JPH0142342B2 - - Google Patents

Info

Publication number
JPH0142342B2
JPH0142342B2 JP59253725A JP25372584A JPH0142342B2 JP H0142342 B2 JPH0142342 B2 JP H0142342B2 JP 59253725 A JP59253725 A JP 59253725A JP 25372584 A JP25372584 A JP 25372584A JP H0142342 B2 JPH0142342 B2 JP H0142342B2
Authority
JP
Japan
Prior art keywords
powder
alloy
sintering
raw material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59253725A
Other languages
Japanese (ja)
Other versions
JPS60149745A (en
Inventor
Michio Yamashita
Tsutomu Toyoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59253725A priority Critical patent/JPS60149745A/en
Publication of JPS60149745A publication Critical patent/JPS60149745A/en
Publication of JPH0142342B2 publication Critical patent/JPH0142342B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、工業的量産に適した低廉なFe−
Cr−Co系焼結磁石合金に係り、特に、高密度で
(BH)max5.5MGOe以上の高磁石特性を有する
Fe−Cr−Co系焼結磁石合金に関する。 従来の技術 Fe−Cr−Co系磁石合金は、アルニコ5磁石合
金に匹敵するすぐれた磁石特性を有し、かつ熱間
並びに冷間における加工が可能な材料として開発
され、多方面に利用されている。 この磁性材料を工業的に製造する方法として
は、圧延法、鋳造法、焼結法が考えられる。 まず、圧延法は、アルニコ系やフエライト系磁
石合金では不可能な方法であり、Fe−Cr−Co系
の特有の性質を利用した方法として、多種の製造
方法並びに添加成分の提案がなされてきた。 通常圧延法では、鍛造、圧延、焼鈍等の複雑な
工程を経て製造するため、量産性に欠けコスト高
となりやすく、一般に板状、線状等の特殊な形状
目的に主として適用されている。 さらに、製造工程中の溶解時におけるCrの酸
化、窒化を防止するために各種の添加成分を必要
とする。 この圧延法として次の技術が知られている。特
公昭53−35536号公報、特開昭50−101217号公報、
特公昭54−20934号公報、特開昭51−38221号公
報。 次に鍛造法は、一般にアルニコ系のように材質
の硬く脆いものに対して適用されており、Fe−
Cr−Co系の場合には、の高い加工性のため湯道
から鋳物をはずすのが困難な問題があり、鋳造欠
陥も避けがたい問題となつている。 また、作業性、能率の点さらには溶解時におけ
るCrの酸化、窒化を防止するための各種添加成
分の選定等により経済性にも問題がある。 例えば、特開昭52−49925号公報に提案される
ように、添加成分の選定によりすぐれた磁石特性
を示す場合でも上記の問題点を含んでいる。 一方、焼結法は上述の圧延法、鋳造法の問題点
はなく、工業的に大量のFe−Cr−Co系磁石を製
造するには適している。 しかし、焼結密度と磁石特性に問題があること
が知られている。例えば、特開昭54−33205号公
報、特開昭53−43006号公報に見られるように、
B、Si、C等を添加することにより密度は向上さ
せることができるが、磁石特性は(BH)
Max5.0MGOe以下の値を得るのみである。 また、従来の焼結法において、Co含有量は押
並べて20%以上で、価格も高くついていた。 発明の目的 この発明は、工業的量産に適した低廉なFe−
Cr−Co系焼結磁石合金を提供することを目的と
し、焼結磁石であつても高密度な焼結体を有し、
かつ(BH)Max5.5MGOe以上の磁石特性をも
つFe−Cr−Co系焼結磁石合金を提案することを
目的とする。 この発明は、 Cr22〜30%、Co8〜12%、残部Feおよび不可
避的不純物からなり、理論密度比97%以上、
(BH)Max5.5MGOe以上の磁石特性を有するFe
−Cr−Co系焼結磁石合金 である。 成分の限定理由 合金成分において、Cr22〜30%としたのは、
22%未満、30%を超える場合のいずれも磁石合金
として要求される磁束密度と保磁力を得ることが
できないためである。 また、Co8〜12%としたのは、8%未満では磁
石合金として必要な磁束密度と保磁力が得られな
いためであり、12%を超えると必要とする磁石特
性を得るための熱処理条件、例えば、溶体化処理
等が困難となり、さらには価格も勢い高価となり
実用的でないからである。 残部はFeであり、この発明合金は理論密度比
97%以上、(BH)Max5.5MGOe以上を得るのに
は何んらの添加成分を必要としない。 発明の好ましい実施態様 次に、この発明合金を製造する場合の原料粉末
について説明する。 焼結法によつてFe−Cr−Co系合金を得る場合
に、その原料粉として、アトマイズ法で作製した
Fe−Cr−Co系合金粉末があるが、200メツシユ
以下の微粉を得ることが困難である上、粉末が酸
化する。 さらには、目的とする高密度の焼結体を得るに
は、C、B等の添加元素を必要とするために原料
粉として好ましくない。 原料粉として機械的に粉砕したFe−Cr−Co系
合金粉末を用いることができるが、微粉末化する
ために多大のコストを要し実用的な方法ではな
い。 また、機械的に粉砕したフエロクロム粉(約60
%がCr−Fe)をコバルト粉末、鉄粉と混合して
用いる場合がある。しかしこの場合も上述した原
料粉と同様の問題点も含んでいる。 次に、機械的に粉砕したシグマ粉を用いる場合
は、シグマ粉はFe−Cr系あるいはFe−Cr−Co系
合金で、45%Crを中心に幅広いCrの含有量で生
成する脆いσ相を主体とする合金で、例えば45%
Cr−Fe、45%Cr−Co−Feであるため、容易に機
械的な微粉砕ができ、上記他の原料粉に比べて酸
化が少なく、高密度の焼結体を得るのに添加元素
を全く必要としない。 さらにシグマ粉に鉄粉、必要に応じてコバルト
粉を混合した混合粉を原料粉とすると、その成形
性、圧縮性、流動性のいずれもがすぐれており、
実用上高能率でプレス成形することができる。 ここで混合する鉄粉には、アトマイズ鉄粉、還
元鉄粉、電解鉄粉、カーボニル鉄粉が考えられる
が、このうちカーボニル鉄粉が最みよく、容易に
高密度の焼結体を得ることができ、しかも原料粉
のうち半量をカーボニル鉄粉とする場合も高密度
を容易に得ることができる。 また、カーボニル鉄粉と前記したフエロクロム
粉との混合粉を原料粉とする場合も、シグマ粉と
カーボニル鉄粉との混合粉を原料とする場合と同
様に高密度化が容易である。 すなわち、Cr22〜30%、Co8〜12%とすること
により、他製法において必要な脱酸、脱窒あるい
は熱処理を容易にするための添加元素を全く必要
とせず、また製造に際し、微粉砕の容易なシグマ
粉あるいはこれを主体とする混合粉、カーボニル
鉄粉とフエロクロム粉との混合粉を用いるため、
真空中または非酸化性雰囲気中で焼結し、高密度
の焼結体を得るのに何らかの添加元素を必要とし
ない。 焼結条件は、酸化を防ぐため真空中または不活
性ガスやH2等の雰囲気中のような非酸化性雰囲
気中で焼結するものとし、真空度は10-3Torr程
度でよい。また、焼結温度は高密度、高磁石特性
を得るために、1250〜1450℃が好ましい。 実施例 以下に、この発明による実施例を示しその効果
を明らかにする。 実施例 1 Cr48%、Co18%、残部Feよりなるシグマ粉を
機械的粉砕により200メツシユ以下とし、これに
平均粒度5μのカーボニル鉄粉、400メツシユ以下
のCo粉とを混合し、Cr25%、Co9.5%、残部Fe
の組成に調整した混合粉末を、5000Kg/cm2の圧力
で13φ×10mmの形状に加圧成形した。 次に、これを10-5Torrの真空中にて1280〜
1380℃で2時間の焼結を施した。 得られた焼結体を、1250℃で30分間の溶体化処
理したのち、640℃、3000Oeで1時間の磁場中等
温処理し、さらに620℃より500℃まで、3℃/hr
の速度で冷却保持した。のようにして得られた磁
石の特性を調べた結果を下記第1表に示す。 すなわち、この発明による組成のFe−Cr−Co
系焼結磁石合金はすぐれた特性を示し、従来の焼
結製造法による従来同系合金と比較して、理論密
度比98%以上、磁気エネルギー積(BH)
max5.5MGOe以上の著しい高密度と高特性のFe
−Cr−Co系焼結磁石合金が得られた。
Industrial Application Field This invention is an inexpensive Fe-based material suitable for industrial mass production.
Concerning Cr-Co based sintered magnet alloy, it has particularly high magnetic properties with high density (BH)max5.5MGOe or more.
Regarding Fe-Cr-Co based sintered magnet alloy. Prior Art Fe-Cr-Co magnet alloys have excellent magnetic properties comparable to Alnico 5 magnet alloys, and were developed as materials that can be worked in both hot and cold processes, and are used in a wide variety of fields. There is. Possible methods for industrially manufacturing this magnetic material include rolling, casting, and sintering. First, the rolling method is not possible with alnico-based or ferrite-based magnetic alloys, and various manufacturing methods and additive components have been proposed as methods that take advantage of the unique properties of the Fe-Cr-Co system. . In the normal rolling method, products are manufactured through complicated processes such as forging, rolling, and annealing, so they lack mass productivity and tend to be expensive, and are generally applied to special shapes such as plate shapes and wire shapes. Furthermore, various additive components are required to prevent oxidation and nitridation of Cr during melting during the manufacturing process. The following technology is known as this rolling method. Japanese Patent Publication No. 53-35536, Japanese Patent Publication No. 101217-1987,
Japanese Patent Publication No. 54-20934, Japanese Patent Publication No. 51-38221. Next, the forging method is generally applied to hard and brittle materials such as Alnico, and Fe-
In the case of Cr-Co, it is difficult to remove the casting from the runner due to its high workability, and casting defects are an unavoidable problem. In addition, there are also problems in terms of workability and efficiency, as well as economic efficiency due to the selection of various additive components to prevent oxidation and nitridation of Cr during melting. For example, as proposed in Japanese Patent Application Laid-Open No. 52-49925, even if excellent magnetic properties are achieved by selecting additive components, the above-mentioned problems still exist. On the other hand, the sintering method does not have the problems of the above-mentioned rolling method and casting method, and is suitable for industrially producing large quantities of Fe-Cr-Co magnets. However, it is known that there are problems with sintered density and magnetic properties. For example, as seen in JP-A-54-33205 and JP-A-53-43006,
The density can be improved by adding B, Si, C, etc., but the magnetic properties are (BH)
Only values below Max5.0MGOe are obtained. In addition, in conventional sintering methods, the Co content was typically over 20%, and the cost was high. Purpose of the invention This invention is an inexpensive Fe-
The purpose is to provide a Cr-Co based sintered magnet alloy, which has a high density sintered body even if it is a sintered magnet.
The purpose of this study is to propose a Fe-Cr-Co-based sintered magnet alloy with magnetic properties of (BH)Max5.5MGOe or higher. This invention consists of 22 to 30% Cr, 8 to 12% Co, the balance Fe and unavoidable impurities, with a theoretical density ratio of 97% or more,
(BH) Fe with magnetic properties of Max5.5MGOe or higher
-Cr-Co based sintered magnet alloy. Reason for limiting the composition The alloy composition was set at 22% to 30% Cr.
This is because if it is less than 22% or more than 30%, it is impossible to obtain the magnetic flux density and coercive force required for a magnetic alloy. In addition, the reason for setting Co8 to 12% is that if it is less than 8%, the magnetic flux density and coercive force necessary for a magnet alloy cannot be obtained, and if it exceeds 12%, the heat treatment conditions to obtain the required magnetic properties are For example, it becomes difficult to perform solution treatment, etc., and furthermore, it becomes extremely expensive, making it impractical. The remainder is Fe, and this invention alloy has a theoretical density ratio
No additional ingredients are required to obtain 97% or more and (BH)Max5.5MGOe or more. Preferred Embodiments of the Invention Next, the raw material powder for producing the alloy of the invention will be described. When obtaining a Fe-Cr-Co alloy by the sintering method, powder produced by the atomization method is used as the raw material powder.
Although there is Fe-Cr-Co alloy powder, it is difficult to obtain a fine powder of 200 mesh or less, and the powder oxidizes. Furthermore, in order to obtain the desired high-density sintered body, additional elements such as C and B are required, which makes it undesirable as a raw material powder. Mechanically pulverized Fe-Cr-Co alloy powder can be used as the raw material powder, but this is not a practical method because it requires a great deal of cost to make it into a fine powder. In addition, mechanically crushed ferrochrome powder (approximately 60
% Cr-Fe) may be used in combination with cobalt powder and iron powder. However, this case also includes the same problems as the raw material powder described above. Next, when using mechanically crushed sigma powder, the sigma powder is an Fe-Cr-based or Fe-Cr-Co-based alloy, and has a brittle σ phase that is generated with a wide range of Cr content centered around 45% Cr. Mainly alloy, e.g. 45%
Since it is Cr-Fe, 45% Cr-Co-Fe, it can be easily mechanically pulverized and has less oxidation than the other raw material powders mentioned above, and requires no additional elements to obtain a high-density sintered body. Not needed at all. Furthermore, when the raw material powder is a mixture of sigma powder, iron powder, and if necessary cobalt powder, it has excellent moldability, compressibility, and fluidity.
Press molding can be performed with high practical efficiency. The iron powder to be mixed here can be atomized iron powder, reduced iron powder, electrolytic iron powder, or carbonyl iron powder, but among these, carbonyl iron powder is the best and can easily obtain a high-density sintered body. Moreover, even when half of the raw material powder is carbonyl iron powder, high density can be easily obtained. Also, when a mixed powder of carbonyl iron powder and the above-mentioned ferrochrome powder is used as a raw material powder, high density can be easily achieved as in the case where a mixed powder of sigma powder and carbonyl iron powder is used as a raw material. In other words, by setting the content of Cr to 22 to 30% and Co to 8 to 12%, there is no need for any additional elements to facilitate deoxidation, denitrification, or heat treatment that are required in other manufacturing methods. Because we use sigma powder or a mixed powder mainly composed of sigma powder, or a mixed powder of carbonyl iron powder and ferrochrome powder,
It is sintered in vacuum or in a non-oxidizing atmosphere and does not require any additional elements to obtain a dense sintered body. Regarding the sintering conditions, in order to prevent oxidation, sintering is performed in a non-oxidizing atmosphere such as a vacuum or an atmosphere of an inert gas or H2 , and the degree of vacuum may be about 10 -3 Torr. Further, the sintering temperature is preferably 1250 to 1450°C in order to obtain high density and high magnetic properties. Examples Examples according to the present invention will be shown below to clarify its effects. Example 1 Sigma powder consisting of 48% Cr, 18% Co, and the balance Fe was mechanically crushed to a size of 200 mesh or less, and this was mixed with carbonyl iron powder with an average particle size of 5μ and Co powder of 400 mesh or less to produce a powder with 25% Cr and Co9. .5%, balance Fe
The mixed powder adjusted to the composition was pressure-molded into a shape of 13φ×10mm at a pressure of 5000Kg/cm 2 . Next, this is heated to 1280~ in a vacuum of 10 -5 Torr.
Sintering was performed at 1380°C for 2 hours. The obtained sintered body was solution-treated at 1250℃ for 30 minutes, then subjected to isothermal treatment in a magnetic field at 640℃ and 3000Oe for 1 hour, and then heated at 3℃/hr from 620℃ to 500℃.
It was kept cooled at a speed of . The results of examining the characteristics of the magnets obtained as described above are shown in Table 1 below. That is, Fe-Cr-Co having the composition according to the present invention
The sintered magnetic alloy exhibits excellent properties, with a theoretical density ratio of 98% or more and magnetic energy product (BH) compared to conventional similar alloys produced using conventional sintering manufacturing methods.
Remarkably high density and high properties of Fe with max5.5MGOe or higher
A -Cr-Co based sintered magnet alloy was obtained.

【表】 比較例 1 実施例1と同じ混合粉末を原料粉とし、これに
TiH2粉末(250メツシユ以下)を添加し、実施例
1と同じ条件で焼結並びに熱処理を施して焼結磁
石合金とした。磁石特性は第2表に示す。なお
Ti量は0.8%であつた。 さらに、得られた試料の組織分析を行つた。す
なわち、Cr25%、Co9.5%、Ti0.8%、Fe残部の
組成からなる試料のX線マイクロアナライザーに
よる顕微鏡組織写真により、Fe−Cr−co系焼結
磁石合金の場合、Tiの添加の効果は酸化物を一
部形成するものの窒化物は形成せず、ほとんど
Ti単独で存在することがわかる。 このため、この発明合金である実施No.1の試料
にTi添加を行つた実施No.4の試料は、第2表に
も明らかなように、特性は向上せずかえつて大き
く低下する原因となつたと考えられる。
[Table] Comparative example 1 The same mixed powder as in Example 1 was used as the raw material powder, and this
TiH 2 powder (250 mesh or less) was added and sintered and heat treated under the same conditions as in Example 1 to obtain a sintered magnet alloy. The magnetic properties are shown in Table 2. In addition
The amount of Ti was 0.8%. Furthermore, tissue analysis of the obtained samples was performed. In other words, microstructure photographs taken using an X-ray microanalyzer of a sample with a composition of 25% Cr, 9.5% Co, 0.8% Ti, and the remainder of Fe revealed that in the case of Fe-Cr-co sintered magnet alloys, the addition of Ti was The effect is that although some oxides are formed, nitrides are not formed, and almost no nitrides are formed.
It can be seen that Ti exists alone. For this reason, as is clear from Table 2, the properties of the sample No. 4, which was the invention alloy sample No. 1 to which Ti was added, did not improve in properties but instead significantly deteriorated. It is thought that it was summer.

【表】 実施例 2 実施例1と同方法によつて、第3表に示す原料
粉を用い、Cr25%、Co9.5%、Fe残部の混合粉末
と、加圧成形し、焼結雰囲気をH2中とし、1330
℃の温度で焼結させた。さらに実施例1と同方法
により熱処理を施した。得られた試料の磁石特性
は第3表に示す。
[Table] Example 2 Using the same method as in Example 1, the raw material powder shown in Table 3 was press-molded with a mixed powder of 25% Cr, 9.5% Co, and the remainder of Fe, and the sintering atmosphere was H2 medium and 1330
Sintered at a temperature of °C. Furthermore, heat treatment was performed in the same manner as in Example 1. The magnetic properties of the obtained samples are shown in Table 3.

【表】【table】

【表】 この発明により得たFe−Cr−Co系焼結磁石合
金(No.5、6、7)はH2中の非酸化性雰囲気中
における焼結によつて高密度かつ高特性が得られ
ている。 実施例 3 機械的粉砕によつて製造した200メツシユ以下
のシグマ粉(Cr48%、Co18%、Fe残部)あるい
はフエロクロム粉(Cr62%、Fe残部)と下記第
5表に示す種々の鉄粉、Co粉とを混合し、Cr25
%、Co9.5%、Fe残部の組成に調整し、実施例1
と同方法で成形したのち、10-3Torrの真空中に
おいて、1280℃、1330℃、1380℃で2時間の焼結
を行い、やはり、実施例1の熱処理を施した。得
られた試料の理論密度比(%)を第4表に示す。 第4表から明らかなように、この発明において
原料粉の組合せによる混合粉末を成形後焼結し、
得られた焼結体に熱処理を施し、Fe−Cr−Co系
焼結磁石合金としたものは(実施No.8、9、10)、
理論密度比が97%以上の高密度化が達成されてい
る。
[Table] The Fe-Cr-Co based sintered magnet alloys (No. 5, 6, 7) obtained according to the present invention have high density and high properties by sintering in a non-oxidizing atmosphere of H2 . It is being Example 3 Sigma powder (48% Cr, 18% Co, balance of Fe) or ferrochrome powder (62% Cr, balance of Fe) of 200 mesh or less produced by mechanical crushing and various iron powders and Co shown in Table 5 below Mix with powder, Cr25
%, Co9.5%, Fe balance, Example 1
After molding in the same manner as in Example 1, sintering was performed at 1280°C, 1330°C, and 1380°C for 2 hours in a vacuum of 10 -3 Torr, and the same heat treatment as in Example 1 was performed. Table 4 shows the theoretical density ratio (%) of the obtained samples. As is clear from Table 4, in the present invention, the mixed powder formed by the combination of raw material powders is sintered after molding,
The obtained sintered body was heat-treated to form a Fe-Cr-Co sintered magnet alloy (Execution No. 8, 9, 10).
High density with a theoretical density ratio of over 97% has been achieved.

【表】 すなわち、この発明は、以上の実施例に示した
如く、従来の圧延法、鋳造法、焼結法において必
要とされた脱酸、脱窒、熱処理の容易化等のため
の添加元素を全く必要としないFe−Cr−Co系焼
結磁石合金である。
[Table] That is, as shown in the above examples, the present invention provides additive elements for deoxidation, denitrification, facilitation of heat treatment, etc. required in conventional rolling methods, casting methods, and sintering methods. This is a Fe-Cr-Co based sintered magnet alloy that does not require any.

Claims (1)

【特許請求の範囲】 1 Cr22〜30%、Co8〜12%、残部Feおよび不
可避的不純物からなり、理論密度比97%以上、 (BH)max5.5MGOe以上の磁石特性を有する
ことを特徴とするFe−Cr−Co系焼結磁石合金。
[Claims] 1. Consisting of 22 to 30% Cr, 8 to 12% Co, the remainder Fe and unavoidable impurities, and is characterized by having magnetic properties of a theoretical density ratio of 97% or more and (BH) max 5.5 MGOe or more. Fe-Cr-Co based sintered magnet alloy.
JP59253725A 1984-11-29 1984-11-29 Fe-cr-co type sintered magnet alloy Granted JPS60149745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253725A JPS60149745A (en) 1984-11-29 1984-11-29 Fe-cr-co type sintered magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253725A JPS60149745A (en) 1984-11-29 1984-11-29 Fe-cr-co type sintered magnet alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4218080A Division JPS56139657A (en) 1980-03-31 1980-03-31 Sintered fe-cr-co magnet alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS60149745A JPS60149745A (en) 1985-08-07
JPH0142342B2 true JPH0142342B2 (en) 1989-09-12

Family

ID=17255273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253725A Granted JPS60149745A (en) 1984-11-29 1984-11-29 Fe-cr-co type sintered magnet alloy

Country Status (1)

Country Link
JP (1) JPS60149745A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238264B1 (en) * 2010-12-21 2013-03-04 명지대학교 산학협력단 Tialite based gray pigments and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22

Also Published As

Publication number Publication date
JPS60149745A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP3400027B2 (en) Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
US5993732A (en) Method for manufacturing a rare earth magnetic powder having high magnetic anisotropy
US5123979A (en) Alloy for fe nd b type permanent magnet, sintered permanent magnet and process for obtaining it
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
JPH0142342B2 (en)
JP2001524604A (en) Manufacturing method of magnetic alloy powder
US5520748A (en) Process for manufacturing Alnico system permanent magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH0146575B2 (en)
JPH0146574B2 (en)
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH0213021B2 (en)
JPS6180805A (en) Permanent magnet material
JPH0142341B2 (en)
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
US3519502A (en) Method of manufacturing sintered metallic magnets
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPS6136067B2 (en)
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JP3300420B2 (en) Alloy for sintered sealing material
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JPS59154004A (en) Manufacture of permanent magnet
JPS6358897B2 (en)