JPS6092409A - Manufacture of fe-cr-co alloy powder - Google Patents

Manufacture of fe-cr-co alloy powder

Info

Publication number
JPS6092409A
JPS6092409A JP20000083A JP20000083A JPS6092409A JP S6092409 A JPS6092409 A JP S6092409A JP 20000083 A JP20000083 A JP 20000083A JP 20000083 A JP20000083 A JP 20000083A JP S6092409 A JPS6092409 A JP S6092409A
Authority
JP
Japan
Prior art keywords
alloy
alloy powder
powder
sintering
maximum energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20000083A
Other languages
Japanese (ja)
Inventor
Masao Ogata
正男 緒方
Koichi Oda
光一 小田
Kazunori Tawara
田原 一憲
Tokushiro Hasegawa
長谷川 徳四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Proterial Ltd
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk, Fukuda Metal Foil and Powder Co Ltd, Hitachi Metals Ltd filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP20000083A priority Critical patent/JPS6092409A/en
Publication of JPS6092409A publication Critical patent/JPS6092409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture easily Fe-Cr-Co alloy powder having a nearly spherical shape by powdering a molten alloy contg. Si, Ti and Mn and/or B besides Fe, Cr and Co as principal components by an atomizing method. CONSTITUTION:A molten alloy having a composition consisting of, by weight, 17-45% Cr, 5-30% Co, 0.1-5% Si, 0.1-5%, 0.1-5% Mn, 0.1-5% B and the balance essentially Fe is powdered by an atomizing method. The resulting alloy powder is nearly spherical. When the powder is sintered, the density after the sintering is increased, and a sintered magnet alloy having >= about 96% theoretical density ratio and >= about 3.5MGOe maximum energy product can be obtd.

Description

【発明の詳細な説明】 本発明はスピノータ匂解型Fe −Cr −Co系磁石
合金を焼結法により得るのに使用されるFe−Cr−C
o系合金粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fe-Cr-C magnet alloy used to obtain a spinotatically decomposed type Fe-Cr-Co magnet alloy by a sintering method.
The present invention relates to a method for producing o-based alloy powder.

従来から、この種のスピノーダル分解型Fe −Cr 
−Co系磁石合金の製造方法として、V−!造法、圧延
法および焼結法が知られている。釣造法では容易に所望
形状の合金を得ることができる反面、小物製品をに造す
る場合は総合歩留が低く、また鋳物欠陥が生じ易く、複
雑形状製品では、多くの加工工程を必要とする欠点があ
る。
Conventionally, this type of spinodal decomposition type Fe-Cr
- As a method for producing a Co-based magnetic alloy, V-! Manufacturing methods, rolling methods and sintering methods are known. While the fishing method can easily obtain alloys with desired shapes, when manufacturing small products, the overall yield is low and casting defects are likely to occur, and products with complex shapes require many processing steps. There are drawbacks to doing so.

また圧延法は、Fe −Cr −Co系磁石合金(?!
Iえは特公昭58−9827号公報参照)等の処性をも
つ材料にのみ適用できる方法であシ、打抜加工や線引加
工による小物、複雑形状製品あるいは板材、細丸棒等の
製造に優れる。しかし、反面鍛造、焼鈍、圧延等信の製
造方法にない複雑なプロセスが必要となる。これに対し
、焼結法(例えは特開昭54−33205号、同56−
139657号、同57−16150号の各公報参照)
は総合歩留が高く小物、複雑形状製品の加工工程を大幅
に省略できる可能性があシ小物、複雑形状製品には適し
ている。
In addition, the rolling method uses a Fe-Cr-Co magnetic alloy (?!
This method can only be applied to materials with processing properties such as Japanese Patent Publication No. 58-9827 (see Japanese Patent Publication No. 58-9827), and manufactures small items, complex-shaped products, plate materials, thin round bars, etc. by punching or wire drawing. Excellent in However, on the other hand, it requires complicated processes that are not available in other manufacturing methods such as forging, annealing, and rolling. On the other hand, sintering method (for example, JP-A-54-33205, JP-A-56-
(Refer to publications No. 139657 and No. 57-16150)
It has a high overall yield and has the potential to significantly omit processing steps for small and complex-shaped products, making it suitable for small and complex-shaped products.

焼結法を用いるためには、所望成分の金Ij4粉末を製
造する必要がち9、一般に金属粉末を製造する方法とし
ては、(1)機械的粉砕法、(2)還元による方法、(
a)電解による方法、(4)溶湯粉化による方法等があ
る。
In order to use the sintering method, it is necessary to produce gold Ij4 powder with the desired components.9 Generally, methods for producing metal powder include (1) mechanical pulverization, (2) reduction method, (
There are a) a method by electrolysis, and (4) a method by pulverization of molten metal.

上述した延性を有するFe −Cr −Co系磁石合金
は磁気特性は良好であるが、機械的粉砕法では多大な時
…」と労力を要し粉末の製造が困難である1Fe −C
r合金としてはd粉とし機械的粉砕を可能にする方法が
あるがその際のCr量は45チ以上と非常に高くする必
をがある。また還元による方法および電解による方法は
上記Fe −Cr −Co 系合金のように多元系であ
る場合は不適である。
The ductile Fe-Cr-Co magnetic alloy mentioned above has good magnetic properties, but mechanical crushing requires a lot of time and labor, making it difficult to produce powder.
There is a method of using d powder as the r alloy to enable mechanical pulverization, but in this case the Cr content must be very high, 45 or more. Further, the reduction method and the electrolytic method are unsuitable in the case of a multi-component system such as the above-mentioned Fe-Cr-Co alloy.

これに対し、mh粉化の方法によれば、比較的容易に所
望の金踊粉末が得られ、上記Fe −Cr −Co系合
金粉末の製造に適する。
On the other hand, according to the mh powdering method, the desired Konodori powder can be obtained relatively easily and is suitable for producing the Fe-Cr-Co alloy powder.

しかして、Fe −Cr −Co系磁石合金の必須成分
であるFe−、Cr、Go、5tSTiのみでアトマイ
ズ法によシ得られる合金粉末の形状は丸味を帯びた不定
形のものが大半であシ、そのため成形、焼結後の試料は
高密度になシに<<、その結果高特性化には難かしい面
を有していた。
However, the shape of the alloy powder obtained by the atomization method using only Fe-, Cr, Go, and 5tSTi, which are the essential components of the Fe-Cr-Co magnetic alloy, is mostly rounded and amorphous. Therefore, the sample after molding and sintering had a high density, which made it difficult to improve the properties.

本発明の目的は、上記従来技術の欠点を解消し、焼結後
の密度を向上させることによシ、高特性のFe −Cr
 −Co系焼結磁石が得られるFe −Cr −C。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to improve the density after sintering, thereby achieving high properties of Fe-Cr.
-Fe-Cr-C from which a Co-based sintered magnet can be obtained.

系合金粉末の製造方法を提供することである。It is an object of the present invention to provide a method for manufacturing alloy powder.

本発明のFe −Cr −Co系合金粉末の製造方法は
、Fe、 Cr、 Coを主成分としかつSi、Tiの
他にIVlnおよび/またはBを添加した合金の溶湯な
アトマイズ法によシ粉末化することを特徴としている。
The method for producing the Fe-Cr-Co alloy powder of the present invention is to produce powder using a molten atomization method of an alloy containing Fe, Cr, and Co as main components and containing IVln and/or B in addition to Si and Ti. It is characterized by becoming

すなわち本発明者等が種々検討した結果、胤およびBを
添加したFe −Cr −Co系合金を用いることによ
り、丸味を帯びた不定形合金粉末よシ球形に近い合金粉
末にすることが可能となり、この球状化したFe −C
r −Co系合金粉末を用いて常法によシ焼結磁石を製
造すると焼結後のM[が向上し、理論密度比96%以上
かつ最大エネルギー積3、5 M G Oe以上の焼結
磁石合金が得られることを見出した。
In other words, as a result of various studies by the present inventors, by using a Fe-Cr-Co alloy to which Seed and B are added, it is possible to create an alloy powder that is closer to a spherical shape than a rounded amorphous alloy powder. , this spheroidized Fe-C
When a sintered magnet is manufactured by a conventional method using r-Co alloy powder, the M after sintering is improved, and the sintering has a theoretical density ratio of 96% or more and a maximum energy product of 3.5 M G Oe or more. It has been found that a magnetic alloy can be obtained.

また本発明においては、Fe−Cr−Co系合金粉末と
して重重比でCr 17〜45チ、Co 5〜30チ、
SiO,1〜5%、’I’i 0.1〜5%、Mn 0
.1〜5%、Bo、1〜5%、残部実質的にFeからな
る組成のものが好ましい。その理由は次の通シである。
In addition, in the present invention, the Fe-Cr-Co alloy powder has a weight ratio of Cr 17 to 45 inches, Co 5 to 30 inches,
SiO, 1-5%, 'I'i 0.1-5%, Mn 0
.. A preferred composition is 1 to 5% Bo, 1 to 5% Fe, and the remainder substantially Fe. The reason is as follows.

合金成分において、Crは保磁力に大きく影響し、17
%未満では充分な保磁力が得られず、また45%を越え
ると飽和磁束密度が低下して実用的でなくなる。
Among alloy components, Cr has a large effect on coercive force, and 17
If it is less than 45%, a sufficient coercive force cannot be obtained, and if it exceeds 45%, the saturation magnetic flux density decreases, making it impractical.

CoはCrと共に保磁力を増大させるものであるが、5
%未満では所望磁気特性が得られず、また30%を越す
と熱処理条件が困難となる。
Co increases the coercive force together with Cr, but 5
If it is less than 30%, the desired magnetic properties cannot be obtained, and if it exceeds 30%, the heat treatment conditions become difficult.

Siは湯の流動性を改善し、またTiは大気溶解時ある
いは焼結過程において真空中あるいは非酸化性芥囲気中
の倣瀘の窒素を固定させるため、各々0.1〜5%の添
加が有効である。
Si improves the fluidity of hot water, and Ti fixes nitrogen in a vacuum or non-oxidizing atmosphere during atmospheric dissolution or during the sintering process, so it is recommended to add 0.1 to 5% of each. It is valid.

胤お・よびBの重加は上記のFe5CrSCo、5is
Ti元索と相互に反応して溶湯の表面張力を高める働き
を有し、そのためアトマイズ後得られる合金粉末を球状
化せしめるものであるが、その含有量が0.1%未満で
は添加による効呆は望めない。
The weight of Tane and B is the above Fe5CrSCo, 5is
It has the effect of increasing the surface tension of the molten metal by interacting with the Ti base, and therefore makes the alloy powder obtained after atomization spheroidized, but if its content is less than 0.1%, the effect of its addition is low. I can't hope for that.

また5%を越えると磁気特性の劣化を引き匙こすことか
ら0.1〜5%の軛囲が良い。
Moreover, if it exceeds 5%, the magnetic properties may deteriorate, so a range of 0.1 to 5% is preferable.

実施例l Co10%、Cr 27%、Si0.5%、Ti O,
5%、残部実質的にFeからなる組成になるように配合
した後、Mnを0%(無添加)、0.1%、0.5%、
1チ、2%、3%、5%添加し、溶湯温厩 1700〜
1800℃においてN2中水アトマイズ法にて粒[10
0mesh以下の合金粉末を作製した。
Example 1 Co10%, Cr27%, Si0.5%, TiO,
5%, and the remainder was blended so as to have a composition consisting essentially of Fe, and then Mn was added to 0% (no addition), 0.1%, 0.5%,
Add 1 g, 2%, 3%, 5%, warm molten metal 1700~
Particles [10
An alloy powder of 0 mesh or less was produced.

第1図(a)、(b)にMn無添加およびMnを0.5
%添加した場合に得られた合金粉末の顕微鏡写真を示す
Figure 1 (a) and (b) show no Mn addition and Mn addition of 0.5
% of the alloy powder is shown.

この粉末を5t/cI/lの成形圧で外径13 g 、
高さ10Mの円柱状に成形し、この成形体を10 To
rr以下の真号中で1400℃の温度で90分間涜結上
行った。その後900℃で30分間保持する俗体化処理
後、さらに630℃近坊で60分間保持する等温磁場処
理を行い、続いて610℃から470℃まで4℃/hの
遠戚で冷却する時効処理を施した。
This powder was molded under a molding pressure of 5t/cI/l to an outer diameter of 13g,
The molded body was molded into a cylindrical shape with a height of 10M, and the molded body was
Condensation was carried out at a temperature of 1400° C. for 90 minutes in a vacuum chamber with a temperature below rr. After that, after a secularization treatment held at 900°C for 30 minutes, an isothermal magnetic field treatment held at 630°C for 60 minutes, followed by an aging treatment where the temperature is cooled from 610°C to 470°C at a rate of 4°C/h. was applied.

第2図にこのようにして侍られたFe −Cr −C。Fig. 2 shows Fe-Cr-C served in this way.

磁石の理論密度比と最大エネルギー積値とMn添加量の
関係を示す。第2図から明らかなようにMnを添加する
ことにより理論履度比は96チ以上に向上し、約0.5
〜5%間で飽和の傾向を示す。一方磁気特性はMn1%
近傍で最大値を有することがわかった。
The relationship between the theoretical density ratio of the magnet, the maximum energy product value, and the amount of Mn added is shown. As is clear from Fig. 2, by adding Mn, the theoretical wear ratio increases to more than 96 inches, which is about 0.5
It shows a tendency of saturation between ~5%. On the other hand, the magnetic properties are Mn1%
It was found that it has a maximum value in the vicinity.

実施例2 目標成分が0010%、Cr 27 %、St O,5
%、Ti015チ、Mn 1チ、へ部実負的にFeの組
成になるように配合した後、添加量を変化させてBを添
加し、水7トマイズ法にて粒度100meah 以下の
合金粉末を作製しだ0この合金粉末を用いて実施例1と
同様の条件で成形、焼結および熱処理を行ってFe −
Cr −Co系焼結磁石を得た0第3図にB添加量とそ
の時得られたこの磁石の理論密度比および最大エネルギ
ー積の関係を示す。
Example 2 Target components are 0010%, Cr 27%, St O,5
%, 15% Ti, 1% Mn, and 1% Ti, 1% Mn, and 1% Fe. After blending so as to have a negative composition of Fe, B was added by varying the amount added, and an alloy powder with a particle size of 100mah or less was produced using the water totomization method. Production: Using this alloy powder, molding, sintering and heat treatment were performed under the same conditions as in Example 1 to obtain Fe-
A Cr--Co based sintered magnet was obtained. Figure 3 shows the relationship between the amount of B added and the theoretical density ratio and maximum energy product of this magnet obtained at that time.

第3図から明らかなように、B添加量が0.1〜5チの
範囲で理論密度比96チ以上、最大エネルギー積3.5
 M G Oe以上が得られた0実施例3 Co 12%、Cr25%、St O,5%、Ti 0
.5 %、残部実質的にFeの組成になるように配合し
た後、MnおよびBを第1表に示すように複合添加し、
水アトマイズ法にて粒度100mesh以下の8ai#
4の合金粉末を作製した。
As is clear from Figure 3, when the amount of B added is in the range of 0.1 to 5 inches, the theoretical density ratio is 96 inches or more, and the maximum energy product is 3.5 inches.
M G Oe or higher was obtained Example 3 Co 12%, Cr 25%, St O, 5%, Ti 0
.. 5%, the remainder being essentially Fe, and then Mn and B were added in combination as shown in Table 1.
8ai# with a particle size of 100 mesh or less using the water atomization method
An alloy powder of No. 4 was prepared.

第 1 表 各合金粉末を用いて実施例1と同様の条件で成形、焼結
を行った。しかるe、1200℃で30分間保持する溶
体化処理を行い、さらに650℃近傍で40分間保持す
る等温i場処理を行い、続いて4℃/hの速贋で625
℃から470℃まで冷却する時効処理を施して焼結研石
を得た。
Table 1 Molding and sintering were performed under the same conditions as in Example 1 using each alloy powder. However, solution treatment was performed at 1200°C for 30 minutes, followed by isothermal i-field treatment at around 650°C for 40 minutes, followed by 625
A sintered grinding stone was obtained by performing an aging treatment of cooling from °C to 470 °C.

得られた焼結磁石の理論密度比と最大エネルギー積値は
第1表に示す通りである。第1表よシ明らかなようにM
n5B無添加材(−1)に比べ、MnとBを複合添加し
た磁石(N[L2〜8)は理論密度比および最大エネル
ギー積がともに向上している。
The theoretical density ratio and maximum energy product value of the obtained sintered magnet are shown in Table 1. From Table 1, it is clear that M
Compared to the n5B additive-free material (-1), the magnets (N [L2 to 8) with a composite addition of Mn and B have improved both the theoretical density ratio and the maximum energy product.

以上に記述の如く、本兄明の製造方法によれば、本系合
金を水アトマイズ法にて合金粉末にする際、Mnおよび
/またはBをふ加することによシ、合金粉末を球状化せ
しめたものであり、その結果焼結後の密度が向上して理
論密度比96チ以上、最大エネルギー積3.5 M 0
0e以上の優れた焼結磁石合金を提供することが可能と
なったものである。
As described above, according to the manufacturing method of the present inventor, when the present alloy is made into alloy powder by the water atomization method, by adding Mn and/or B, the alloy powder is made spheroidal. As a result, the density after sintering is improved, the theoretical density ratio is 96 cm or more, and the maximum energy product is 3.5 M 0
This makes it possible to provide an excellent sintered magnet alloy with a magnetic flux of 0e or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)はそれぞれMnを無添加の合金
粉末およびMnを0.5チ添加した合金粉末の鵡微鋭写
真、第2図は合金粉末のMnの添加量とFe −Cr−
Co系磁石の理論密度比および最大エネルギー積の関係
を示す図、第3図は合金粉末のBの添加量とFe −C
r −Co系磁石合金の理論密度比および最大エネルギ
ー積の関係を示す図である。 代理人 弁理士 本 間 崇
Figures 1 (a) and (b) are microphotographs of an alloy powder with no addition of Mn and an alloy powder with 0.5 mm of Mn added, respectively, and Figure 2 shows the amount of Mn added in the alloy powder and the Fe - Cr-
A diagram showing the relationship between the theoretical density ratio and the maximum energy product of Co-based magnets. Figure 3 shows the relationship between the amount of B added to the alloy powder and the Fe-C
FIG. 2 is a diagram showing the relationship between the theoretical density ratio and the maximum energy product of an r-Co-based magnet alloy. Agent Patent Attorney Takashi Honma

Claims (1)

【特許請求の範囲】 1、Fe5Cr、 Coを主成分としかつ必須成分とし
てStとTiを含む合金の溶湯なアトマイズ法により粉
末化するFe −Cr −Co系合金粉末の製造方法に
おいて、前記合金としてFe、Cr及びCoとともにM
nおよび/またはBを添加した合金を用いたことを特徴
とするFe−Cr−Co系合金粉末の製造方法。 2、重量比でCr17〜45%、605〜30%、St
O,1〜5%、Ti001〜5%、Mn O,1〜5 
%、 BO01〜5%、残部実質的にFeからなる合金
を用いたことを特徴とする特許請求の範囲第1項記載の
Fe −Cr −Co系合金粉末の製造方法。
[Claims] 1. A method for producing a Fe-Cr-Co alloy powder, which comprises powdering an alloy mainly composed of Fe5Cr and Co and containing St and Ti as essential components by a molten atomization method, wherein as the alloy M together with Fe, Cr and Co
A method for producing a Fe-Cr-Co alloy powder, characterized in that an alloy containing n and/or B is used. 2. Cr17-45%, 605-30%, St by weight ratio
O, 1-5%, Ti001-5%, Mn O, 1-5
%, BO01 to 5%, and the remainder substantially consists of Fe.
JP20000083A 1983-10-27 1983-10-27 Manufacture of fe-cr-co alloy powder Pending JPS6092409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000083A JPS6092409A (en) 1983-10-27 1983-10-27 Manufacture of fe-cr-co alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000083A JPS6092409A (en) 1983-10-27 1983-10-27 Manufacture of fe-cr-co alloy powder

Publications (1)

Publication Number Publication Date
JPS6092409A true JPS6092409A (en) 1985-05-24

Family

ID=16417125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000083A Pending JPS6092409A (en) 1983-10-27 1983-10-27 Manufacture of fe-cr-co alloy powder

Country Status (1)

Country Link
JP (1) JPS6092409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503475A (en) * 1992-10-23 1996-04-02 Metec Corporation Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503475A (en) * 1992-10-23 1996-04-02 Metec Corporation Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
US2656595A (en) Chromium-alloyed corrosion-resist
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
JPS6092409A (en) Manufacture of fe-cr-co alloy powder
JPH05271852A (en) Production of rare earth magnet alloy
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH0364402A (en) Method for controlling carbon content of metallic injection molding
JPS6320411A (en) Production of material for permanent magnet
JPS61127848A (en) Manufacture of sintered alnico magnet
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP2000087194A (en) Alloy for electromagnet and its manufacture
JPS61208807A (en) Permanent magnet
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JPS5819406A (en) Manufacture of sintered fe-cr-co magnet alloy
JPS59126702A (en) Manufacture of fe-cr-co alloy powder
JP2783287B2 (en) Method for producing iron-cobalt soft magnetic material
JPS59118804A (en) Manufacture of fe-cr-co magnet alloy powder
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH0499247A (en) Production of soft magnetic sintered parts by utilizing mechanical alloying
JPH0142342B2 (en)
JPS60228649A (en) Manufacture of permanent magnet alloy
JPH1046208A (en) Production of ti-ni base alloy sintered body