・・・・・9番であった
。」とあるのを「オーステナイト粒度は41がASTM
オーステナイト粒度番号で6番、/I69が同粒度査号
で5.5番であり、その他は何れも該粒度番号が7.5
〜9番であった。」と訂正する。 手続補正書(方べ) 特許庁長官若 杉 和 失敗 1、事件の表示 昭和1Fr年特 許願第19と2.fj 号2、発明り
名称 1%”F’ 0’ ” ’ 1昼JXr−8N + I
N ”Js fll 金町M 製f;−i−;、f。 3、補正をする者 事件との関係贋許出願人 名称(氏釦日本鋼管株式会礼 4、代理人 昭和t7年 1月、f7B発送 補正の内容 12本願明細書中第22頁17行目から19行目にかけ
て[第5図は・・・・・・・・・・・であって、」とあ
るのを「第5図は銅板における2次圧延直前(715°
C)のオーステナイト組織を示す倍率400倍の顕微鏡
写真であって、」と訂正する。
The drawings illustrate the technical content of the present invention, and the first
Figure t'' ASTM austenite grain N [just before the secondary pressure g
A diagram showing the relationship between L and ac-170℃, Figure 2 is 1
Next pressure sail finishing dedication and T8. A chart showing the relationship between dc and 170°C.
Figure 1.84 showing the relationship at 170°C + Z Cooling rate after 12th rolling and 1゛S. A diagram showing the relationship between δc and 170°C, and Figure 5 shows the secondary pressure [
i[Previous (715℃) showing austenite
It is a $00 microphotograph, and the primary rolling finishing temperature is (1
This is the case where k) is 820'0 and (b) is 770°C. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Kazu Matsui, Yama 1) Hisashi Kawa, Yama 1) Mamukai, Noriyoshi Iwasaki, Hirodo, Tadashi Taira, MTr'l Ausdequi H Europe〉 弗 2 l l attack a member) 1 top j shi friend Hi prison J round 2nd rolling 5000 spicy (πr-710 rii small 41 22 arrows; me E dahii's) 勺 N and v Aisou OcunC. . Commissioner of the Patent Office: Ij Owa Failure 1. Indication of the incident 1975 qy vr - Application No. 1, 22, No. 3, 2, Name of the invention: Kamegon Shuguchi to the 46TC building N-, 2 countries, acupuncture, or ball 3, person making the amendment ( NJ patent with 1B, applicant name (name) Nippon Wi Kan Co., Ltd. 4, agent Showa year month 1” Correct J4 6, Subject of amendment” II, 1Jl19 7, Contents of amendment The amendment is as per the attached sheet. Content 1, from page 3, line 10 to line 111 of the answer to the specification of the present application, “Supplementary Requirement
t J Supplementary
Correct to Requirement J. 2. From the 10th line to the 111th line on page 13, it becomes noticeable that the grain size is regulated. '' is replaced by ``A well-sized and fine austenite can be obtained.
c -170°C is improved. On the other hand, in the latter case, the austenite immediately before the secondary rolling is in an unrecrystallized state that is elongated in the rolling direction, and is extended during the secondary rolling, so that the deterioration in the C direction at δc-170°C is particularly noticeable. Become. ” he corrected. 3. On page 18, from line 4 to line 6, the statement ``Austenite grain size was No. 9'' was replaced with ``The austenite grain size was 41 according to ASTM.
The austenite grain size number is 6, /I69 is the same grain size code and is 5.5, and the other grain size numbers are 7.5.
~It was number 9. ” he corrected. Procedural amendment written by Kazu Wakasugi, Commissioner of the Japan Patent Office Failure 1, case indication Showa 1Fr patent application No. 19 and 2. fj No. 2, invention name 1% "F'0'"' 1 noon JXr-8N + I
N "Js flll Kanamachi M made f;-i-;, f. 3. Person making the amendment Name of the applicant for the forgery in relation to the case (Mr. Button Nippon Koukan Co., Ltd. Association 4, Agent January 1939, f7B Contents of Shipping Amendment 12 From line 17 to line 19 on page 22 of the specification of the present application, the phrase [Figure 5 is .........] has been replaced with ``Figure 5 is...''. Immediately before secondary rolling in copper plate (715°
This is a micrograph at a magnification of 400 times showing the austenite structure of C).''

Claims (1)

【特許請求の範囲】[Claims] Niニア、5〜10wt%、 P : (1,01(l
vrt%以下を基本成分として含有する含Nl低温用鋼
片又は鋳片を1200℃以下の温度に加熱してから圧砥
し、その圧延行程において950℃以下で少くとも30
%の累積圧下を加え仕上り温度を800℃以上としてオ
ーステナイト粒をA37M ta 7以上の細粒とする
1次圧延を行った後、当該仕上温度より少くとも50℃
低い温度まで空冷し、引続き7 (10〜750℃の温
度で再び累積圧下率5〜25%の2次圧延を行い、該2
次圧延直後2.0℃/就以上の冷却速度で350℃以上
の温度−まで冷却し、次いでAC,以下の温度に古加熱
して焼戻すことを特徴とする亀裂開口変位の優れた含N
i低温用鋼の製造方法。
Ni near, 5-10 wt%, P: (1,01(l
A Nl-containing low-temperature steel billet or slab containing vrt% or less as a basic component is heated to a temperature of 1200°C or less and then rolled and polished, and in the rolling process, it is polished at least 30°C at a temperature of 950°C or less.
% cumulative reduction and a finishing temperature of 800°C or higher to make the austenite grains into fine grains of A37M ta 7 or higher, and then at least 50°C above the finishing temperature.
After air cooling to a low temperature, secondary rolling was performed again at a temperature of 7 (10 to 750 °C) with a cumulative reduction rate of 5 to 25%, and
Immediately after the next rolling, it is cooled to a temperature of 350°C or higher at a cooling rate of 2.0°C or higher, and then pre-heated and tempered to a temperature lower than AC.
i. Method for producing steel for low temperature use.
JP19823383A 1983-10-25 1983-10-25 Production of ni-containing low temperature steel having excellent crack opening displacement Granted JPS6092422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19823383A JPS6092422A (en) 1983-10-25 1983-10-25 Production of ni-containing low temperature steel having excellent crack opening displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19823383A JPS6092422A (en) 1983-10-25 1983-10-25 Production of ni-containing low temperature steel having excellent crack opening displacement

Publications (2)

Publication Number Publication Date
JPS6092422A true JPS6092422A (en) 1985-05-24
JPS642170B2 JPS642170B2 (en) 1989-01-13

Family

ID=16387717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19823383A Granted JPS6092422A (en) 1983-10-25 1983-10-25 Production of ni-containing low temperature steel having excellent crack opening displacement

Country Status (1)

Country Link
JP (1) JPS6092422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241553A1 (en) * 1985-10-15 1987-10-21 Aichi Steel Works, Ltd. High strength stainless steel, and process for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241553A1 (en) * 1985-10-15 1987-10-21 Aichi Steel Works, Ltd. High strength stainless steel, and process for its production
EP0241553A4 (en) * 1985-10-15 1989-01-18 Aichi Steel Works Ltd High strength stainless steel, and process for its production.

Also Published As

Publication number Publication date
JPS642170B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
KR100386767B1 (en) Method for producing ultra-high strength, weldable steels with superior toughness
JP4294854B2 (en) Ultra-high strength, weldable steel with excellent ultra-low temperature toughness
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JPH10509769A (en) High strength duplex stainless steel with excellent toughness and weldability
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
US3860456A (en) Hot-rolled high-strength low-alloy steel and process for producing same
JP2013014812A (en) Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP2005139517A (en) Method for producing high strength and high toughness thick steel plate
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPS605822A (en) Low alloy steel sheet and manufacture
JPH0941036A (en) Production of high toughness steel sheet for low temperature use
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JPS6092422A (en) Production of ni-containing low temperature steel having excellent crack opening displacement
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPH0230712A (en) Production of clad steel sheet
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility